Saigo-Maeda Fractional Differential Operators of the Multivariable H-Function

Σχετικά έγγραφα
Some Theorems on Multiple. A-Function Transform

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

α & β spatial orbitals in

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

A Class of Orthohomological Triangles

Constant Elasticity of Substitution in Applied General Equilibrium

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

Product of two generalized pseudo-differential operators involving fractional Fourier transform

LECTURE 4 : ARMA PROCESSES

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Multi-dimensional Central Limit Theorem

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Multi-dimensional Central Limit Theorem

Technical Appendix (Not for publication) Generic and Brand Advertising Strategies in a Dynamic Duopoly

Analytical Expression for Hessian

Laplace s Equation in Spherical Polar Coördinates

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Matrix Hartree-Fock Equations for a Closed Shell System

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

The Neutrix Product of the Distributions r. x λ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

q-analogues of Triple Series Reduction Formulas due to Srivastava and Panda with General Terms

Example 1: THE ELECTRIC DIPOLE

8.324 Relativistic Quantum Field Theory II

Every set of first-order formulas is equivalent to an independent set

C.S. 430 Assignment 6, Sample Solutions

Certain fractional derivative formulae involving the product of a general class of polynomials and the multivariable H-function

2 Lagrangian and Green functions in d dimensions

Finite Field Problems: Solutions

The Simply Typed Lambda Calculus

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Section 8.3 Trigonometric Equations

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Uniform Convergence of Fourier Series Michael Taylor

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 7.6 Double and Half Angle Formulas

Concrete Mathematics Exercises from 30 September 2016

1 3D Helmholtz Equation

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

1 Complete Set of Grassmann States

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Tridiagonal matrices. Gérard MEURANT. October, 2008

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

4.2 Differential Equations in Polar Coordinates

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

arxiv: v2 [math.dg] 14 Oct 2017

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

2 Composition. Invertible Mappings

The Laplacian in Spherical Polar Coordinates

Example Sheet 3 Solutions

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

Α Ρ Ι Θ Μ Ο Σ : 6.913

( y) Partial Differential Equations

Second Order Partial Differential Equations

ST5224: Advanced Statistical Theory II

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Estimators when the Correlation Coefficient. is Negative

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Other Test Constructions: Likelihood Ratio & Bayes Tests

Orbital angular momentum and the spherical harmonics

On Generating Relations of Some Triple. Hypergeometric Functions

8.323 Relativistic Quantum Field Theory I

ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

1 String with massive end-points

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Math221: HW# 1 solutions

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Tutorial Note - Week 09 - Solution

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

On mixing generalized poison with Generalized Gamma distribution

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Durbin-Levinson recursive method

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions to Exercise Sheet 5

On a generalization of Mittag-Leffler function and its properties

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Intuitionistic Fuzzy Ideals of Near Rings

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Transcript:

Intenatonal Jounal of Computatonal Scence and athematcs. ISSN 0974-89 Volume 5, Numbe (0, pp. 4-54 Intenatonal Reseach ublcaton House http://www.phouse.com Sago-aeda Factonal Dffeental Opeatos of the ultvaable H-Functon Kantesh Gupta and eena Kuma Gua Depatment of athematcs, alavya Natonal Insttute of Technology, Japu-007, Raasthan (Inda E-mal: kanteshgupta@gmal.com, meenanet@gmal.com Abstact In ths pape, we study and develop the genealzed factonal dffeental opeatos nvolvng Appell s functon F (. [, p. 4, Eq. 5.7. (8] ntoduced by Sago and aeda [, p. 9] to the multvaable H-functon. Fst, we establsh two theoems that gve the mages of the multvaable H- functon n Sago-aeda opeatos. On account of geneal natue of these opeatos, a lage numbe of new and known theoems nvolvng Sago, Remann-Louvlle, Edély- Kobe factonal dffeental opeatos and seveal specal functons notably genealzed wght hypegeometc functon, ttag-leffle functon, genealzed laucella functon, Bessel functons follow as specal cases of ou man fndngs. The mpotant esults obtaned by Gupta [], Klbas [4], Klbas and Sago [5], Klbas and Sebastan [6], Saena, Ram and Sutha [7] and Saena and Sago [8] follow as specal cases of ou esults. Keywods: Sago-aeda factonal dffeental opeatos, Appell functon, Gauss hypegeometc functon, ultvaable H-functon, Bessel functon, ttag-leffle functon. AS Subect Classfcaton: 6A, C05, C0, C60, C65, E.. Intoducton: The factonal dffeental opeato nvolvng vaous specal functons, have been found sgnfcant mpotance and applcatons n vaous sub-feld of applcaton mathematcal analyss. Snce last fve decades, a numbe of wokes lke Kyakova [9], Svastava et al. [0], Saena et al. [, ], Sago [], Klbas [4], Klbas and

