A domain decomposition method for the Oseen-viscoelastic flow equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A domain decomposition method for the Oseen-viscoelastic flow equations"

Transcript

1 A doman decomposton method for the Oseen-vscoelastc flow equatons Eleanor Jenkns Hyesuk Lee Abstract We study a non-overlappng doman decomposton method for the Oseen-vscoelastc flow problem. The data on the nterface are transported through Newmann and Drchlet boundary condtons for the momentum and consttutve equatons, respectvely. The dscrete varatonal formulatons of subproblems are presented and nvestgated for the exstence of solutons. We show convergence of the doman decomposton soluton to a soluton of the one-doman problem. Convergence of an teratve algorthm and some numercal results are also presented. Key words doman decomposton, vscoelastc flows, fnte element method 1 Introducton In ths paper we nvestgate a doman decomposton method for the Oseen-vscoelastc flud flow of Johnson-Segalman type. Vscoelastc flow equatons consst of a consttutve equaton for the materal, a momentum equaton, and a mass equaton. For Newtonan fluds, the equatons for statonary, ncompressble, creepng flow can be smplfed n terms of velocty and pressure because of the smplstc relatonshp between stress and velocty. For non-newtonan fluds, however, there s an extra stress component that accounts for the forces that the materal develops under deformaton. Thus, no smplfcaton takes place, and the complete system conssts of three equatons n the unknowns pressure (scalar), velocty (vector), and stress (symmetrc tensor). One of the dffcultes n smulatng vscoelastc flows arses from the hyperbolc nature of the consttutve equaton for whch one needs to use a stablzaton technque such as the streamlne upwndng Petrov-Galerkn (SUPG) method and the dscontnuous Galerkn method 1. Here we consder the dscontnuous Galerkn method for the fnte element approxmaton of stress. When dscretzed usng a dscontnuous space to approxmate the stress tensor, the sze of the dscrete system s ncreased consderably ncreased. In order to handle the large number of unknowns assocated wth the vscoelastc systems, we propose a doman decomposton algorthm for a two-subdoman problem. An extenson to a mut-doman problem s straghtforward. In each subdoman we mpose a Neumann condton for the momentum equaton and a Drchlet condton for the consttutve equaton on the nterface boundary n order to transport data. The dea of usng a Neumann type condton s based on the methods found n 15, 17, 18. For the fnte element approxmaton, we use the standard Taylor-Hood element for velocty and pressure and the dscontnuous Galerkn method for stress. Doman decomposton methods have been used extensvely to solve ellptc partal dfferental equatons (see 22 and references theren), along wth the Stokes and Naver-Stokes equatons 8, 10, 13, 15, 17. Some doman decomposton methods for vscoelastc fluds are found n 4, 16, 23. In 4 the authors use the addtve Schwarz method n conjuncton wth the DEVSS-G operator Department of Mathematcal Scences, Clemson Unversty, Clemson, SC , USA, lea@clemson.edu hklee@clemson.edu. Ths work was partally supported by the NSF under grant no. DMS

2 splttng method. The two-level Schwarz method s appled to a Stokes-lke problem that results from the splttng. A doman decomposton spectral collocaton (DDSC) method s ntroduced n 23 for an Oldroyd-B flud n model porous geometres. The method dscussed n 16 s based on the concepts of streamlnes and local transformaton functons, where the local functons are the prmary unknowns. The functons map the physcal subdomans to transformed domans where the mapped streamlnes are parallel straght lnes. The remander of the document s organzed as follows. In Secton 2, we ntroduce the model equatons for the Oseen-vscoelastc flow problem, and n Secton 3, we descrbe the model equatons for the problem decomposed nto two subdomans. Convergence of a doman decomposton soluton to a soluton of the one-doman problem s dscussed n Secton 4. In Secton 5, we present teratve algorthms and prove convergence of the algorthms. We provde numercal results n Secton 6, and conclusons and future work are gven n Secton 7. 2 Model equatons and fnte element approxmaton Let Ω be a bounded doman n RI d wth the Lpschtz contnuous boundary Ω. Johnson-Segalman problem Consder the σ + λ(u )σ + λg a (σ, u) 2 α D(u) = 0 n Ω, (2.1) σ 2(1 α) D(u) + p = f n Ω, (2.2) dv u = 0 n Ω, (2.3) where σ denotes the polymerc stress tensor, u the velocty vector, p the pressure of flud, and λ s the Wessenberg number defned as the product of the relaxaton tme and a characterstc stran rate. Assume that p has zero mean value over Ω. In (2.1) and (2.2), D(u) := ( u + u T )/2 s the rate of the stran tensor, α a number such that 0 < α < 1 whch may be consdered as the fracton of vscoelastc vscosty, and f the body force. In (2.1), g a (σ, u) s defned by g a (σ, u) := 1 a 2 (σ u + ut σ) 1 + a 2 ( u σ + σ ut ) (2.4) for a 1, 1. We use the Sobolev spaces W m,p (D) wth norms m,p,d f p <, m,,d f p =. We denote the Sobolev space W m,2 by H m wth the norm m. The correspondng space of vector-valued or tensor-valued functons s denoted by H m. If D = Ω, D s omtted,.e., (, ) = (, ) Ω and = Ω. Exstence of a soluton to the problem (2.1)-(2.3) wth the homogeneous boundary condton for u has been documented by Renardy (19) wth the small data condton: f f s suffcently regular and small, the problem admts a unque bounded soluton (u, p, σ) H 3 (Ω) H 2 (Ω) H 2 (Ω). In ths paper, the consttutve equaton (2.1) s smplfed to defne our doman decomposton problem. We wll consder the lnear Oseen problem wth the gven velocty b(x): We make the followng assumpton for b: σ + λ(b )σ + λg a (σ, b) 2 α D(u) = 0 n Ω, (2.5) σ 2(1 α) D(u) + p = f n Ω, (2.6) dv u = 0 n Ω, (2.7) u = 0 on Ω. (2.8) b H 1 0(Ω), b = 0, b M, b M <. 2

3 Defne the functon spaces for the velocty u, the pressure p and the stress σ, respectvely: X := H 1 0(Ω), S := L 2 0(Ω) = {q L 2 (Ω) : q dω = 0}, Ω Σ := {τ L 2 (Ω) : τ j = τ j, (b )τ L 2 (Ω)}. Note that the velocty and pressure spaces, X and S, satsfy the nf-sup condton The correspondng weak formulaton s then gven by: nf sup (q, v) C. (2.9) q S v X v 1 q 0 (σ, τ ) + λ((b )σ, τ ) + λ(g a (σ, b), τ ) 2α(D(u), τ ) = 0 τ Σ, (2.10) (σ, D(v)) + 2(1 α)(d(u), D(v)) (p, v) = (f, v) v X, (2.11) (q, u) = 0 q S. (2.) In the weak dvergence free space V := {v X : the weak formulaton (2.10)-(2.) s equvalent to: Ω q dv v dω = 0 q L 2 0(Ω)}, (σ, τ ) + λ((b )σ, τ ) + λ(g a (σ, b), τ ) 2α(D(u), τ ) = 0 τ Σ, (2.13) (σ, d(v)) + 2(1 α)(d(u), D(v)) = (f, v) v V. (2.14) We now consder the fnte element approxmaton of the problem (2.10)-(2.). Suppose T h s a trangulaton of Ω such that Ω = { K : K T h }. Assume that there exst postve constants c 1, c 2 such that c 1 h h K c 2 ρ K, where h K s the dameter of K, ρ K s the dameter of the greatest ball ncluded n K, and h = max K T h h K. Due to the hyperbolc nature of the consttutve equaton, a stablzaton technque s needed for the fnte element smulaton of vscoelastc flows. Streamlne upwndng (14, 20) and the dscontnuous Galerkn method (2, 7) are the commonly used dscretzaton technques to handle ths problem. We use the dscontnuous Galerkn method for approxmatng the stress. Let P k (K) denote the space of polynomals of degree less than or equal to k on K T h. Then we defne fnte element spaces for the approxmaton of (u, p): X h := {v X (C 0 (Ω)) d : v K P 2 (K) d, K T h }, S h := {q S C 0 (Ω) : q K P 1 (K), K T h }, V h := {v X h : (q, v) = 0, q S h }. The stress σ s approxmated n the dscontnuous fnte element space of pecewse lnears: Σ h := {τ Σ : τ K P 1 (K) d d, K T h }. 3

4 We ntroduce some notaton below n order to analyze an approxmate soluton by the dscontnuous Galerkn method. We defne K (b) := {x K, b n < 0}, where K s the boundary of K and n s outward unt normal, and We also defne for σ, τ < σ ±, τ ± > h,b := K T h (L 2 (K)) d d, and τ ± (b) := lm ɛ 0 τ (x ± ɛb(x)). (σ, τ ) h := K T h K T h (σ, τ ) K, K (b) τ 0,Γ h := τ 2 0, K K T h (σ ± (b), τ ± (b)) n b ds. τ m,h := 1/2 τ 2 m,k K T h for τ (W m,2 (K)) d d, f m <. K T h The dscontnuous Galerkn fnte element approxmaton of (2.10) (2.) s then as follows: fnd u h X h, p h S h, σ h Σ h such that (σ h, τ h ) + λ ((b )σ h, τ h ) h + < σ h+ σ h, τ h+ > h,b (2.15) 1/2 +λ(g a (σ h, b h ), τ h ) 2α(d(u h ), τ h ) = 0 τ h Σ h, (σ h, d(v h )) + 2(1 α) (d(u h ), d(v h )) (p h, v h ) = (f, v h ) v h X h, (2.16) (q h, u h ) = 0 q h S h. (2.17) It was shown n 6 that the dscrete problem (2.15)-(2.17) has a unque soluton f 1 2λMd > 0, and the soluton satsfes the error estmate. σ σ h 0 + u u h 1 Ch. (2.18) 3 Descrpton of the doman decomposton method We descrbe the doman decomposton method usng two subdomans, and the analyss that follows s based on ths problem. However, there are no dffcultes assocated wth extendng the analyss to handle as many subdomans as necessary. Let Ω be dvded nto two dsjont subdomans Ω 1 and Ω 2 such that Ω = Ω 1 Ω 2. The nterface between the two domans s denoted by Γ 0 so that Γ 0 = Ω 1 Ω 2. Defne Γ := {x Γ 0 : b n 1 < 0}, Γ := {x Γ 0 : b n 2 < 0}, 4

5 where n s the outward unt normal vector to Ω for = 1, 2. Let Γ 1 = Ω 1 Ω and Γ 2 = Ω 2 Ω. We consder the followng par of Oseen-vscoelastc systems wth mxed boundary condtons: and σ 1 + λ(b )σ 1 + λg a (σ 1, b) 2 α D(u 1 ) = 0 n Ω 1, (3.1) σ 1 2(1 α) D(u 1 ) + p 1 = f n Ω 1, (3.2) dv u 1 = 0 n Ω 1, (3.3) u 1 = 0 on Γ 1, (3.4) (σ 1 + 2(1 α) D(u 1 ) p 1 I) n 1 = 1 ɛ (u 1 u 2 ) on Γ 0, (3.5) σ 1 = σ 2 on Γ, (3.6) σ 2 + λ(b )σ 2 + λg a (σ 2, b) 2 α D(u 2 ) = 0 n Ω 2, (3.7) σ 1 2(1 α) D(u 2 ) + p 2 = f n Ω 2, (3.8) dv u 2 = 0 n Ω 2, (3.9) u 2 = 0 on Γ 2, (3.10) (σ 2 + 2(1 α) D(u 2 ) p 2 I) n 2 = 1 ɛ (u 1 u 2 ) on Γ 0, (3.11) σ 2 = σ 1 on Γ. (3.) Note that (3.6), the Drchlet boundary condtons for σ 1, s mposed on a part of the nterface Γ 0 where b n 1 < 0. Smlarly, (3.) s mposed on the nflow boundary of Ω 2 assocated wth the gven velocty feld b. Defne the functon spaces for the velocty u, the pressure p and the stress σ, respectvely, for = 1, 2: X := {v H 1 (Ω ) : v = 0 on Γ }, and the dv free space S := L 2 (Ω ), Σ := (L 2 (Ω )) 2 2 {τ = (τ j ) : τ j = τ j, b τ (L 2 (Ω )) 2 2 } V := {v X : q dv v dω = 0 Ω q S }. The correspondng weak formulaton of (3.1)-(3.) s then gven by (σ 1, τ 1 ) + λ (b )σ 1, τ 1 ) + λ (g a (σ 1, b), τ 1 ) 2α(D(u 1 ), τ 1 ) = 0 τ 1 Σ 1, (3.13) (σ 1, D(v 1 )) + 2(1 α)(d(u 1 ), D(v 1 )) (p 1, v 1 ) + 1 ɛ (u 1 u 2, v 1 ) Γ0 = (f, v 1 ) v 1 X 1, (3.14) (q 1, u 1 ) = 0 q 1 S 1, (3.15) σ 1 = σ 2 on Γ, (3.16) 5