44 Kantesh Gupta and eena Kuma Gua Sebastan [6], Samko et al. [4], lle and Ross [5], and Gupta et al.[] etc. have studed n depth, the popetes, applcatons and dffeent etensons of vaous hypegeometc opeatos of factonal dffeentaton. Recently, Kuma and Daya [6] have appled ths factonal dffeentaton of the poduct of a geneal class of olynomal and _ H -functon. Saena, Ram and Kuma [] have also deved the genealzed factonal dffeentaton of the Aleph functon assocated wth the Appell functon F. Let αα,, ββ,, γ C, γ > 0 and > 0, then the genealzed factonal dffeentaton opeatos [] nvolvng Appell functon F as a kenel ae defned by the followng equatons: α, α, β, β, γ,,,, D f α α β β γ I f n d α, α, β + n, β, γ + n I f d, R ( γ > 0; n R γ + d n t ( α ( t n γ t α F α, α, β + n, β, n γ;, f ( t dt n γ d Γ 0 t ( and α, α, β, β, γ,,,, D f ( α α β β γ I f n d α, α, β, β + n, γ + n I f, R ( γ > 0; d n R γ + n d t ( α ( t n γ t α F α, α, β, n β, n γ;, f ( t dt n γ d Γ t (,,,, I αα β β γ,,,, and I αα β β γ ae Sago- aeda factonal ntegal opeatos. F the Appell-hypegeometc functon of two vaables s defned as ( α m n (,,, ; ;, m α n β m β n z ξ F αα ββ γ z ξ, ( z <, ξ < ( 0 0 ( γ m! n! m n m+ n ( z m and ( z n ae the ochhamme symbol defned by z C mn, N0 N { 0 }, N {,,,... } by ( z, ( z 0 m z( z+...( z + m. The above sees ( s absolutely convegent fo ( z <, ξ < and ( z, ξ ( z, ξ. and, These opeatos educe to Sago factonal devatve opeatos [; see also 7] as 0, α, β, β, γ,, D f ( γ α γ β γ D f, ( R ( γ > 0 ; (4

Sago-aeda Factonal Dffeental Opeatos of the ultvaable H-Functon 45 and 0, α, β, β, γ,, D f γ α γ β γ D f ( R ( γ >, 0. Futhe, we also have [, p. 94, Eqns. (4.8 and (4.9] αα ββ γ σ σσ, + γ α α βσ, + β α σ ( I t Γ σ + γ α α, σ + γ α β, σ + β α α γ,,,, + R ( γ > 0, R ( σ > ma 0, R ( α + α + β γ, R( α β σ Γ and αα,, ββ,, γ + α+ α γ σ, + α+ β γ σ, β σ σ α α + γ I t σ, + α+ α + β γ σ,+ α β σ (5 (6 (7 R ( γ > 0, R ( σ < + mn R( β, R ( α + α γ, R ( α + β γ. Hee, we have used the symbol L Γ epesentng the facton of many Gamma L functons. In ths pape, the multvaable H-functon wll be defned and epesented n the followng manne [0, p. 5-5, Eqs. (C.- C.]: 0, N :, N ;...;, N H[ z,..., z ] H, Q:, Q ;...;, Q ;,, ( :, ; ; (, ( a α L α c γ L c γ, ;,, :, ; ;, b β L β d δ L d δ z,, z, Q, Q, Q ξ (,, L ψ ξ L ξ z d d Π θ ξ ξ L ξ ( πω L L (8 ω ( N ( ( ( ( Γ( d - δ ξ Γ (- c + γ ξ θ ( ξ,,,..., Q ( ( ( ( Γ ( - d + δ ξ Γ( c - γ ξ + N + { } (9 and N ( Γ( a + α ξ Ψ ( ξ,, ξ ( Q ( Γ(a α ξ Γ( b + β ξ N + L (0