6 and (σ 2, τ 2 ) + λ (b )σ 2, τ 2 ) + λ (g a (σ 2, b), τ 2 ) 2α(D(u 2 ), τ 2 ) = 0 τ 2 Σ 2, (3.17) (σ 2, D(v 2 )) + 2(1 α)(d(u 2 ), D(v 2 )) (p 2, v 2 ) 1 ɛ (u 1 u 2, v 2 ) Γ0 = (f, v 2 ) v 2 X 2, (3.18) (q 2, u 2 ) = 0 q 2 S 2. (3.19) σ 2 = σ 1 on Γ. (3.20) We defne dscrete subspaces for the fnte element approxmaton of the two-doman problem (3.13)-(3.20). Let T h denote a trangulaton of Ω such that Ω = { K : K T h } for = 1, 2. Defne fnte element spaces for the approxmaton of (σ h, uh, ph ) for = 1, 2: Σ h := {τ Σ : τ K P 1 (K) d d, K T h }, X h := {v X (C 0 (Ω )) d : v K P 2 (K) d, K T h }, S h := {q S C 0 (Ω ) : q K P 1 (K), K T h }. We also defne the dscrete dvergence free subspace V h := {v X h : (q, v) = 0, q S h }. The fnte element spaces defned above satsfy the standard approxmaton propertes (see 3 or 9),.e., there exst an nteger k and a constant C such that and nf v v h 1 Ch 2 v 3 v H 3 (Ω ), (3.) v h X h nf q q h 0 Ch 2 q 2 q H 2 (Ω ), (3.22) q h S h nf τ τ h τ 0 Ch 2 τ 2 τ H 2 (Ω ). (3.23) h Σ h It s also well known that the Taylor-Hood par (X h, Sh ) satsfes the nf-sup condton, nf 0 q h S h sup 0 v h X h (q h, v h ) v h 1 q h 0 C, (3.24) where C s a postve constant ndependent of h. In addton to notaton ntroduced n the prevous secton for the dscontnuous Galerkn method, we present more notaton to analyze σ h on the nterface Γ 0. We defne, for σ, τ (L 2 (K)) d d < σ ±, τ ± > h,b := K T h, K Γ 0= K (b) σ ± h,b :=< σ ±, σ± > 1/2 τ 0,Γ h := τ 2 0, K K T h (σ ± (b) : τ ± (b)) n b ds, h,b, 1/2, K T h 6

7 and τ m,h := τ 2 m,k 1/2 for τ K T h (W m,2 (K)) d d, f m <. Also defne, for, j = 1, 2 K T h < σ ±, τ ± j > h,b,γ := lm K Tl h, K Γ lm K (b) (σ ± (b) : τ ± j (b)) n b ds, σ ± h,b,γ :=< σ ±, σ± > 1/2, lm h,b,γ lm where (l, m) = (1, 2) or (2, 1). The dscrete varatonal formulatons of (3.13)-(3.16) and (3.17)-(3.20) are then gven by (σ h 1, τ h 1) + λ ((b )σ h 1, τ h 1) h + λ (g a (σ h 1, b), τ h 1) 2α(D(u h 1), τ h 1) +λ < σ h 1 + σ h 1, τ h 1 + >h,b +λ < σ h 1 σ h 2, τ h 1 > h,b,γ= 0 τ h 1 Σ h 1, (3.25) (σ h 1, D(v h 1 )) + 2(1 α)(d(u h 1), D(v h 1 )) (p h 1, v h 1 ) + 1 ɛ (uh 1 u h 2, v h 1 ) Γ0 = (f, v h 1 ) v h 1 X h 1, (3.26) and (q h 1, u h 1) = 0 q 1 S h 1 (Ω), (3.27) (σ h 2, τ h 2) + λ ((b )σ h 2, τ h 2) h + λ (g a (σ h 2, b), τ h 2) 2α(D(u h 2), τ h 2) +λ < σ h + 2 σ h 2, τ h+ 2 >h,b +λ < σ h 2 σ h 1, τ h 2 > h,b,γ = 0 τ h 2 Σ h 2, (3.28) (σ h 2, D(v h 2 )) + 2(1 α)(d(u h 2), D(v h 2 )) (p h 2, v h 2 ) 1 ɛ (uh 1 u h 2, v h 2 ) Γ0 = (f, v h 2 ) v h 2 X h 2, (3.29) (q h 2, u h 2) = 0 q 2 S h 2 (Ω). (3.30) Note that the stress boundary condtons (3.16), (3.20) are mposed weakly 11. The next theorem shows the exstence and unqueness of a soluton to the above coupled system (3.25)-(3.30). In provng the theorem we use the blnear forms A defned on Σ h V h for = 1, 2 by A ((σ h, u h ), (τ h, v h )) := (σ h, τ h ) 2α(D(u h ), τ h ) + 2α(σ h, D(v h )) Note that A s contnuous and coercve, f 1 2λMd > 0: snce we have +4α(1 α) (D(u h ), D(v h )) + λ (g a (σ h, b), τ h ). (3.31) (g a (σ h, b), τ h ) 2d b σ h 0 τ h 0 2dM σ h 0 τ h 0, (3.32) A ((σ h, u h ), (τ h, v h )) σ h 0 τ h 0 + 2α D(u h ) 0 τ h 0 +2α σ h 0 D(v h ) 0 + 4α(1 α) D(u h ) 0 D(v h ) 0 +2Mdλ σ h 0 τ h 0 C( σ h 0 + u 1 )(( τ h 0 + v 1 ) C (σ h, u h ) Σ X h (τ h, v h ) Σ X, (3.33) 7

8 where (τ h, vh ) Σ X s defned as ( τ h v h 2 1) 1/2. Also, usng (3.32), A ((σ h, uh ), (σh, uh )) = σh λ(g a (σ h, b), σh ) + 4α(1 α) D(uh ) 2 0 σ h 2 0 2λMd σ h α(1 α) D(u h ) 2 0 C (σ h, uh ) 2 Σ X, (3.34) f 1 2λMd > 0. In the proof of the next theorem we wll also use the nverse estmate 3, 9 the local nverse nequalty, and the trace theorem 9, σ h 0,h Ch 1 σ h 0 for σ h Σ h, (3.35) σ h 0, K Ch 1/2 σ h 0,K for σ h Σ h, (3.36) u 0,Γ Γ 0 C u 1 for u X. (3.37) Theorem 3.1. The system (3.25)-(3.30) has a unque soluton, f 1 2λMd > 0. Proof. Usng the dv free spaces V h = 1, 2, the coupled system (3.25)-(3.30) s equvalent to A ((σ h, u h ), (τ h, v h )) + λ((b )σ h, τ h ) h + λ < σ h + σ h, τ h+ >h,b +λ < σ h 1 σ h 2, τ h 1 > h,b,γ = where F ( ) : Σ h V h R s a functonal defned by It s straght forward to show F s bounded: + < σ h 2 σ h 1, τ h 2 > h,b,γ + 1 ɛ (uh 1 u h 2, v h 1 v h 2 ) Γ0 F ((τ h, v h )) (τ h, v h ) Σ h V h, (3.38) F ((τ h, v h )) := 2α(f, v h ). F ((τ h, v h )) 2α f 1 v h 1 2α f 1 (τ h, v h ) Σ X. (3.39) We wll show the blnear form n (3.38) s contnuous and coercve n 2 (Σh V h ), f 12λMd > 0. Usng (3.35) and (3.36), ((b )σ h, τ h ) h + < σ h + σ h, τ h+ >h,b C b σ h 0,h τ h 0 + b σ h 0,Γ τ h h 0,Γ h C b (h 1 σ h 0 ) τ h 0 + b (h 1/2 σ h 0 )(h 1/2 τ h 0 ) and CMh 1 σ h 0 τ h 0, (3.40) < σ h 1 σ h 2, τ h 1 > h,b,γ + < σ h 2 σ h 1, τ h 2 > h,b,γ C b ( σ h 1 0,Γ0 + σ h 2 0,Γ0 ) τ h 1 0,Γ0 + b ( σ h 2 0,Γ0 + σ h 1 0,Γ0 ) τ h 2 0,Γ0 CM (h 1/2 σ h h 1/2 σ h 2 0 )(h 1/2 τ h 1 0 ) +(h 1/2 σ h h 1/2 σ h 1 0 )(h 1/2 τ h 2 0 ) CMh 1,j=1 σ h 0 τ h j 0. (3.41) 8

9 Also, by (3.37), Hence, by (3.33) and (3.40)-(3.42), (u h 1 u h 2, v h 1 v h 2 ) Γ0 C,j=1 u h 1 v h j 1. (3.42) A ((σ h, u h ), (τ h, v h )) + λ((b )σ h, τ h ) h + λ < σ h + σ h, τ h+ >h,b +λ < σ h 1 σ h 2, τ h 1 > h,b,γ + < σ h 2 σ h 1, τ h 2 > h,b,γ + 1 ɛ (uh 1 u h 2, v1 h v2 h ) Γ0 C ( σ h 0 + u h 1 )( τ h 0 + v h 1 ) + Mh 1 σ h 0 τ h 0 C h ( σ h 0 + u h 1 )( τ h 0 + v h 1 ),j=1 C h (σ h 1, u h 1, σ h 2, u h 2) Σ1 X 1 Σ 2 X 2 (τ h 1, v h 1, τ h 2, v h 2 ) Σ1 X 1 Σ 2 X 2, (3.43) where C h s a constant dependent on h. We now show the coercvty of the blnear form. Frst note, usng ntegraton by parts, that =,j=1 ((b )σ h, τ h ) h + < σ h + σ h, τ h+ >h,b + < σ h 1 σ h 2, τ h 1 > h,b,γ + < σ h 2 σ h 1, τ h 2 > h,b,γ ((b )τ h, σ h ) h + < σ h, τ h τ h+ >h,b Hence, f τ h = σh, we obtan + < σ h 2, τ h 2 τ h 1 > h,b,γ + < σ h 1, τ h 1 τ h 2 > h,b,γ ((b )σ h, σ h ) h + < σ h + σ h, σ h+ >h,b. (3.44) + < σ h 1 σ h 2, σ h 1 > h,b,γ + < σ h 2 σ h 1, σ h 2 > h,b,γ = σ h + σ h 2 h,b + σ h 1 σ h 2 2 h,b,γ + σ h 2 σ h 1 2 h,b,γ (3.45) 9

10 Now the coercvty of the blnear form follows from (3.34) and (3.45): +λ C A ((σ h, u h ), (σ h, u h )) + λ((b )σ h, σ h ) + λ < σ h + σ h, σ h+ >h,b < σ h 1 σ h 2, σ h 1 > h,b,γ + < σ h 2 σ h 1, σ h 2 > h,b,γ + 1 ɛ (uh 1 u h 2, u h 1 u h 2) Γ0 σ h 2 0 2λMd σ h α(1 α) D(u h ) λ 2 σh + σ h 2 h,b + λ σ h 1 σ h σ h 2 h,b,γ 2 σ h h,b,γ ɛ (uh 1 u h 2) 2 Γ 0 (1 2λMd) σ h α(1 α) D(u h ) 2 0 (σ h, u h ) 2 Σ X C (σ h 1, u h 1, σ h 2, u h 2) 2 Σ 1 X 1 Σ 2 X 2. (3.46) Therefore, by the Lax-Mlgram theorem, there exsts a unque (σ h, uh ) Σh V h, f 12λMd > 0. Fnally, exstence of a unque soluton (σ h, uh, ph ) Σh X h Sh follows from the nf-sup condton (3.24). 4 Convergence Analyss We wll prove the soluton of the two-doman problem (3.25)-(3.30) converges to the soluton (σ ex, u ex, p ex ) satsfyng (2.5)-(2.8). Let σ ex = σ ex Ω Γ 0, u ex = u ex Ω Γ 0 and p ex = p ex Ω Γ 0 for = 1, 2. Defne g ex := (σ ex + 2(1 α)d(u ex ) + p ex I) n 1 on Γ 0. Note that, for = 1, 2, (σ ex (σ ex (σ ex, u ex, p ex ) satsfy, τ ) + λ((b )σ ex, τ ) + λ(g a (σ ex, D(v )) + 2(1 α)(d(u ex ), D(v )) (p ex, b), τ ) 2α(D(u ex ), τ ) = 0 τ Σ, (4.1), v ) = (f, v ) + (1) +1 (g ex, v ) Γ0 v X, (4.2) (q, u ex ) = 0 q S. (4.3) In the dv free spaces V, (4.1)-(4.3) s equvalent to A ((σ ex, u ex ), (τ, v )) + λ((b )σ ex, τ ) = 2α(f, v ) + 2α(g ex, v 1 v 2 ) Γ0. (4.4) We ntroduce some approxmaton propertes (see 3 or 9), whch wll be used n order to prove the next theorem. If σ h Σ h s the orthogonal projecton of σ ex on T h n Σ, and ũ h V h s defned as the nterpolant of u ex n V, then we have the followng standard results. For u ex H 3 (Ω ) and σ ex H 2 (Ω ) σ ex (u ex ũ h ) 0 C h 2 u ex 3, (4.5) σ h 0 + h (σ ex σ h ) 0 Ch 2 σ ex 2. (4.6) 10