46 Kantesh Gupta and eena Kuma Gua In equaton (9, n the supescpt ( stands fo the numbe of pmes, e.g., b b, b b and so on; and an empty poduct s ntepeted as unty. ( Fo convenence, we use the notaton ; α,..., α fo membe aay ( ( ( a ; α,..., α,..., a ; α,..., α ( a, (,, whle γ stands fo ( c,,..., c, c, γ γ, (,,..., and so on. The natue of contous L, L, n (8, the vaous specal cases and othe detals of the functon ae gven n the book efeed above. Also, t s assumed thoughout the pesent wok that the vaous multvaable H- functon occung heen always satsfy the condtons of the estence coespondng appopately to those mentoned n the efeence gven above. L. elmnay Results: Lemma. Let αα,, ββ,, γ C be such that ( γ 0 R ( σ > mn.[0, R ( α + α + β γ, R( α β ] Then thee holds the elaton σ 0 Γ( σ Γ( σ γ + α+ α + β Γ( σ β+ α ( σ γ α β ( σ γ α α ( σ β αα,, ββ,, γ σ γ+ α+ α D t + Γ + + Γ + + Γ Lemma. Let αα,, ββ,, γ C be such that R ( γ > 0, R ( σ < + mn.[ R( β, R α β + γ, R α α + γ n ] ;( n [ R γ ] + R >, ( Then thee holds the elaton σ ( α β γ σ ( β σ ( α α γ σ Γ( σ Γ( α α β+ γ σ Γ( α + β σ αα,, ββ,, γ Γ + Γ + Γ + σ γ+ α+ α D t (. an Results We establsh mage fomulae fo the multvaable H-functon nvolvng Sago and aeda factonal dffeental opeatos ( and ( n tems of the multvaable H- functon. Theoem.. Let αα,, ββ,, γσ,, z C, > 0, ρ > 0, {,,..., } be such that R ( γ > 0, ( d R σ + ρ mn R mn 0, ( >, R α + α + β γ R α β δ