11 Theorem 4.1. If 12λMd > 0 and (σ h, uh ) for = 1, 2, satsfy the coupled decomposton problem (3.25)-(3.30), they converge to the exact soluton (σ ex, u ex ) as ɛ goes to 0. Furthermore, we have the estmate σ ex σ h 0 + u ex u h 1 C(h + ɛ g ex Γ0 ). (4.7) Proof. Subtractng (3.38) from (4.4), and addng and subtractng σ h, ũ h, mply = +λ A (( σ h σ h, ũ h u h ), (τ h, v h )) +λ((b )( σ h σ h ), τ h ) + λ < ( σ h σ h ) + ( σ h σ h ), τ h + >h,b < ( σ h 1 σ h 1) ( σ h 2 σ h 2), τ h 1 > h,b,γ 2α ɛ (uh 1 u h 2, v h 1 v h 2 ) Γ0 A (( σ h σ ex, ũ h u ex ), (τ h, v h )) + < ( σ h 2 σ h 2) ( σ h 1 σ h 1), τ h 2 > h,b,γ + >h,b +λ((b )( σ h σ ex ), τ h ) + λ < ( σ h σ ex ) + ( σ h σ ex ), τ h +λ < ( σ h 1 σ ex 1 ) ( σ h 2 σ ex 2 ), τ h 1 > h,b,γ + < ( σ h 2 σ ex 2 ) ( σ h 1 σ ex 1 ), τ h 2 > h,b,γ +2α(g ex, v h 1 v h 2 ) Γ0 (τ h, v h ) Σ h V h, (4.8) where we used σ ex 1 = σ ex 2 on Γ 0 and that σ ex s a contnuous functon. Let τ h = σ h σ h, v h = ũh uh. We have a lower bound of the left hand sde of (4.8) usng (3.34) and (3.45): LHS (1 2λMd) σ h σ h α(1 α) D(ũ h u h ) α ɛ uh 1 u h 2 2 Γ 0. (4.9) Estmates for the jump terms n the rght sde of (4.8) are obtaned n the smlar way shown n (3.40) and (3.41): < ( σ h σ ex ) + ( σ h σ ex ), σ h σ h + >h,b C b σ h σ ex 0,Γ h σ h σ h 0,Γ h CMh 1 σ h σ ex 0 σ h σ h 0, (4.10) < ( σ h 1 σ ex 1 ) ( σ h 2 σ ex 2 ), σ h 1 σ h 1 > h,b,γ + < ( σ h 2 σ ex 2 ) ( σ h 1 σ ex 1 ), σ h 2 σ h 2 > h,b,γ C b ( σ h 1 σ ex 1 0,Γ0 + σ h 2 σ ex 2 0,Γ0 )( σ h 1 σ h 1 0,Γ0 + σ h 2 σ h 2 0,Γ0 ) CMh 1 ( σ h 1 σ ex σ h 2 σ ex 2 0 )( σ h 1 σ h σ h 2 σ h 2 0 ). (4.11) 11

12 Usng (3.33), (4.9)-(4.11) and the Young s nequalty, we have C (1 2λMd) σ h σ h α(1 α) D(ũ h u h ) α ɛ uh 1 u h 2 2 Γ 0 ( σ h σ ex 0 + D(ũ h u ex ) 0 )( σ h σ h 0 + D(ũ h u h ) 0 ) +λm ( σ h σ ex ) 0 σ h σ h 0 + λmh 1 σ h σ ex 0 σ h σ h 0 +CλMh 1,j=1 σ h σ ex 0 σ h j σ h j 0 + 2α g ex Γ0 u 1 u 2 Γ0 C δ 1 ( σ h σ h 0 + D(ũ h u h ) 0 ) ( σ h σ ex 0 + D(ũ h u ex ) 0 ) 2 4δ 1 +δ 2 λm σ h σ h λm ( σ h σ ex ) δ 3 λm σ h σ h λmh2 σ h σ ex 2 0 4δ 2 4δ 3 +C δ 4 λm σ h σ h 20 + λmh2 σ h σ ex 2 0 4δ α u h 1 u h 4δ 2 2 Γ 0 + δ 5 g ex 2 Γ 0, (4.) 5 for arbtrary δ > 0, = 1, 2,..., 5. If we take δ 5 = ɛ 2, C (1 2λMd 2δ 1 C (δ 2 + δ 3 + δ 4 )λmc) σ h σ h (4α(1 α) 2Cδ 1 ) D(ũ h u h ) 2 α 0 + ɛ uh 1 u h 2 2 Γ 0 ( σ h σ ex 4δ 1 +( λmh2 4δ D(ũ h u ex ) 0 ) 2 + λm ( σ h σ ex ) 2 0 4δ 2 + λmh2 ) σ h σ ex αɛ g ex 2 Γ 4δ 0. (4.13) 4 Therefore, usng (4.5)-(4.6) and the trangle nequalty, (4.7) follows. Remark 4.2. The pressure on each subdoman, p h, s determned up to a constant. In order to compute a pressure convergent to p ex whch has the zero mean value, construct p h nl 2 0(Ω) by { p h p h (x) = 1 K for x Ω 1 p h, 2 K for x Ω 2 ( where K = ph Ω1 1 dω 1 + ) ph Ω2 2 dω 2 /meas(ω). Then, convergence of p h to p ex can be proved as shown n 17 or 18. Remark 4.3. The estmate (4.7) suggests the optmal scalng ɛ = Ch 2 between ɛ and h. 5 Iteratve Algorthm In ths secton we delete the superscrpt h n (σ h, uh, ph ) to smplfy our notatons. Consder the followng teratve algorthm.

13 Algorthm 5.1. (σ n+1 1, τ h ) + λ((b )σ n+1 1, τ h ) + λ < σ n σ n+1 1, τ h + > h,b 2α(D(u n+1 1 ), τ h ) + λ < σ n+1 1, τ h > h,b,γ = λ (g a (σ n 1, b), τ h ) + λ < σ n 2, τ h > h,b,γ τ h Σ h 1, (5.1) and (σ 1 n+1, D(v h )) + 2(1 α)(d(u 1 n+1 ), D(v h )) (p 1 n+1, v h ) + 1 ɛ (u 1 n+1, v h ) Γ0 = (f, v h ) + 1 ɛ (u 2 n, v h ) Γ0 v h X h 1, (5.2) (q h, u 1 n+1 ) = 0 q S h 1, (5.3) (σ n+1 2, τ h ) + λ((b )σ n+1 2, τ h ) + λ < σ n σ n+1 2, τ h + > h,b 2α(D(u n+1 2 ), τ h ) + λ < σ n+1 2, τ h > h,b,γ = λ (g a (σ n 2, b), τ h ) + λ < σ n 1, τ h > h,b,γ τ h Σ h 2, (5.4) (σ 2 n+1, D(v h )) + 2(1 α)(d(u 2 n+1 ), D(v h )) (p 2 n+1, v h ) + 1 ɛ (u 2 n+1, v h ) Γ0 = (f, v h ) + 1 ɛ (u 1 n, v h ) Γ0 v h X h 2, (5.5) (q h, u h 2 n+1 ) = 0 q S h 2. (5.6) In the proof of the next theorem we wll use the Trace theorem C u 0,Γ0 D(u ) 0. (5.7) Theorem 5.2. The teratve algorthm 5.1 converges for each fxed ɛ and h f λm s suffcently small so that λmd + λ M λm 2h < 1 λmd and α satsfes λmd + 2h 4 C 2 α(1 α) < α ɛ < 1 λmd, where C s the constant n (5.7). Proof. In the dscrete dv free space V h, subtractng (5.1)-(5.2) and (5.4)-(5.5) from (3.25)-(3.26) and (3.28)-(3.29) respectvely, and lettng τ = σ σ n+1, v = u u n+1, we obtan σ 1 σ 1 n λ 2 (σ 1 σ n+1 1 ) + (σ 1 σ n+1 1 ) 2 h,b 2α(D(u 1 u n+1 1 ), σ 1 σ n+1 1 ) + λ σ 1 σ n h,b,γ = λ (g a (σ 1 σ n 1, b), σ 1 σ n+1 1 ) + λ < σ 2 σ n 2, σ 1 σ n+1 1 > h,b,γ, (5.8) (σ 1 σ 1 n+1, D(u 1 u 1 n+1 )) + 2(1 α) D(u 1 u 1 n+1 ) ɛ u 1 u 1 n+1 2 Γ 0 = 1 ɛ (u 2 u 2 n, u 1 u 1 n+1 ) Γ0, (5.9) 13

14 and σ 2 σ 2 n λ 2 (σ 2 σ n+1 2 ) + (σ 2 σ n+1 2 ) 2 h,b 2α(D(u 2 u n+1 2 ), σ 2 σ n+1 2 ) + λ σ 2 σ n h,b,γ = λ (g a (σ 2 σ n 2, b), σ 2 σ n 2 ) + λ < σ 1 σ n 1, σ 2 σ n+1 2 > h,b,γ, (5.10) (σ 2 σ 2 n+1, D(u 2 u 2 n+1 )) + 2(1 α) D(u 2 u 2 n+1 ) ɛ u 2 u 2 n+1 2 Γ 0 = 1 ɛ (u 1 u 1 n, u 2 u 2 n+1 ) Γ0. (5.11) Multplyng (5.9), (5.11) by 2α and addng all equatons together, we have σ σ n λ 2 (σ σ n+1 ) + (σ σ n+1 ) 2 h,b +4α(1 α) D(u u n+1 ) α ɛ u u n+1 2 Γ 0 +λ σ 1 σ n λ σ h,b,γ 2 σ n h,b,γ 2λMd σ σ n 0 σ σ n+1 0 +λ < σ 2 σ 2 n, σ 1 σ 1 n+1 > h,b,γ + < σ 1 σ 1 n, σ 2 σ 2 n+1 > h,b,γ + 2α ɛ (u 2 u 2 n, u 1 u 1 n+1 ) Γ0 + 2α ɛ (u 1 u 1 n, u 2 u 2 n+1 ) Γ0 λmd( σ σ n σ σ n+1 2 0) + λ σ 2 σ n σ 2 h,b,γ 1 σ n h,b,γ + σ 1 σ n 1 h,b,γ + σ 2 σ n h,b,γ + α u2 u n 2 2 Γ ɛ 0 + u 1 u n Γ 0 + u 1 u n 1 2 Γ 0 + u 2 u n Γ 0, (5.) by usng (3.32), (3.34), (3.45), and the Young s nequalty. Usng (5.7), (5.) becomes ( (1 λmd) σ σ n C 2 α(1 α) + α ) u u n+1 2 Γ0 ɛ + λ σ 1 σ n σ 2 h,b,γ 2 σ n h,b,γ λmd σ σ n λ 2 σ 2 σ n σ h,b,γ 1 σ n α h,b,γ ɛ u u n 2 Γ 0. As Γ, Γ Γ 0, usng the nverse estmate Ch 1/2 σ h 0,Γ0 σ h Ω (5.13) 14