Sago-aeda Factonal Dffeental Opeatos of the ultvaable H-Functon 47 and ag z < Ω π, Ω > 0 Q ( N ( ( ( Q Ω α 0,,,..., β + γ N γ N + δ δ > + + + { } then the followng fomula holds ρ ;,, ( :, ; ; (, ( zt a α α c γ L L c γ 0, :, ;...;,,, N N N, αα,, ββ,, γ σ D t H Q, :, Q ;...;, Q ( ( ( ρ zt ( b ; β,, β :( d, δ L ; L; ( d, δ, Q, Q, Q ρ z 0, N+ :, N ;...;, N σ γ + α + α A : C H +,Q+ :, Q ;...;, Q ρ B : D z ( A σρ ;,..., ρ, σ+ γ α α β; ρ,..., ρ, σ α+ βρ ;,..., ρ, a ; α,..., α ( ( B σ+ γ α β; ρ,..., ρ, σ+ γ α α; ρ,..., ρ, σ+ β; ρ,..., ρ, b ; β,..., β ( ( ( ( (, ; ;,,, ; ;, ( γ L γ δ L δ ( (,, Q C c c D d d,,, Q, Q oof: In ode to pove (, we fst epess the multvaable H-functon occung n the left hand sde of ( n tems of elln-banes contou ntegal wth the help of equaton (8 and ntechangng the ode of ntegaton, we obtan (say I ξ...,,,,... (,..., σ ρξ ρ ξ αα ββ + + + γ I Ψξ ξ z D t d... d θ ξ ξ ξ 0+ ( πω L L ( at Now, applyng the equaton ( wth σ eplaced by σ + ρξ +... + ρ ξ, we ave (... (... ( σ γ α β ρξ ρξ ( σ β ρξ ρξ ξ... (,..., Γ σ+ ρξ + + ρ ξ Γ σ γ + α+ α + β + ρξ + + ρ ξ I Ψξ ξ θ ξ z ( πω L L Γ + + + +... + Γ + +... + ( ( σ γ α α ρ ξ... ρξ Γ σ β + α + ρ ξ +... + ρ ξ σ γ+ α+ α + ρ ξ +... + ρξ dξ... dξ Γ + + + + +

48 Kantesh Gupta and eena Kuma Gua Fnally, ntepetng the elln-banes contou ntegal thus obtaned n tems of the multvaable H-functon as gven n (8, we obtan the esult as gven n (. 4. Specal Cases of Theoem.:. If we put α α + β, α β 0, β η, γ α n Theoem., we get known esult obtaned by Gupta et al. [, p. 48, Eq. (8], as ρ z t 0, N :, N ;...;, N α, β, η σ D t H,Q :, Q ;... ;, Q ρ z t ρ z 0, N+ :, N ;...;, N A : C σ + β H +,Q+ :, Q ;...;, Q ρ B : D z A σ ; ρ,..., ρ, σ α β η; ρ,..., ρ, a ; α,..., α B σ β; ρ,..., ρ, σ η; ρ,..., ρ, b ; β,..., β ( (,, Q C and D ae same as gven n ( and the condtons of estence of the above esult can be easly deved wth the help of Theoem... If we take N Q 0 n equaton (, the multvaable H-functon educes to the poduct of -dffeent Fo H-functons [8, p. (v, Eq. (A.4] followng as:,,,,, N ρ αα ββ γ σ D t H z t, Q ρ z 0, :, N ;...;, N A : C σ γ + α + α H, :, Q ;... ;, Q ρ B : D z ( σ ; ρ,.., ρ,( σ γ α α β ; ρ,.., ρ,( σ α β; ρ,.., ρ ( σ γ α β ; ρ,.., ρ,( σ γ α α ; ρ,.., ρ,( σ β; ρ,.., ρ A + + B + + + C and D ae same as mentoned n equaton ( and the condtons of valdty of the above esult can be easly deved wth the help of Theoem.. (4 (5

Sago-aeda Factonal Dffeental Opeatos of the ultvaable H-Functon 49. If we educe poduct of - dffeent H-functons occung n the left hand sde of (5, to the - poduct of Bessel functon of fst knd [0, p.8, Eq. (.6.5], we get,,,, ρ α α β β γ σ D t J a t υ ρ a ρ υ σ γ + α + α 0, :, 0;...;, 0 A : (6 a H, : 0,;...; 0, B : D ρ a A σ ;,...,, ;,...,, ;,..., ρ υ ρ ρ σ γ α α β ρ υ ρ ρ + σ α + β ρ υ ρ ρ B σ γ α β ;,...,, ;,...,, ;,..., ρ υ ρ ρ σ γ α α ρ υ ρ ρ + + σ + β ρ υ ρ ρ D ( 0,,( υ,;...;( 0,,( υ, v. Now, educng the H-functon of seveal vaables occung n the ght hand sde of (6 to genealzed Laucella functon [9], we get ρ a υ,,,, ρ αα ββ γ σ γ α α l m n D t σ + + Γ Γ Γ J a t 0 υ + Γ ( υ Γ p Γ q Γ s + ρ ρ ( l; ρ,..., ρ,( m; ρ,..., ρ,( n; ρ,...,ρ : 0;...;0 a a F,..., :;...; ( p; ρ,..., ρ,( q; ρ,..., ρ,( s; ρ,..., ρ : ( υ +, ;...;( υ +, ( l σ + ρ, m, n υ σ γ + α + α + β + ρ υ σ + α β + ρ υ p σ γ + α + β +, q, s ρ υ σ γ + α + α + ρ υ σ β + ρ υ v. If we take, a, ρ, υ υ n above equaton (7, we get σ + υ γ + α + α 0 υ α, α, β, β, γ { D ( t σ Jυ ( t } + (7

50 Kantesh Gupta and eena Kuma Gua ( σ + υ,,( σ + υ γ + α + α + β,,( σ + υ + α β, ( σ + υ γ + α + β ( σ + υ γ + α + α ( σ + υ β ( υ + ψ ; 4,,,,,,, 4 (8 Futhe, takng α α + β, α β 0, β η, γ α n above equaton (8, we get known esult due to Klbas and Sebastan [6, p. 0, Eq. (], as σ + υ + β α, β, η σ ( σ + υ,,( σ + υ + α + β + η, { D ( t J ( t } ; 0 υ υ ψ + ( σ + υ + β,,( σ + υ + η,,( υ +, 4 v. If we educe the multvaable H- functon nto the poduct of two Fo H-functon and then educe one H- functon to the eponental functon by takng ρ n equaton (, we get the followng esult afte a lttle smplfcaton: ( c,, γ,,,, zt, N ρ α α β β γ σ D t e H z t, Q ( d, δ, Q A 4 : ;( c, 0,:, 0;, γ z σ γ + α + α, H,: 0,;, ρ :( 0, ;(, δ N Q z B 4 d, Q ( ;,, ( ;,, ( ;, ( ;,,( ;,,( ;, A 4 σ ρ σ + γ α α β ρ σ α + β ρ B 4 σ + γ α β ρ σ + γ α α ρ σ + β ρ The condtons of valdty of the above esult can be deved wth the help of Theoem.. Futhe, on lettng z 0 n the above equaton (9, t becomes (, γ ( δ c,,,,,, N ρ α α β β γ D t σ H z t, Q d,, Q, σ γ α α N + ρ A + + H z 5, + Q + B 5 (, γ ;( σ, ρ,( σ γ α α β, ρ,( σ α β, ρ,(,, N γ N +, (, δ ;( σ γ α β, ρ,( σ γ α α, ρ,( σ β, ρ A 5 c + + c B 5 d, Q + + + (9 (0

Sago-aeda Factonal Dffeental Opeatos of the ultvaable H-Functon 5 Now, we put α α + β, α β 0, β η, γ α n above equaton (0, we get known esult due to Gupta et al. [, p. 5, Eq. (4], as (, γ (, δ c,,, α β η, N ρ σ D t H z t, Q d, Q ( c,,(,,(,,(,, γ σ ρ σ α β η ρ c, γ N + σ + β, ρ N N + H z, + Q + ( d, δ,( σ β, ρ,( σ η, ρ, Q Agan, takng β α n the above equaton and make sutable adustment n the paametes, we get also known esult ecoded n the book by Klbas and Sago [5, p. 55, Eq. (.7.], as ( c,, γ, N ρ α σ D t H z t, Q ( d, δ, Q ( c, γ,( σ, ρ,( c, γ (, δ,( σ + α, ρ, N, N N, σ α + ρ + H z, + Q + d, Q v. If we educe the H- functon to genealzed Wght hypegeometc functon [0, p. 9, Eq. (.6.] n equaton (0 by takng, N N,, Q Q, we get ( c,,,,, γ αα ββ γ σ ρ, D t ψ z t Q ( d, δ, Q ( c, γ, σ, ρ, σ γ + α+ α + β,, ρ, σ+ α β, ρ σ γ + α+ α ρ ψ z + Q+ ( d, δ,( σ γ α β, ρ,( σ γ α α + + + +, ρ,( σ β, ρ, Q Now, we put α α + β, α β 0, β η, γ α n equaton (, we get known esult due to Gupta et al. [, p. 5, Eq. (5], as ( c,,, γ c,, γ,, σ, ρ, σ+ α+ β+ η, ρ αβησ ρ σ+ β ρ D t ψ z 0 t ψ z + Q ( d, Q δ + + ( d,,(,,(,, Q δ σ+ β ρ σ+ η ρ, Q Futhe, takng β α n the above esult, we get also known esult obtaned by Klbas [4, p. 9, Eq. (4], as ( c, γ c,, γ,, σ, ρ α σ ρ σ α ρ D t ψ z 0 t ψ z + Q ( d, Q δ + + ( d,,(,, Q δ σ α ρ, Q ( ( (

5 Kantesh Gupta and eena Kuma Gua v. If we put z, ρ n equaton (0 and educng the H-functon nto genealzed ttag-leffle functon [0], we get σ γ + α + α αα,, ββ,, γ { D t σ ρ E ( t } uv, Γ ( ρ, 4 ( ρ,,( σ,,( σ + γ α α β,,( σ α + β, H 4,5 (4 ( 0,, ( σ + γ α β,, ( σ + γ α α,, ( σ + β,, ( vu, Now, we put α α + β, α β 0, β η, γ α n equaton (4, we get known esult due to Gupta et al. [, p. 5, Eq. (7], as σ + β αβη,, σ ρ, ( ρ,,( σ,,( σ α β η, { D ( t E ( t } H uv,,4 Γ ρ ( 0,, ( σ β,, ( σ η,, ( vu, Futhe, takng β α n the above esult, we get also known esult due to Saena et al. [7, p. 70, Eq. (.6], as σ α α σ ρ, ( ρ,,( σ, { D ( t E ( t } H u, v, Γ ρ ( 0,,( σ + α,,( v, u. If we take N, Q, z a, ρ β, σ γ, c δ, γ, d 0, δ, d γ, δ β n equaton (, we get known esult due to Saena and Sago [8, p. 49, Eq. (9], as ( { α γ δ β } γ α D t E at δ β E 0,, ( a + β γ β γ α Theoem.. Let αα,, ββ,, γσ,, z C, > 0, ρ > 0, {,,..., } be such that R ( γ > 0, and d R σ ρ mn R < + mn R( β, R( α β + γ, R( α α + γ n δ ag z < Ω, 0 π Ω > Q ( N ( ( ( Q Ω α 0,,,..., β + γ N γ N + δ δ > + + + { } then the followng fomula holds

Sago-aeda Factonal Dffeental Opeatos of the ultvaable H-Functon 5 ρ z t 0, N :, N ;...;, N α, α, β, β, γ σ D t H,Q :, ;...;, Q Q ρ z t ρ z 0, N+ :, N ;...;, N σ γ + α + α A : C H +,Q+ :, Q ;...;, Q ρ B : D z ( ( ( (5 A σ γ + α + β; ρ,..., ρ, σ β; ρ,..., ρ, σ γ + α+ α; ρ,..., ρ, a ; α,..., α, ( ( σ; ρ,..., ρ,( σ γ α α β; ρ,..., ρ,( σ α β ; ρ,..., ρ, b ; β,..., β B + + + +, Q C and D ae same as gven n (. oof: The poof of Theoem. can be developed on the lnes smla to those gven wth poof of Theoem. wth the help of equaton (. A numbe of seveal specal cases of Theoem. can also be obtaned smlaly. ( Refeences: [] Edély, A., agnus, W., Obehettnge, F. and Tcom, F.G., 95, Hghe Tanscendental Functons, Vol. I, c Gaw Hll Book Company, New Yok, Toonto and London. [] Sago,. and aeda, N., 996, oe Genealzaton of Factonal Calculus. Tansfom ethods and Specal Functons, Vana, Bulgaa, pp. 86-400. [] Gupta, K.C., Gupta, K. and Gupta, A., 0, Genealzed Factonal Dffeentaton of the ultvaable H-Functon, J. of the Appled athematcs, Statstcs and Infomatcs (JASI, 7(, pp. 45-54. [4] Klbas, A. A., 005, Factonal Calculus of the Genealzed Wght Functon, Fact. Calc. and Appled Anal., 8(, pp.-6. [5] Klbas, A. A. and Sago,., 004, H-Tansfoms Theoy and Applcatons, Chapman & Hall/ CRC London, New Yok. [6] Klbas, A. A. and Sebastan, N., 008, Genealzed Factonal Dffeentaton of Bessel Functon of the Fst Knd, athematca Balkanca,, pp.-46. [7] Saena, R. K., Ram, J. and Sutha, D. L., 009, Factonal Calculus of Genealzed ttag-leffle Functons, J. Indan Acad. ath., (, pp. 65-7.

54 Kantesh Gupta and eena Kuma Gua [8] Saena, R. K. and Sago,., 005, Cetan opetes of Factonal Calculus Opeatos Assocated wth Genealzed ttag- Leffle Functon, Fact. Calc. and Appled Anal., 8(, pp.4-54. [9] Kyakova, V., 008, A Bef Stoy About the Opeatos of the Genealzed Factonal Calculus, Fact. Calc. Appl. Anal., (, pp. 0-0. [0] Svastava, H.., Gupta, K. C. and Goyal, S.., 98, The H- Functons of One and Two Vaables wth Applcatons, South Asan ublcatons, New Delh, adas. [] Saena, R. K., Ram, J. and Kuma, D., 0, Genealzed Factonal Dffeentaton fo Sago Opeatos Involvng Aleph-Functon, J. Indan Acad. ath., 4(, pp. 09-5. [] Saena, R. K., Ram, J. and Kuma, D., 0, Genealzed Factonal Dffeentaton of the Aleph-Functon Assocated wth the Appell Functon F, Acta Cenca Indca, 8(4, pp. 78-79. [] Sago,., 978, A Remak on Integal Opeatos Involvng the Gauss Hypegeometc Functons, ath. Rep. Kyushu Unv.,, pp. 5-4. [4] Samko, S. G., Klbas, A. A. and achev, O. I., 99, Factonal Integals and Devatves, Theoy and Applcatons, Godon and Beach Sc. ubl., New Yok. [5] lle, K. S., and Ross, B., 99, An Intoducton to Factonal Calculus and Factonal Dffeental Equatons, John Wley and Sons Inc., New Yok. [6] Kuma, D. and Daya, J., 0, Genealzed Factonal Dffeentaton of the _ H -Functon Involvng Geneal Class of olynomals, Int. J. ue Appl. Sc. Technol., 6(, pp. 4-5. [7] Saena, R. K. and Sago,., 00, Genealzed Factonal Calculus of the H- Functon Assocated wth Appell Functon F, J. Fact. Calc., 9, pp. 89-04. [8] ukheee, R., 004, A Study of Geneal Sequence of Functons, ultdmensonal Factonal Calculus Opeatos and the Geneal H- Functon of One o oe Vaables wth Applcatons, h.d. thess, Unv. of Raasthan, Japu, Inda. [9] Svastava, H.., Daoust,. C., 97, A Note on the Convegence of Kampe De Feet s Double Hypegeometc Sees, ath. Nach., 5, pp.5-59. [0] abhaka, T. R., 97, A Sngula Integal Equaton wth a Genealzed ttag-leffle Functon n the Kenel, Yokohama ath. J., 9, pp.7-5.