15 we obtan ( (1 λmd) σ σ n C 2 α(1 α) + α ) u u n+1 2 Γ0 ɛ 1=2 ( λmd + λm ) σ σ n 20 + αɛ 2h u u n 2Γ0. Note that α ɛ 4 Cα(1 α) + α ɛ Hence (σ n+1, u n+1 ) converges, f λmd+ λ M λm 2h < 1λMd and λmd+ 2h 4 C 2 α(1α) < α ɛ < 1λMd. In order to prove convergence of pressure, subtract (5.2), (5.5) from (3.26), (3.29), respectvely. < 1. (σ σ n+1, D(v )) + 2(1 α)(d(u u n+1 ), D(v )) (p p n+1, v ) + 1 ɛ (u u n+1, v ) Γ0 = 1 ɛ (u j u j n, v ) Γ0, (5.14) where (, j) = (1, 2) or (2, 1). Usng the nf-sup condton (3.24), (5.7) and (5.14), we have Ths mples p p n+1 0 C sup 0 v h Xh C sup 0 v h Xh p p n+1 0 C (p p n+1, v h) v h 1 1 v h σ σ n (1 α) D(u u n+1 ) Cɛ ( D(u u n+1 ) 0 + D(u j u j n ) 0 ) D(v ). σ σ n D(u u n+1 ) 0 + D(u u n ) 0. Therefore, convergence of p n+1 follows from convergence of (σ n+1, u n+1 ). As an alternate scheme, we may consder the slghtly modfed teratve algorthm. Algorthm 5.3. (σ n+1 1, τ h ) + λ((b )σ n+1 1, τ h ) + λ < σ n σ n+1 1, τ h + > h,b +λ (g a (σ n+1 1, b), τ h ) 2α(D(u n+1 1 ), τ h ) + λ < σ n+1 1, τ h > h,b,γ = λ < σ n 2, τ h > h,b,γ τ h Σ h 1, (σ 1 n+1, D(v h )) + 2(1 α)(d(u 1 n+1 ), D(v h )) (p 1 n+1, v h ) + 1 ɛ (u 1 n+1, v h ) Γ0 (q h, u 1 n+1 ) = 0 q S h 1, = (f, v h ) + 1 ɛ (u 2 n, v h ) Γ0 v h X h 1, 15

16 and (σ n+1 2, τ h ) + λ((b )σ n+1 2, τ h ) + λ < σ n σ n+1 2, τ h + > h,b +λ (g a (σ n+1 2, b), τ h ) 2α(D(u n+1 2 ), τ h ) + λ < σ n+1 2, τ h > h,b,γ = λ < σ n 1, τ h > h,b,γ τ h Σ h 2, (σ 2 n+1, D(v h )) + 2(1 α)(d(u 2 n+1 ), D(v h )) (p 2 n+1, v h ) + 1 ɛ (u 2 n+1, v h ) Γ0 = (f, v h ) + 1 ɛ (u 1 n, v h ) Γ0 v h X h 2, (q h, u h 2 n+1 ) = 0 q S h 2. Note that the dfference between two algorthms les n the g a terms of the consttutve equatons. Convergence of Algorthm 5.3 can be shown under stronger condtons on parameters λm and α; we need the assumptons λm < 2C 2 h(1 2λMd) and λm 2 4 C 2 α(1 α) < α ɛ < C2 h(1 2λMd), where C s the constant appears n the nverse nequalty (5.13). The requrement on α s more restrctve than the condton n the Theorem 5.2 snce ɛ s expected to be Ch 2 as stated n Remark 4.3. However, t turned out that the condtons for convergence are not necessary n numercal tests and the convergence rate of each algorthm s strongly dependent on ɛ. The convergence ssue wll be addressed n the next secton.. 6 Prelmnary Numercal Results In ths secton we present numercal results obtaned usng Algorthm 5.3. The example s a nonphyscal problem wth doman Ω = 0, 1 0, 1 and a specfed soluton. The functon b was chosen to be the exact soluton u. The rght hand sde functons n (2.5)-(2.8) were approprately gven so that the exact soluton was sn(πx)y(y 1) u = sn(x) (x 1)y cos(πy/2) p = cos(2πx) y(y 1) σ = 2α D(u) The parameters λ, α and a n the equatons were chosen as 1, 0.5 and 0, respectvely. We used the Taylor-Hood element for (u, p) and dscontnuous lnear polynomals for σ. Although we assumed that dv u = 0 for analyss, t turns out that the dv free condton s not necessary for the numercal experments. Note that the example we chose has the homogeneous boundary condton on Ω, but dv u 0. The doman Ω was dvded nto two subdoamns Ω 1 = 0, 1/2 0, 1 and Ω 2 = 1/2, 1 0, 1 For comparson of accuracy, the soluton to (4.1)-(4.3) was frst computed n each subdoman usng the exact Neumann and Drchlet boundary data on the nterface Γ 0. See Table 1 for errors and convergence rates. Then we computed solutons by Algorthm 5.1 usng dfferent values of ɛ. Errors for u and σ are presented n Table 2. Frst, note that the rates presented n Table 1 are better than the theoretcal result n (2.18), whch s not unusual n smulaton of vscoelastc flud flows wth a known exact soluton 5, 6,. Although the scalng ɛ = Ch 2 s suggested for an optmal error estmate n (4.7), the actual optmal scalng may be ɛ = Ch 4 based on the computed rates n Table 1, and ths s partally verfed by results n Table 2. For example, for h 0 = 1/4, ɛ 0 should be as small as 1/80 so that errors are smlar to those errors n Table 1. When h s reduced by half (h 1 = 1/8), the ɛ value should be as small as ɛ 1 = 1/1300 ( 1/16 of ɛ 0 ), as shown n Table 2. Therefore, we. 16

17 expect ɛ needs to be as small as 1/20480 when h = 1/16, whch we could not check as the maxmum number of teratons were exceeded. h u u h 1 1 rate u u h 2 1 rate σ σ h 1 0 rate σ σ h 2 0 rate 1/ / / Table 1: Errors by exact nterface data h ɛ ter. no. u u h 1 1 u u h 2 1 σ σ h 1 0 σ σ h 2 0 1/4 1/ / / / / / / / /8 1/ / / / / / / / /16 1/ / Table 2: Errors by varous ɛ values 7 Conclusons and Future Work We nvestgated a non-overlappng doman decomposton algorthm for the lnearzed vscoelastc flud equatons. The doman decomposton algorthm s presented as a dscrete varatonal formulaton for whch we analyzed for the exstence and unqueness of a soluton. Convergence of the doman decomposton soluton both wth respect to the grd sze h and wth respect to the parameter ɛ was also proved. We also presented some prelmnary computatonal results. However, to make the method more practcal, further studes are needed, mostly n the realm of effcent mplementaton. For example, convergence of algorthm 5.1 could be accelerated by ntroducng a relaxaton parameter n the boundary ntegrals of the momentum equatons as shown n 18. A smlar technque may be effectve n handlng stress boundary condtons on the nterface. We wll also study doman decomposton methods desgned for vscoelastc flud flows wth other type of consttutve equatons, for nstance, fluds havng a power law consttutve equaton. References 1 F.P.T. Baajens, Mxed fnte element methods for vscoelastc flow analyss: A revew, J. Non- Newtonan Flud Mech. 79 (1998), pp

18 2 J. Baranger and D. Sandr, Fnte element approxmaton of vscoelastc flud flow: Exstence of approxmate solutons and error bounds, Numer. Math. 63 (1992), pp S. Brenner and L. Scott, The mathematcal theory of fnte element methods, Sprnger-Verlag, A. E. Caola, Y. L. Joo, R. C. Armstrong and R. A. Brown, Hghly parallel tme ntegraton of vscoelastc flows, J. Non-Newtonan Flud Mech. 100, pp , V.J. Ervn, H. Lee, and L.N. Ntasn, Analyss of the Oseen-vscoelastc flud flow problem, to appear n J. Non-Newtonan Flud Mech. 6 V.J. Ervn and H. Lee, Defect correcton method for vscoelastc flud flows at hgh Wessenberg number, Numercal Methods for PDEs, 22 (2006), pp M. Fortn and A. Fortn, A new fnte approach for the F.E.M. smulaton of vscoelastc flows, J. Non-Newtonan Flud Mech. 32 (1989), pp F. Gastald and L. Gastald and A. Quarteron, Adaptve doman decomposton methods for advecton domnated equaton, East-West J. Numer. Math., 4 (1996), pp V. Grault and P. Ravart, Fnte element methods for Naver-Stokes equatons, Sprnger, Berln, M. Gunzburger and H. Lee, An optmzaton based doman decomposton method for the Naver-Stokes equatons, SIAM J. Num. Anal. 37 (2000), pp P. Houston, C. Schwab and E. Sddotul, Dscontnuous hp-fnte element methods for advectvedffuson-reacton problems, SIAM J. Numer. Anal. 39 (2002), pp H. Lee, A multgrd method for vscoelastc flud flow, SIAM J. Num. Anal. 42 (2004), pp G. Lube and L. Muller and F.C. Otto,A non-overlappng doman decomposton method for stablzed fnte element approxmatons of the Oseen equatons, J. Comput. Appl. Math. 132 (2001), pp J.M. Marchal and M.J. Crochet, A new fnte element for calculatng vscoelastc flow, J. Non- Newtonan Flud Mech. 26 (1987), pp A. Quarteron and A. Vall, Doman Decomposton Methods for Partal Dfferental Equatons, Oxford Scence Publcatons, D.G. Radu, M. Normandn and J.R. Clearmont, A numercal approach for computng flows by local transformatons and doman decomposton usng an optmzaton algorthm, Comput. Mehtods Appl. Mech. Engrg. 191 (2002), pp T.C. Rebollo and E.C. Vera, Study of a non-overlappng doman decomposton method: Posson and Stokes problems, Appl. Numer. Math., 48, (2004), pp T.C. Rebollo and E.C. Vera, Study of a non-overlappng doman decomposton method: Steady Naver-Stokes equatons, Appl. Numer. Math., 55, (2005), pp M. Renardy, Exstence of slow steady flows of vscoelastc fluds wth dfferental consttutve equatons, Z.A.M.M. 65 (1985), pp

19 20 D. Sandr, Fnte element approxmaton of vscoelastc flud flow: Exstence of approxmate solutons and error bounds. Contnuous approxmaton of the stress, SIAM J. Numer. Anal. 31 (1994), pp C. Schwab, p- and hp- Fnte element methods, Theory and applcatons to sold and flud mechancs, Oxford Unversty Press, B. Smth and P. Bjørstad and W. Gropp, Doman Decomposton: Parallel Multlevel Methods for Ellptc Partal Dfferental Equatons, Cambrdge Unversty Press, A. Souvalots and A.N. Bers, Spectral colloacaton/doman decomposton method for vscoelastc flow smulatons n model porous geometres, Comput. Mehtods Appl. Mech. Engrg. 9 (1996), pp

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Non polynomial spline solutions for special linear tenth-order boundary value problems

Non polynomial spline solutions for special linear tenth-order boundary value problems ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Supporting information for: Functional Mixed Effects Model for Small Area Estimation Supportng nformaton for: Functonal Mxed Effects Model for Small Area Estmaton Tapabrata Mat 1, Samran Snha 2 and Png-Shou Zhong 1 1 Department of Statstcs & Probablty, Mchgan State Unversty, East Lansng,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

arxiv: v1 [math.na] 16 Apr 2017

arxiv: v1 [math.na] 16 Apr 2017 Energy estmates for two-dmensonal space-resz fractonal wave equaton Mnghua Chen, Wenshan Yu arxv:17.716v1 math.na 16 Apr 17 School of Mathematcs and Statstcs, Gansu Key Laboratory of Appled Mathematcs

Διαβάστε περισσότερα

arxiv: v2 [math.ap] 6 Dec 2015

arxiv: v2 [math.ap] 6 Dec 2015 Unform Regularty Estmates n Homogenzaton Theory of Ellptc System wth Lower Order Terms arxv:1507.06050v2 math.ap] 6 Dec 2015 Qang Xu School of Mathematcs and Statstcs, Lanzhou Unversty, Lanzhou, Gansu

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices A Two Sample Test for Mean Vectors wth Unequal Covarance Matrces Tamae Kawasak 1 and Takash Seo 2 1 Department of Mathematcal Informaton Scence Graduate School of Scence, Tokyo Unversty of Scence, Tokyo,

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

u i t=0 = u i0 (x) 0, (1.2)

u i t=0 = u i0 (x) 0, (1.2) Electronc Journal of Dfferental Euatons, Vol. 8 (8), No. 9, pp. 3. ISSN: 7-669. URL: http://ede.math.txstate.edu or http://ede.math.unt.edu NONEXISTENCE OF GLOBAL SOLUTIONS TO THE SYSTEM OF SEMILINEAR

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Journal of Theoretics Vol.4-5

Journal of Theoretics Vol.4-5 Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ)

Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ) MATENVMED - MIS 379416 Πλατφόρμα Προηγμένων Μαθηματικών Μεθόδων και Λογισμικού για την Επίλυση Προβλημάτων Πολλαπλών Πεδίων (Mult-Physcs Mult-Doman Problems) σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές:

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010 MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment 1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1) Appendx Appendx I. Detals used n M-step of Secton 4. Now wrte h (r) and expect ultmately t wll close to zero. and h (r) = [δq(α ; α (r) )/δα ] α =α (r 1) = [δq(α ; α (r) )/δα ] α =α (r 1) δ log L(α (r

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα