Unit 3 Lecture Number 16

Σχετικά έγγραφα
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

General theorems of Optical Imaging systems

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Pairs of Random Variables

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

16 Electromagnetic induction

Example 1: THE ELECTRIC DIPOLE

Finite Field Problems: Solutions

Lifting Entry (continued)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

UNIT 13: TRIGONOMETRIC SERIES

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

m i N 1 F i = j i F ij + F x

Example Sheet 3 Solutions

Alterazioni del sistema cardiovascolare nel volo spaziale

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών


8.323 Relativistic Quantum Field Theory I

rs r r â t át r st tíst Ó P ã t r r r â

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

α & β spatial orbitals in

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Chapter 3 Prior Information

Matrices and Determinants

ITU-R P (2012/02) &' (

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Variational Wavefunction for the Helium Atom

Solution Set #2

2 Composition. Invertible Mappings

SPECIAL FUNCTIONS and POLYNOMIALS

Math221: HW# 1 solutions

derivation of the Laplacian from rectangular to spherical coordinates

ITU-R P ITU-R P (ITU-R 204/3 ( )

Το άτομο του Υδρογόνου

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Lecture 26: Circular domains

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Every set of first-order formulas is equivalent to an independent set

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Second Order RLC Filters

the total number of electrons passing through the lamp.

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Multi-GPU numerical simulation of electromagnetic waves

F19MC2 Solutions 9 Complex Analysis

m 1, m 2 F 12, F 21 F12 = F 21

Answer sheet: Third Midterm for Math 2339

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1 String with massive end-points

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Section 7.6 Double and Half Angle Formulas

( y) Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Laplace s Equation in Spherical Polar Coördinates

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

A 1 A 2 A 3 B 1 B 2 B 3

Α Ρ Ι Θ Μ Ο Σ : 6.913

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Solution Series 9. i=1 x i and i=1 x i.

Analytical Expression for Hessian

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

8.324 Relativistic Quantum Field Theory II

Section 8.3 Trigonometric Equations

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Statistical Inference I Locally most powerful tests

Probability and Random Processes (Part II)

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Review Exercises for Chapter 7

Transcript:

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 6 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Frst, a short rvst to Hartr Fo Formalsm, but from a dffrnt rout. PCD STTACS Unt 3 Eltron Gas n HF & RPA

W shall sulmnt and omlmnt that dsusson to qu ourslvs to buld th mahnry to s how th mthods of nd quantzaton dvlod n Unt an b xtndd to addrss th ltron COULOMB orrlatons that ar lft out of th HF mthod. PCD STTACS Unt 3 Eltron Gas n HF & RPA

H H + H f ( q ) v( q, qj) + j j Z f( q) r Many-Eltron Hamltonan n th notaton of FIRST QUATIZATIO H f j + j v l j j l j j l j v l dq dq φ q φ q v q, q φ q φ q HF SCF Mthod: STAP Unt 4 L Rfrnhtt://www.ntl.a.n/downloads/5657/ Many-Eltron Hamltonan n th notaton of SECOD QUATIZATIO * * j l PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

Ψ () t t () f j j+ j j v l l Ψ t j j l H f j + j v l j j l j j l Fttr & Wala (.8); Rams (.3;4) ot: Ordr j v l dq dq ψ q ψ q v q, q ψ q ψ q * * j l Th ordr dos not mattr for Bosons; for Frmons, t dos mattr. For ltrons, ψ ψ χ ζ ( q) ( r) sn orbtal χ ( ζ) s thr or PCD STTACS Unt 3 Eltron Gas n HF & RPA α for ms + β for ms 4

Fld orators dfnton ψ Lnar ombnaton of raton & dstruton orators ( q) : sngl artl wavfuntons.. sn-orbtals nd, : quantzaton dstruton & raton orators { }, ms or { n,,, } wth l j mj m s + or Fr ltron Hydrogn Potntal Sn-orbtals ψ ψ χ ζ ( q) ( r) whr χ( ζ ) or χ ζ for ms + or m s PCD STTACS Unt 3 Eltron Gas n HF & RPA ψˆ ( q) ψˆ ( q) ψ * ψ adjont sn orbtals ψ * ψ * χ ζ q q ( q) ( r) [ ] or [ ] χ ζ χ ζ for ms + or m s 5

H Φ E Φ -ltron Shrodngr quaton Φ ( q, q,.., q ) Φ ( q, q,.., q ) ( ) n, n,.., n,.., n a, a,.., a Ordrd st: a < a <.. < a <.. < a <.. < a j ( ) n, n,.., n,.., n Slatr dtrmnantal wavfunton ( q, q,.., q ) Φ! ψ ψ ( q ).... ψ ( q ) a a.... ( q j ).. ψ.. ( q ).... ψ ( q ) a a a * ψ ( q) ψ j q dx δj ( ') ( ') ( ') * ψ ψ δ δ δ q q q q r r ζζ PCD STTACS Unt 3 Eltron Gas n HF & RPA Orthonormal omlt st of on-ltron sn-orbtals ' 6

Fld Orators ψˆ ( q) ψˆ ( q) ψ * Mult-omonnt sn-orbtal wavfunton (j+) numbr of omonnts ψ q ψ Fld Orator ψˆ α( q) ψ α ( q) ψˆ ( q) ψ ( q) α,,3,...,( j + ) ψˆ ˆ α q, ψ ( q' ) β δαβδ ( q q' ) ψˆ ˆ α q ψβ ( q ) Frm + Bos - Fld orators q Inluson of sn: mult-omonnt sn-orbtals ± ( q) In gnral, for sn j : α,,...( j+ ) j : ntgr for Bosons, half-ntgr for Frmons ψ ψ ψ ψ ψ, α, α, α 3, α..., α j+ ( q) ( q) ( q) ( q) ( q) * α α, ' ( q) ψˆ ( q ) ψ ˆ, α β ' ± ± PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

Fld Orator ψˆ ( q) ψ H f j + j v l α α * α q ψ α ( q) ψˆ α,,3,...,( j + ) q, δ r, σ rσ ± r, σ rσ rσ rσ ± rr σσ ± j j l j j l δ ψ ψ ( q) ψ α ms + α ms sn : Hamltonan n trms of sngl artl raton and dstruton orators ψˆ ˆ α q, ψ ( q' ) β δαβδ ( q q' ) ± ψˆ ( q ) ˆ ( q ) α ψ β ψˆ ( q), ψˆ ( q' ) Hamltonan n trms of fld orators α β ±, ', α, α H ψˆ ( q) f ( q) ψˆ( q) dq + ψˆ ( q) ψˆ ( q ')v( q, q ') ψˆ( q ') ψˆ( q) dqdq ' That ths form s orrt an b sn asly as shown on nxt sld F + B - PCD STTACS Unt 3 Eltron Gas n HF & RPA ± ot: Ordr ( q) ( q) 8

H ψˆ ( q) f ( q) ψˆ( q) dq + ψˆ ( q) ψˆ ( q ')v( q, q ') ψˆ( q ') ψˆ( q) dqdq ' * ˆ( q) ˆ q ( q) q ψ ψ ψ ψ ( q) f( q) ψ * H ψ j q dqj j + + j * * j j l v(, ') ψ q ψ q q q ψ q ψ dqdq ' l l H f j + j v l j j l j j l Rams, Many Eltron Thory / Eq..7 /.4 PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

Comlt xrssons for th Hamltonan, nlusv of sn labls aσ aσ aa σσ aσ aσ aσ aσ H ψˆ ˆ ˆ ˆ v(, ') ˆ ( ') ˆ α q f q ψ β q dq + ψα q ψ β q q q ψδ q ψγ( q) dqdq ' PCD STTACS Unt 3 Eltron Gas n HF & RPA * ˆ ˆ α α α β jβ j α β j ψ q ψ q ψ q ψ q β ( q) f( q) ψ * H ψ j q dq α α β jβ j +, δ δ,, ± ± ± + α β j l α β δ γ v( * * ψ α q ψ jβ q q, q') ψl δ q ψγ dqdq ' γ l δ α jβ H α f jβ + α, jβ v lδ, γ α jβ α jβ γ lδ j j l α β α β δ γ Rams /.4 / Eq..7 nlusv of sn labls

W rognz that and ar Hrmtan onjugats. Ths orators wr ntrodud as dstruton & raton orators. Lt Proo f : Φ Φ + PCD STTACS Unt 3 Eltron Gas n HF & RPA a Φ Φ b (,,,,,,... ) (,,,,,,...) dτ * Φ a Φb and Φb Φ a dstruton orator :dstruton orator H all othr ouaton numbrs n + Φ a Φ Φ b Φ & bng sam H lt Hrmtan onjugat of H w must show that : by dfnton of * H * b adτ b adτ ( * H ) * a bdτ Φ Φ Φ Φ Hrmtan onjugat normalzaton ntgral H Φ b Φ a umbr of oud stats rdng th th stat: vn.. and ar Hrmtan onjugats raton orator Φ Φ normalzaton ntgral

Z rj ( ) (,,.., ) + r < j H q q q f( r) + ; j j rj (,,.., ) v(, ) ( ) H q q q f r + r rj ; j j add and subtrat q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Modfd on-ltron orator Modfd ntraton F? PCD STTACS Unt 3 Eltron Gas n HF & RPA

q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z r H f( r) f( r) f Modfd onltron orator would ontan muh/most of th fft of th two-ltron trms. ( ) H ( q, q,.., q ) f H + F + F Cho of th orator F s to b so mad that th total nrgy s mnmsd. Modfd, rsdual, ntraton btwn ars of ltrons. Ths trm would b wa, and would b tratd rturbatvly. PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j ( ) Φ Z r PCD STTACS Unt 3 Eltron Gas n HF & RPA q r ( ) r ( r ) f ( r ) Modfd on-ltron orator ψ ψ! ψ ψ [ ] ()...... ψ ()...... ψ...... j ψ ( q ).. ()...... ψ ()...... ψ f( r) + F( r) ψ σ( r) εψ σ( r) wth ψ ( r) ψ ( r) or ψ ( r) ε σ : doubly dgnrat, wth on gnfunton ah for sn & j Modfd ntraton Whn th nd trm s ngltd, ths dtrmnant s th unrturbd ground stat wavfunton. 4

( ) Φ q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z f ( r ) r Modfd on-ltron orator! ψ ψ ()...... ψ ψ ()...... ψ ψ...... j ψ ( q ).. ()...... ψ ()...... ψ j ε Modfd ntraton [ f( r) + F( r) ] ψ σ( r) εψ σ( r) wth ψ ( r) ψ ( r) or ψ ( r) σ : doubly dgnrat, wth on gnfunton ah for sn & as ψ, ψ, ψ,..., ψ, ψ 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA ψ ()...... ψ ψ ()...... ψ ( ) Φ j ψ qj........! ψ ()...... ψ ψ ()...... ψ 5

ψ ()...... ψ ψ ()...... ψ ( ) Φ j ψ qj........! ψ ()...... ψ ψ ()...... ψ [ f( r) + F( r) ] ψ σ( r) εψ σ( r),,3,, ε : Lowst / gnvalus Wav funtons of th EXCITED unrturbd stats ar also th ordr dtrmnants, mad u gnfuntons of [ ] ( ) H ( q,.., q ) f ( r ) + ; j j F( r ) v( r, r ) f ( r ) + F( r ) ψ ( r ) εψ ( r ) σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA ε : doubly dgnrat, wth on gnfunton ah for sn & but wth on or mor ε > ε / + j Fr 6

( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z r PCD STTACS Unt 3 Eltron Gas n HF & RPA q r ( ) r ( r ) f ( r ) H f( r) F F( r) Modfd onltron orator would ontan muh/most of th fft of th twoltron trms. Cho of th orator F s to b mad suh that th total nrgy s mnmsd. It turns out, as wll b shown rsntly, that ths hans whn: f Modfd, rsdual, ntraton btwn ars of ltrons. Ths trm would b wa, and would b tratd rturbatvly. qf qv qv 7

q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j Z f ( r ) r It turns out that ths hans whn: Cho of th orator F s to b so mad that th total nrgy s mnmsd. qf qv qv Rmmbr th two ntr COULOMB & EXCHAGE ntgrals: q v dq dq ψ q ψ q v q, q ψ q ψ q j v l dq dq ψ q ψ q v q, q ψ q ψ q * * j l * * q q v dq dq ψ q ψ q v q, q ψ q ψ q sam * * q PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

Lt th ground stat unrturbd wav funton dsrbd abov b: Lt an xtd stat wav funton, n whh only a sngl ltron from th abov stat s xtd, b: ( ) Φ Φ ψ In th ordrd st of th sngl artl stats : & q > ψ ()...... ψ.......... ψ ()...... ψ ()!.......... ψ ()...... ψ ψ ()...... ψ.......... ψ ()...... ψ ()!.......... ( ) q q q ()...... ψ PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

Z rj ( ) (,,.., ) + r < j H q q q Sam Slatr dtrmnant h ( q ) + H + H ; j j rj Φ H Φ α f α f Φ H Φ j v j j v j Φ H Φ f + PCD STTACS Unt 3 Eltron Gas n HF & RPA j j + v v [ ] [ j j j j ]

H ( ) ( ) arox ( q, q,.., q ) f( r) + Fr + v( r, r ) Fr PCD STTACS Unt 3 Eltron Gas n HF & RPA j ; j j H ( q, q,.., q ) f( r) + Fr f+ F ψ()...... ψ Φ.......... ψ ()...... ψ ()!.......... Φ ψ ()...... ψ Φ Usng sam thnqus dsussd n STAP Unt 4 L Rfrn htt://www.ntl.a.n/downloads/5657/ w an fnd ( ) ( ) Φq Harox( q, q,.., q ) Φ Φq f + F Φ? sld 4: [ f ( r) + F( r) ] ψ σ( r) εψ σ( r).. f ( r) + F( r) s dagonal n ψ ( r) Φq f + F Φ [ ] { } σ ot th OTATIO! ψ()...... ψ.......... ψ ()...... ψ ()!.......... ψ ()...... ψ ( ) q q q

H ( q, q,.., q ) f( r) + F( r) f + F ( ) arox Φ Φ ψ ()...... ψ.......... ψ ()...... ψ ()!.......... ψ ()...... ψ Φ orators n SIGLE COORDIATES ψ ()...... ψ.......... ψ ()...... ψ ()!.......... ( ) q q q ψ ()...... ψ Φ H ( q, q,.., q ) Φ Φ f + F Φ ( ) ( ) q arox q f + F: dagonal wth rst to on-ltron funtons and q But, H ( q, q,.., q ) H ( q, q,.., q ) + arox v( r, r ) F( r) j ; j j of whh th frst trm gvs Φ H Φ Φ f + F PCD STTACS Unt 3 Eltron Gas n HF & RPA Φ ( ) q arox q

Hn, f w hoos F suh that Φ Φ Φ Φ thn H ( q, q,.., q ) H ( q, q,.., q ) + arox of whh th frst trm gvs ( ) q F q v( r, rj) ; j j w shall g THUS, hoos F suh Φ H Φ t q Φ Φ Φ Φ q F q v( r, rj) ; j j q v q v that Φ H ( ) q arox j ; j j Φ v( r, r ) F( r) Matrx lmnts of th abov two trms would anl; qual & oost sgns n ordr to gt Φ H Φ q PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

Havng shown now that th ho F whh Φ Φ Φ Φ q F q v( r, rj) ; j j q v q v gvs w now show that th abov ho of gvsus: Φ H Φ ( ) ( ) q onurrntly gvs th bst sngl dtrmnantal ground stat wav funton aordng to th varaton rnl (Hartr-Fo SCF aroxmaton) OTE Φ Φ d r r F r r 3 * * : q F ψq ψ F, PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

orrt ground Lt us as: If Φ Φ wr not th stat wavfunton, ould any othr wav funton b th ground stat? Th most gnral form n whh just on of th onsttunt sn orbtal s dffrnt would b ψ q Φ + εφ, aart from an ovrall normalzaton... For ths wavfunton, th nrgy funtonal s: E ( ε ) Φ + εφ H Φ + εφ q Φ + εφ Φ + εφ q q q PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

E ( ε ) Φ + εφ H Φ + εφ q Φ + εφ Φ + εφ q q q Φ H Φ Φ H Φ Φ H Φ Φ H Φ ( ) ( ) + ε q + ε q + ε q q ε ε ε Φ Φ + Φ Φ + Φ Φ + Φ Φ q q q q { H q q H } Φ H Φ Φ H Φ ( ) ( ) + ε Φ Φ + Φ Φ + ε q q ε q Φ Φ + Φ Φ { H q q H } Φ H Φ Φ H Φ ( ) ( ) + ε Φ Φ + Φ Φ + ε q q + ε q PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

E ( ε ) { H H } Φ H Φ + ε Φ Φ q + Φq Φ + ε Φ H Φ ( ) ( ) ( ) ( ) + ε q q dffrntatng wth rst to ε d E ( ε ) dε d dε { } Φ H Φ + ε Φ H Φ + Φ H Φ + ε Φ H Φ q q q q + ε { } d ( ) q q q q + Φ H Φ + ε Φ H Φ + Φ H Φ + ε Φ H Φ + ε dε PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

d E ( ε ) dε { } Φ H Φ + Φ H Φ + ε Φ H Φ q q q q + ε d { Φ } ( ) q + Φ q Φ + Φq Φq H ε H H ε H ε dε + Φ Φ + Φ + d ε ε + ε + ε ε, 4 dε ( + ε ) ( + ε + ε ) whh gos to zro as ε d E ε dε ε { Φ H Φ q + Φq H Φ } PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

d E dε { Φ H Φ + Φ H Φ } q q ε ε But w had sn that th ho F whh gvs Φ Φ Φ Φ q F q v( r, rj) ; j j q v q v ( ) Φ gav us : Φ ( )! Φ H Φ q SD d E ε dε ε E ( ε ): xtrmum... mnmum w gt th bst sngl dtrmnantal ground stat wav funton aordng to th varaton rnl PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

Thus, th ho F whh gvs Φ Φ Φ Φ q F q v( r, rj) ; j j PCD STTACS Unt 3 Eltron Gas n HF & RPA q v q v gvs us : ( ) ( ) Φ Φ and t gvs th bst sngl dtrmnantal ground stat wav funton aordng to th varaton rnl ε sn MIIMISES th varatonal nrgy funtonal: E ( ε ) Φ + εφ H Φ + εφ q Φ + εφ Φ + εφ q Qustons: d@hyss.tm.a. q q q H Hartr-Fo aroxmaton. 3

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 7 Eltron Gas n Hartr Fo and Random Phas Aroxmatons HF SCF for Fr Eltron Gas PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

H ( ) ( ) arox ( q, q,.., q ) f( r) + Fr + v( r, r ) Fr ψ ()...... ψ.......... Φ ψ ()...... ψ () Φ!.......... ψ ()...... ψ PCD STTACS Unt 3 Eltron Gas n HF & RPA j ; j j H ( q, q,.., q ) f( r) + Fr f+ F Th varatonal funton w onsdrd s: ψ Φ + εφ Φ q ψ ()...... ψ.......... ψ ()...... ψ ()!.......... ( ) q q q ψ ()...... ψ Varaton onsdrd s n just on orbtal All othr orbtals FROZE Hartr Fo: FROZE ORBITAL APPROXIMATIO Sn / statstal / Frm orrlatons nludd Coulomb orrlatons gnord SCF: slf onsstnt fld STAP Unt 4 L Rfrn htt://www.ntl.a.n/downloads/5657/ 3

f( r) u ( r ) + * u j ( r) dv u r u r m m u r u r j j r ε u j δ ( s, s ) j ( r ) PCD STTACS Unt 3 Eltron Gas n HF & RPA 33

f( r) u ( r ) + * u j ( r) dv u r u r m m u r u r j j r ε u r Chang of ( ) H ( q, q,.., q ) notaton slghtly: ; j ; u( r) ψ ( r) r r; r r' ψ () r + m PCD STTACS Unt 3 Eltron Gas n HF & RPA j δ ( s, s ) j Z r * ψ ( r') dv ' ( r) ( r ') ( m, m ) ( r ') ( r) r r' ε ψ ( ψ ) ψ δ s s ψ ψ Z + m r < j rj f ( r) + H + H ; j j rj ( r) otaton hangd only to brng t losr to that n Rams: Many Eltron Thory (97; orth Holland) 34

m Z ψ ( r') ψ ( r) dv ' ψ ( r) ψ ( r') δ( m, m ) ψ ( r') ψ ( r) ε ψ * + s s r r r' ( r) Z m r ψ * ψ ( ξ') ψ( ξ') ψ ( ξ) + r r' 4 ( ξ) dv' * ψ ( ') ( ') 4 ξ ψ ξ ψ ξ δ ( ms, m ) ' s d V ε ψ ξ r r ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 35

on-frromagnt systms: qual numbr of & ε : doubly dgnrat; on gnfunton ah for sn & Ground stat Slatr dtrmnant ontans th st of on-ltron orbtals: ψ, ψ, ψ,..., ψ, ψ ψ, ψ, ψ, ψ,..., ψ, ψ 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 36

Z m r ψ * ψ ( ξ') ψ( ξ') ψ ( ξ) + r r' 4 ( ξ) dv' * ψ ( ') ( ') 4 ξ ψ ξ ψ ξ δ ( ms, m ) ' s d V ε ψ ξ r r ' Carryng out th dsrt sum ovr th sn varabls: Z m r * ψ ( r') ψ( r') ψ () r + dv ' ψ () r r r' * ψ ( r') ψ ( r') dv ' ψ r ε ψ r r r ' Hartr-Fo on ltron Slf onsstnt fld quaton. PCD STTACS Unt 3 Eltron Gas n HF & RPA 37

Z m r * ψ ( r') ψ( r') ψ () r + dv ' ψ () r r r' * ψ ( r') ψ ( r') dv ' ψ r ε ψ r r r ' v( r, r ') Coulomb ntraton r r' Z m r ψ () r dv ' ψ(') r v(, r r') + ψ () r * ψ( r) dv ' ψ ( r ') ψ ( r ')v( r, r ') ε ψ r Rams / Many Eltron Thory / Eq.3.3; ag 53 PCD STTACS Unt 3 Eltron Gas n HF & RPA 38

H H + H j Z j f( q) r ' f ( q ) v( q, qj) + Many-Eltron Hamltonan n th notaton of FIRST QUATIZATIO H f j + j v l j j l j j l j v l dq dq ψ q ψ q v q, q ψ q ψ q Many-Eltron Hamltonan n th notaton of SECOD QUATIZATIO * * j l PCD STTACS Unt 3 Eltron Gas n HF & RPA 39

H f( q) + v( q, qj) j j I Q H f j + j v l j j l j j l Hn, IF q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j THE H f + F j j + j Rams / Many Eltron Thory / Eq.3.7; ag 55 PCD STTACS Unt 3 Eltron Gas n HF & RPA jv l F j j l j j l j II Q I Q II Q 4

Φ H f( q) + v( q, qj) ψ ()...... ψ.......... ψ ()...... ψ ()!.......... ( ) q q q ψ ()...... ψ j j Egnfuntons of th sngl artl orator q r ( ) r ( r ) ( ) H ( q, q,.., ) f + F r + v( r, j) F ; j j From sld # 4, U3L7: ( f + F) φ ( q) ε φ ( q) j j j f + F j ε j εδ j j j Φ Φ Φ Φ F F q q q v q v PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

Φq F Φ q v q v PCD STTACS Unt 3 Eltron Gas n HF & RPA 4 4 * * q F d ξ d ξ ψ ξψq ξ r r ψ ξ ψ ξ Φ Φ v (, ) d ξ d ξ ψ ξ ψ ξ r r ψ ξ ψ ξ v (, ) 4 4 * * q 4 * q F d ξψ q ξψ ξ r Φ Φ d 4 ( ξ ) d v (, r ) ψ ( ξ ) ξψ ξ ψ ξ 4 * d ξψ ( ξ ) v ( r, r ) ψ ( ξ ) 4 * q ntrhangng ξ ξ n th sond (xhang) trm: 4 * q F d ξψ q ξ d r r ψ ξ Φ Φ d 4 ξψ( ξ) v (, ) ξψ ( ξ ) d ξψ ( ξ ) v ( r, r ) ψ ( ξ ) ψ ( ξ ) 4 * 4 * q 4

4 * q F d ξψ q ξ d r r ψ ξ Φ Φ d 4 ξψ( ξ) v (, ) ξψ 4 * ( ξ ) d ξψ ( ξ ) v ( r, r ) ψ ( ξ ) ψ ( ξ ) 4 * q 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) 4 * Φq F Φ d ξψ q ( ξ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) 4 * Φq F Φ d ξψ q ( ξ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) 4 d ξψ ( ξ) v ( r, r) ψ ( ξ) Fψ ( ξ ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams / Many Eltron Thory / Eq.3.9; ag 5 43

4 d ξψ ( ξ) v ( r, r) ψ ( ξ) Fψ ( ξ ) 4 * d ξψ ( ξ) v ( r, r) ψ ( ξ) ψ( ξ) Fψ ξ d ξ ψ ξ r r ψ ξ 4 v (, ) d ξψ ξ ψ ξ ψ ξ v ( r, r ) 4 * arryng out th summaton ovr th dsrt sn varabl: Fψ ψ ψ 3 ( r ) dr ( r ) v ( r, r ) ( r ) d 3 rψ ψ ψ ( r ) v ( r, r ) ( r ) ( r ) * PCD STTACS Unt 3 Eltron Gas n HF & RPA 44

arryng out th summaton ovr th dsrt sn varabl: Fψ ψ ψ 3 ( r ) dr ( r ) v ( r, r ) ( r ) d 3 rψ ψ ψ ( r ) v ( r, r ) ( r ) ( r ) * r r r' r Z m r * ψ ( r') ψ( r') ψ () r + dv ' ψ () r r r' * ψ ( r') ψ ( r') dv ' ψ( r) ε ψ r r ' PCD STTACS Unt 3 Eltron Gas n HF & RPA ( r) Z ψ () r + Fψ + m r HF-SCF Eq. ( r) [ f F ] ψ ( r) ε ψ ( r) Rams / Many Eltron Thory / Eq.3.3; ag 53 45

Rall, from Sal/Slt Tos n Atom Physs, Unt STAP: 4, Unt Ltur 4, Ltur 3, Sld 3, Sld Hartr-Fo Slf-Consstnt Fld formalsm Rfrn htt://www.ntl.a.n/downloads/5657 E ψ H ψ ε j sld 4: [ f r + F r ] ψ σ r εψ σ r [ f r + F r ] { ψ r }.. s dagonal n f + F ε f + [ j v j j v j ] F σ Rams, Eq.3.35 E f + F j PCD STTACS Unt 3 Eltron Gas n HF & RPA [ j v j j v j ] Rams, Eq.3.36 46

E Also, f + F j [ v v ] j [ j v j j v j ] j j j j E + f + F Φ H Φ E f + j v j j v j j E f E + f + F [ ] E f + f F f ε + + PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams, Many Eltron Thory Eq.3.38 / ag 56 47

Hartr Fo Slf Consstnt Fld for th Fr Eltron Gas For FEG, th HF-SCF an b obtand AALYTICALLY FEG only many-ltron systm for whh HF-SCF an b obtand AALYTICALLY fr n V o ntraton wth any xtrnal fld PCD STTACS Unt 3 Eltron Gas n HF & RPA What about th fft of th ostv nul? Frm gas of ltrons whh ntrat only wth ah othr. 48

dsrt ostv hargs n th nul onsdrd smard out, l jlly bans nto a jllum. Whol systm: ltrally nutral. PCD STTACS Unt 3 Eltron Gas n HF & RPA 49

Postv harg dnsty smard out unformly. PCD STTACS Unt 3 Eltron Gas n HF & RPA ltrons n a ubal box. Eah sd has lngth L ρ 3 V Volum of th box V L nxλx L π nx L; x x π n L π n ˆ + n ˆ + n ˆ L x x y y z z x Box normalzaton wth Born von Karmann boundary ondtons How many wavlngths ft n th box? r ψ (r) χ σ 3 σ ζ L orbtal art sn art 5

Z Fr ltron s wav vtor r θ dθ φ dϕ Y X PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

X dω Y ê x Construt a grd of onts labld by ntgrs sad at unform dstans along th X, Y, Z axs. Z PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

E + + m m ( ) x y z π E n + n + n m L E π ml n ( ) x y z Y ê x X stats wth dffrn t n, n, n x y z n + n + n n x y z ar dgnrat dω Z 3-dmnsonal orthogonal sa of ndndnt ntgrs n, n, n. x y z PCD STTACS Unt 3 Eltron Gas n HF & RPA 53

ψ () r m + V( r) ψ ( r) dv ' ψ( r ') v( r, r ') + ψ ( r) ψ ψ ψ * ( r) dv ' ( r') ( r')v( r, r') ε ψ ( r) m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r 54 PCD STTACS Unt 3 Eltron Gas n HF & RPA

m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r Rall, from Sal/Slt Tos n Atom Physs, STAP Unt 4, Ltur 3, Sld 8 HF SCF formalsm Rfrn htt://www.ntl.a.n/downloads/5657 ψ * ( q') ψ ( q') xhang V ( q) ψ ( q) ψ ( q) dq' r r ' * ψ ( q') ψ ( q') xhang V ( q) ψ ( q) ψ ( q) dq' r r ' m ζ ' ζ ' m δm, m ζ ' s s s s xhang 3 * ψ ψ ' ψ ( ') ψ ( ')v, ' V q q r d r r r r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 55

m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r xhang 3 * ψ ψ ' ψ ( ') ψ ( ')v, ' V q q r d r r r r r xhang ψ () r V ( q) ψ ( q) ε ψ m m ( r) V q q m xhang.. ψ ε ψ + F g( q) ψ ( q) ε ψ xhan ( r) ( r) xhang F ( q) V ( q) xhang PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams, Many Eltron Thory Eq.3.44 / ag 58 56

m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ Exhang Trm Sld 57 PCD STTACS Unt 3 Eltron Gas n HF & RPA V r r r r r 3 * ψ ( r) d rψ ( r ' ) ψ ( r)v( r, r) ψ ( ' ) ε ψ m ' L ot sgn ( ') ' 3 3 L dr 3 ' r { r } ( r ) r ψ (r) χ σ 3 σ ζ r r L orbtal art sn art ET, S57 57

m 3 * ψ ( r) d rψ ( r ' ) ψ ( r)v( r, r) ψ ( r ' ) ε ψ r ' L ( ') ' 3 3 L dr 3 ' r r r ET, S57 L 3 3 L dr 3 ' r PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 L r 3 L ( ' ) r ' r r 58

L 3 3 L dr 3 ' r 3 L r 3 L ( ' ) r ' r r ( ' ) r{ } ' r dr 3 L 3 ' r L 3 r PCD STTACS Unt 3 Eltron Gas n HF & RPA 59

ET, S 57 ( ' ) r{ } ' r 3 r dr 3 L 3 ' r L ' ( r r) 3 dr ψ r ' r 3 L L PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 ' ( ' ) r ( ) r ψ 3 L ' 3 d r r φ ψ ' r r r ' r 6

ET, S 57 L ( ' ) r 3 ' φ r ψ r φ r ' r ' r 3 4π d r r ' Th Wav Mhans of Eltrons n Mtals by Stanly Rams, ag 7, Eq.7.4 ET, S 57 ' r ( ' ) r 4π 3 L ' π 4 3 L ' ' ψ ' r ψ r ε ψ r PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

r r 3 * ψ ( r) d rψ ( r ' ) ψ ( r)v( r, r) ψ ( ' ) ε ψ m ' m ε ψ r ψ ( ) r + ε ψ ε ψ m K.E. + ε ot sgn ε xt: alulaton of ( r ) r whr ε ε Qustons: d@hyss.tm.a. 4π 3 L ' ' Hartr-Fo Eq for Fr Eltron Gas Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4, ag 7 PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 8 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Eltron-Eltron Exhang Enrgy PCD STTACS Unt 3 Eltron Gas n HF & RPA 63

Hartr-Fo Eq for Fr Eltron Gas m K.E. ψ ( ) r + ε ψ ε ψ ( r ) r m + ε Dtrmnaton of ε PCD STTACS Unt 3 Eltron Gas n HF & RPA ε whr ε 4π 3 L ' ' Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4, ag 7 ltron gas n jllum otntal K + xhang HF orrlaton E E E 64

Postv harg dnsty smard out unformly. PCD STTACS Unt 3 Eltron Gas n HF & RPA ltrons n a ubal box. Eah sd has lngth L ρ 3 V Volum of th box V L nxλx L π nx L; x x π n L x Box normalzaton wth Born von Karmann boundary ondtons How many wavlngths ft n th box? π ( n ˆ ˆ ˆ ) xx + nyy + nzz L In th -sa π 'volum' of ah stat L 3 65

ε ε Sum ovr all stats ε 4π 3 L ' ' ' π L PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 In th -sa π 'volum' of ah stat L ' : ntgraton n sa 3 d L π ' L 4π 3 d' 3 3 Intgraton u to th Frm lvl ' ' 'sn F π π π ' θ ϕ ' d d d θ θ ϕ Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4nxt, ag 7 66 ' 3

ε ' ' 'sn F π π π ' θ ϕ ' d d d Rams / Wav Mhans of Eltrons n Mtals / Eq.7.4nxt, ag 7 d d d d θ θ ϕ d d ' ε ' d' ' sn d d F θ θ ϕ π π ε π ' θ ϕ PCD STTACS Unt 3 Eltron Gas n HF & RPA ( ' ) ( ' ) ' F π π ' d'sn d d π ' θ ϕ ' ' θ θ ϕ 67

ε ' F π π ' d'sn d d π ' θ ϕ ' ' θ θ ϕ ntgratng ovr ϕ ' ' 'sn ( ) F π d θdθ ε π π ' θ ' ' ε ε PCD STTACS Unt 3 Eltron Gas n HF & RPA ' F π ' θ ' d 'sn d π ' F μ+ ' μ θ θ + ' 'os ' d ' d os θ μ ;.. sn θdθ dμ π μ + ' ' μ θ 68

ε ' F μ+ ' d ' d π ' μ μ + ' ' μ ε π ' F μ+ ' d' ' μ dμ + ' ' μ ε + π ' F μ ' d' ln ' ' μ + ' μ ( ') ε + π ' ' F ' d' ln ' ' μ + ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 69

ε + π ' ' F μ + ' d' ln ' ' μ ' μ ε π ' F ' d' ' ( ) ( + + + ) ln ' ' ln ' ' ' ' ε ' F ' d ' ( ) ( ) ' ln + ' ' ln + ' + ' π ε ' F ' d ' ln ( ') ln ( ') ' + π PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

ε ' F ' d ' ln ( ') ln ( ') ' + π ε ' F ' π ' ' d ' ln + ' ε π ' F ' ' ' d ' ln + ' ε π ' F ' d ' ' ln + ' ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

ε ε ' F ' ' ln d' π ' + ' π { ' ' } ' ln ' d' ' ln ' d ' F F + ' ' f x a ( x a) xln( x+ a) dx ln( x+ a) 4 ( ' + ) ' ( ' ) ' ε ln ' ln ' + + π 4 4 f ε ( ' + ) ( ' ) ' ' ln + π + ' 4 4 ' f ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

ε ( ' + ) ( ' ) ' ' ln + π + ' 4 4 ' f ' ε π f f f f + ln + + 4 4 + ln + 4 4 f ε f f f + f ln + π + f 4 4 PCD STTACS Unt 3 Eltron Gas n HF & RPA 73

ε f f f + f ln + π + f 4 4 ε f f ln f π + f ε f π f f ln + f + f Exhang Trm ε + f + ln εxhang f f f f π PCD STTACS Unt 3 Eltron Gas n HF & RPA 74

ε + ε m & ε xhang xhang f f + f + ln π f f ε f + ln m π f f + f f lt ρ f ε f ρ + ρ + ln m π ρ ρ ε f ρ + ρ ln m π + ρ ρ dfn: ρ + ρ F( ρ) + ln ρ ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA 75

ε ε + ε m f ρ + ρ ln m π + ρ ρ ρ f f ρ ρ + ρ ε : EXCHAGE TERM IS EGATIVE Snglt Stat Trlt Stat Slt/Sal Tos n Atom Physs htt://ntl.a.n/ourss/5657/ Unt 4 Trlt Stat s lss unshd by th oulomb ntraton - Landau & Lfshtz PCD STTACS Unt 3 Eltron Gas n HF & RPA 76

Snglt : χ( ζ, ζ) χ( ζ, ζ) ant-symmtr sn art φ( r, r) + φ( r, r ) + ( ) ϕ r ϕ r ϕ r ϕ r snglt : orbtal art doubl as r r Frm orrlaton * ltrons wth antaralll sns to lum togthr, * as f n a ha of ltral harg * Ths auss ICREASED rulson lss stabl PCD STTACS Unt 3 Eltron Gas n HF & RPA 77

Trlt : χζ (, ζ) + χ( ζ, ζ) ant-symmtr sa art φ( r, r) φ( r, r ) ( ) ( ) ϕ r ϕ r ϕ r ϕ r trlt: orbtal art as r r Frm orrlaton * ltrons wth aralll sns hav an EXCLUSIO rgon of sa * as f a shral avty s gnratd around t n whh anothr ltron wth a aralll sn annot ntr * DECREASED rulson mor stabl PCD STTACS Unt 3 Eltron Gas n HF & RPA 78

ψ () r m + V( r) ψ ( r) Sld o. 54, Prvous ltur dv ' ψ( r ') v( r, r ') + ψ ( r) ψ ψ ψ * ( r) dv ' ( r') ( r')v( r, r') ε ψ ( r) m * ψ () r ψ() r d ' ψ (') ψ (')v(, ') ε ψ V r r r r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 79

8 PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 ' 3 : nt ' graton n sa L d π 3 'volum' of ah stat L π 3 ' 3 : ntgraton n sa ' d L π 3 'volum' of ah stat L π n th sa n th sa

Slt/Sal Tos n Atom Physs htt://ntl.tm.a.n/ourss/5657/ Unt 4 / Sld # & E ψ H ψ atom HF f + j g j j g j j [ ] Th orator f ontans th K.E. orators and th nular attraton orators Eltron gas n jllum otntal attratv jllum otntal anls th ltron-ltron drt Coulomb rulson trms ltron gas n * ntgraton nstad of th abov dsrt sum jllum otntal EHF 3 L f θ π ϕ π d sn θdθ dϕ + ε 3 xhang θ ϕ π m PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

ltron gas n jllum otntal EHF 3 L f θ π ϕ π d sn θdθ dϕ + ε 3 xhang θ ϕ π m ltron gas n jllum otntal HF K + xhang orrlaton E E E whr 3 L f θ π ϕ π EK d snθdθ dϕ 3 θ ϕ π and m 3 L f θ π ϕ π Exhang d sn θdθ dϕ ε 3 θ ϕ orrlaton π xhang PCD STTACS Unt 3 Eltron Gas n HF & RPA 8

ltron gas n jllum otntal HF K + xhang orrlaton E E E whr 3 L f θ π ϕ π EK d snθdθ dϕ 3 θ ϕ π m E K 3 L 4π ( π ) m f 3 4 d E K 3 L ( π ) 3 4π m 5 5 f E K 3 L π m K: K.E. art of th HF nrgy of th dgnrat fr ltron gas f 5 f : Frm lvl E K V π m Rams / Many Eltron Thory / Eq.3.64, ag 63 f 5 PCD STTACS Unt 3 Eltron Gas n HF & RPA 83

umbr of ltrons n th sa 'volum' of ah stat Tw th umbr of sngl-ltron stats n th ' volum' ( n - sa) sannd by th Frm shr 4 3 whos volum s π f 3 4 π 3 π 3π π 4π 3 L 3π f V 3 f 3 3 L 3 L 4 3 3 f π f 3 3 4 3 3 L 4 π 3 4π 3 V 4 π π 3 f 3 f π L 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 84

E K E V π m 5 3π f r 3 s K PCD STTACS Unt 3 Eltron Gas n HF & RPA f 3 V 4 3 3π π rs V 3 3 f rs : radus of a shr whos volum s qual to th avrag volum r ltron. 4 3 5 π r s 3 3 3 3π 3 9π π m 4 3 m 4 r π rs 3 K.E. ontrbuton to th avrag HF ground stat nrgy r ltron n a fr-ltron-gas Rams / Many Eltron Thory / Eq.3.68, ag 63 ( 9π ) ( 9π ) /3 /3 9π 4 r 4 4 m 3 s f f v f s 3 EK 3 9π m 4 r. Ryd r s s 4 Ryd m 3.6569... V ; Bohr unt.59a m 85

ltron gas n jllum otntal HF K + xhang orrlaton E E E K.E. E K. Ryd r s V f Exhang d θ π sn d ϕ π d 3 θ θ ϕ ε xhang θ ϕ orrlaton π ε xhang f π f + f + ln f f Qustons: d@hyss.tm.a. PCD STTACS Unt 3 Eltron Gas n HF & RPA 86

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 9 Eltron Gas n Hartr Fo and Random Phas Aroxmatons Fr Eltron Gas n Jllum Baground Potntal PCD STTACS Unt 3 Eltron Gas n HF & RPA 87

ltron gas n jllum otntal HF Knt + Exhang Enrgy Corrlaton E E E whr 3 L f θ π ϕ π EKnt d snθdθ dϕ 3 θ ϕ Enrgy π m E K 3 L 4π ( π ) m 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA f 4 d L V E π m π m 3 5 5 K f f K: K.E. art of th HF nrgy of th dgnrat fr ltron gas Rams / Many Eltron Thory / Eq.3.64, ag 63 E K 3 L ( π ) f : Frm lvl 3 4π m 5 5 f 88

E r K s V π m 5 f ( 9π ) ( 9π ) /3 /3 4 4 mv f E K f 3 3 9π m 4 r s 4 3 3π π rs V 3 r s 3 f : radus of a shr whos volum s qual to th avrag volum r ltron. r s : Bohr unts r s : Stz aramtr K.E. ontrbuton to th avrag HF ground stat nrgy r ltron n a fr-ltron-gas Rams / Many Eltron Thory / Eq.3.68, ag 63 PCD STTACS Unt 3 Eltron Gas n HF & RPA s 3 EK 3 9π m 4 r. Ryd r 4 Ryd m 3.6569... V ; Bohr unt.59a m s 89

ltron gas n jllum otntal HF K + xhang orrlaton E E E K.E.. Ryd r? V f Exhang d θ π sn d ϕ π d 3 θ θ ϕ ε xhang θ ϕ orrlaton π E K s ε xhang f + + ln f f f f π E xhang orrlaton V f θ π ϕ π f f f + d sn d d ln 3 θ θ ϕ θ + ϕ π π f f PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

E xhang orrlaton V f θ π ϕ π f f f + d sn d d ln 3 θ θ ϕ θ + ϕ π π f f E xhang orrlaton 3 d d V f ( 4 ) f + π d ln 3 8 f + f π π f E xhang orrlaton V f ( ) f + d ln 3 4 f + f π f PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

E xhang orrlaton V f ( ) f + d ln 3 4 f + f π f E xhang orrlaton V 4 f 3 4π PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

E xhang orrlaton V 4 f 3 4π 4 4 3 f π 3 9 4π 4π 4 r 3 3 4 s 3π 4 3 f ; & π rs V V 3 from : sld 85, last lass 4 3 4 3 9π Exhang π rs 3 4 orrlaton 3 4π 4 rs PCD STTACS Unt 3 Eltron Gas n HF & RPA 9π rs 4 3 3π 4 E xhang orrlaton.96 r s Ryd 93

ltron gas n jllum otntal HF KE + xhang orrlaton E E E 3 L f θ π ϕ π whr EKE d snθdθ dϕ 3 θ ϕ π m 3 L f and Exhang d 3 orrlaton ( π ) Addng both th trms θ π ϕ π θ ϕ sn θdθ dϕ εxhang For fr ltron gas n SCF jllum otntal : E HF..96 Ryd rs r s Avrag HF nrgy r ltron PCD STTACS Unt 3 Eltron Gas n HF & RPA r s : Bohr unts H f( q) + v( q, qj) j j 94

ltron gas n jllum otntal HF K + xhang orrlaton E E E Avrag HF nrgy r ltron E HF..96 Ryd rs r s ltron-ltron ntraton, rdus th nrgy BELOW that of th Sommrfld gas (of ours n th ostv jllum otntal) ψ () r m + V( r) ψ ( r) dv ' ψ( r ') v( r, r ') + ψ ( r) ψ ψ ψ ε ψ * ( r) dv ' ( r') ( r')v( r, r') ( r) 95 PCD STTACS Unt 3 Eltron Gas n HF & RPA

Avrag HF nrgy r ltron ltron-ltron ntraton, rdus th nrgy BELOW that of th Sommrfld gas (of ours n th ostv jllum otntal) FEG n HF-SCF jllum otntal : E HF..96 Ryd rs rs : Bohr unts r s 4 Ryd m 3.6569... V Bohr unt.59... A m Frst Ordr Prturbatv tratmnt of th xhang trm SAME RESULT (nxt lass) Sond (and hghr) Ordr Prturbatv tratmnt of th ltron-ltron Coulomb ntraton howvr dvrgs. PCD STTACS Unt 3 Eltron Gas n HF & RPA 96

For fr ltron gas n jllum otntal : E HF..96 Ryd rs r s Bohm & Pns: md-ffts D.Pns (963) Elmntary xtatons n solds (Bnjamn, Y) Random Phas Aroxmaton E BP..96 3.96 β 4 + β 3 β rs rs r rs 48 s f PCD STTACS Unt 3 Eltron Gas n HF & RPA β d! Many-body thory byond rturbaton mthods : Ur bound to wav numbr of lasma osllatons Lowr bound to wav lngth; sn osllatons gt damd by th random thrmal moton of th ltrons. 97

Frst, th lassal modl ρ : avrag volum harg dnsty ξ Postv and gatv harg n balan Dslamnt of all th ltrons to th rght PCD STTACS Unt 3 Eltron Gas n HF & RPA 98

Frst, th lassal modl ρ : avrag volum harg dnsty ξ Dslamnt of all th ltrons to th rght nt ostv surfa harg r unt ara + ρ ξ nt ngatv surfa harg r unt ara ρ ξ surfa harg dnsty : σ ρξ PCD STTACS Unt 3 Eltron Gas n HF & RPA nt fld n-btwn E ρξuˆ ε 99

nt fld n-btwn E ρξuˆ ε CGS unts ; 4π 4πε ε 4πρ ω m PCD STTACS Unt 3 Eltron Gas n HF & RPA d ξ m ρξ dt ε d ξ dt ρ mε ξ ω SI unts ρ mε Frquny of lasma osllatons Thrmal moton of ltrons: gnord xt that thrmal flutuatons would hav ausd th onst of lasma osllatons Thrmal moton dsrson Eq. of moton whn dsrson s rsnt: ω E F ω m

dsrt ostv hargs n th nul onsdrd smard out, l jlly bans nto a jllum. Unform harg dnsty Whol systm: ltrally nutral. PCD STTACS Unt 3 Eltron Gas n HF & RPA

Postv harg dnsty l b ρ V PCD STTACS Unt 3 Eltron Gas n HF & RPA ltrons n volum V togthr wth a unform ostv harg baground jllum dstrbuton. Jllum baground H H + H + H st trm n th Hamltonan μ r Hl + m r r nd trm j j j l b l b Mathmatal dv to avod dvrgns. Latr, w ta th lmt: μ x x ' 3 3 ρ + xρ + x' Hb dx dx' x x' 3 rd trm n th Hamltonan 3 H d x r j μ x r ρ x + x r μ ltrons and th baground: EUTRAL systm

ρ nd trm ρ + + PCD STTACS Unt 3 Eltron Gas n HF & RPA μ x x ' 3 3 ρ + xρ + x' Hb dx dx' x x' V x x' (unform dnsty) x' x z dx ' dz... at onstant x μ x x ' 3 3 Hb d x d x' V x x' 3 3 H dx dz V z b μz μz 3 μz dz 4π zdz 4π z dz z z 4π 4π H b V V μ V μ Rfrn: Fttr & Wala - Eq.3.7 n Quantum Thory of Many-Partl Systms; ag H b μ dvrgs 4π μ μz Contrbuton of ths trm (r ltron) dvrgs as μ μ dvrgn 3

3 rd trm 3 H d x l b ρ V 4π Hl b V μ μ x r ρ x + x r μ x r 3 Hl b d x V x r 4π Hb V H b μ μ μ dvrgn Contrbuton of ths trm (r ltron) dvrgs as μ μ dvrgn Rfrn: Fttr & Wala - Eq.3.8 n Quantum Thory of Many-Partl Systms; ag PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

H Hl + Hb + Hl b H 4π 4π Hl + V μ V μ H H l 4 V π μ Contrbuton of ths trm (r ltron) dvrgs as μ μ dvrgn Dos th dvrgng trm anl wth any art of H l? Produr to ta lmts: FIRST: L (.. V ) and thn μ Rfrn: Eq.3.9 n Fttr & Wala - Quantum Thory of Many-Partl Systms; ag 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

PCD STTACS Unt 3 Eltron Gas n HF & RPA H H H f( q ) v ( q, q ) IQ C l + + j j j II Q H f j + j v l st trm H IQ l C j j l j j l C * * C v φ φj v, φ φl j l dq dq q q q q q q μ r r + m r r j j j Hn H + II Q s l j j j j v l l j m j l μ r r * * j v s l dq dqφ ( q) φj ( q) φ ( q) φl ( q) r r 6 j v s

H j + j l II Q s l j j v l j m j l μ r r * * v s φ φj φ φl r r j l dq dq q q q q Showng th summaton ovr sn varabls xltly: H II Q l σ σ σ m σ σ + σ σ σ σ 3 3 4 4 σ σ σ v σ σ s σ σ 3 3 4 4 σ σ 4 4 3 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

H II Q l σ σ σ σ σ m + σ σ σ σ 3 3 4 4 σ Frst, xamn th K.E. trm. σ σ v σ σ s σ σ 3 3 4 4 σ σ 4 4 3 3 3 x x σ σ δ σ, σ d x V V m m ( π ) δ σ, σ x x σ σ 3 d x 3 m mv PCD STTACS Unt 3 Eltron Gas n HF & RPA m δ σ, σ ( ) δ ( ) 3 x dx V 3 ( ) x dx Dra δlta funton 8

Postv harg dnsty smard unformly ρ V π n ˆ + n ˆ + n ˆ L π ( π ) 3 ltrons n a ubal box. Eah sd has lngth L 3 x Volum of th box V L V Box normalzaton wth Born von Karmann boundary ondtons π π nx nxλ x L; nx L; x L x x y y z z ( K ) x dx δ K ( ) δ ( ) 3 x dx x In th -sa 'volum' of ah stat π L 3 ( ) x dx δ 3, L Eq.3.; ag 3; F&W x 3 3 σ σ, PCD STTACS Unt 3 Eltron Gas n HF & RPA δ d x m mv σ σ x ( ) δ mv σ σ δ, V, Eq.3.; ag 3; F&W 9

H II Q l σ σ σ σ σ m + σ σ σ σ 3 3 4 4 σ Frst, xamn th K.E. trm. σ σ v σ σ s σ σ 3 3 4 4 σ σ 4 4 3 3 m m σ σ σ σ δ, δ, H II Q l σ m σ, σ σ σ σ + σ σ σ σ 3 3 4 4 δ δ, σ σ v σ σ s σ σ 3 3 4 4 σ σ 4 4 3 3 H II Q l σ m σ σ + σ σ σ σ 3 3 4 4 σ σ v σ σ s σ σ 3 3 4 4 σ σ 4 4 3 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA

H II Q l σ σ m σ + σ σ σ σ 3 3 4 4 σ σ v σ σ s σ σ 3 3 4 4 σ σ 4 4 3 3 nd trm δ δ σ, σ σ, σ 3 4 σ σ v s 3σ 4σ μ r r 3 3 * * δσ, σδ 3, dr σ σ4 drφ r φ r φ r φ r σ σ 3σ 4σ r r x x V μ r r s 3 3 σ σ v 3σ3 4σ 4 δ σ, σ δ 3 σ, σ 4 V r r dr dr + r + r 3 4 PCD STTACS Unt 3 Eltron Gas n HF & RPA

μ r r s 3 3 σ σ v 3σ3 4σ 4 δ σ, σ δ 3 σ, σ 4 V r r d r d r r r y + r + r 3 4 r x r y + r y + x μ y s 3 3 σσ v 3σ34σ 4 δσ, σδ 3 σ, σ d y d x 4 V y + y+ x + x 3 4 σ σ v σ σ δ δ V μ y s y x y 3 3 + 3 + 4 + 4 3 34 4 σ, σ3 σ, σ d y d x 4 + + y+ x y + + x + y 3 4 4 3 4 3 y μ y s 3 3 σσ v 3σ34σ 4 δσ, σδ 3 σ, σ d y d x 4 V y + + x + y 3 4 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA

μ y s 3 3 σσ v 3σ34σ 4 δσ, σδ 3 σ, σ d y d x 4 V y s x σ σ v 3σ34σ 4, δ, d y V y + + x + y 3 4 3 μ y ( + ) ( ) 3 + 3 4 3 + 3 δσ d x σ3 σ σ4 y Consrvaton of lnar momntum n homognous sa s σ σ v 3σ 3 4σ 4 δ, σ, σδ 3 σ, σ Vδ 4 3 4 d y V y μ y 3 + ( 3 ) ( + + ) s σσ v 3σ34σ 4 δσ, σ δ 3 σ, σ δ 4 +, 3 + 4 d y V y y μ y 3 + ( 3 ) ( ) y Fourr transform of th Srnd Coulomb Potntal PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

Small dgrsson: Fourr transform of th Coulomb Potntal Fourr transform g of f( r ) : 3 g r f( rdr ) Whn th ntgral dos not onvrg: r r 3 g lm μ f ( rdr ) + μ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

Gvn g, howdo w rovr f( r)? 3 + r 3 f( r) g d π PCD STTACS Unt 3 Eltron Gas n HF & RPA Whn th ntgral dos not onvrg: r 3 f ( r) lm + μ g d + μ rotatonal symmtry : ( ) Whn f r f ( r ), thn g ( ) g ( ); & v vrsa ( ) Inthasof rotatonal symmtry, f r f ( r ) f ( r): 4π g g g drrf( r)sn( r) ( ) FT of Coulomb otntal, V r V ( r ) V ( r) r 4π g g( ) g dr r sn( r) 4π r dr sn ( r) 5

( ) FT of Coulomb otntal, V r V ( r ) V ( r) r 4π 4π g g g dr r r r dr r sn sn Th abov ntgral dos not onvrg μr SC ( SC ) SC FT of Srnd Coulomb otntal, V r V ( r ) V ( r) lm+ μ r μr 4π 4π g g g dr r r dr r μ r μ μr lm sn lm sn + + 4π 4π g lm dr sn r lm dr Im + μ + μ 4 r r g π r μr μ lm Im dr ( ) + μ 4π lm Im + μ μ μr μr r PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

g g r μr 4π 4π lm Im lm Im + μ μ + μ μ 4π lm Im [ ] + μ μ r μr [ ] 4π 4π lm Im lm Im + + μ μ μ μ 4π μ+ 4π 4π lm Im lm + + μ μ + μ μ + FT of FT μr 4π r μ + of SC C 4π r FT of FT of μr 4π μ + r 4π r PCD STTACS Unt 3 Eltron Gas n HF & RPA C SC 7

H s σσ v 3σ34σ 4 δσ, σ δ 3 σ, σ δ 4 +, 3 + 4 d y V y FT of SC μr 4π r μ + 3 4 μ y 3 + ( 3 ) ( ) ( + + ) y Fourr transform of Srnd Coulomb Potntal s σ σ v 3σ3 4σ 4 δσ, σδσ, σ δ, 3 4 σ m σ σ, σ, σ, σ, σ 3 3 4 4 σ, σ σ, σ 3 4 V 3 ( +, + ) II Q l δ 3 4 + Rfrn: Fttr & Wala - Quantum Thory of Many- Partl Systms; ag 4 / Eq.3.5 δ Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms ag 4 / Eq.3.4 δ V 4π + μ σ σ σ σ 4 4 3 4π + μ 3 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA Rarrang th trms Canllatons wth trms from th baground. 8

H Contrbuton of H Hl + Hb + Hl b H σ H m l σ σ, σ, σ, σ, σ 3 3 4 4 4 3 V σ, σ σ, σ 4 π μ ths trm (r ltron) dvrgs as μ μ dvrgn ( +, + ) II Q l δ 3 4 + Qustons: d@hyss.tm.a. δ δ V 4π σ σ 4σ4 3σ3 3 + μ ' ' δ + + q 3 4 4 3 Momntum transfr For fr ltron gas n jllum E otntal : H I ordr PT? PCD STTACS Unt 3 Eltron Gas n HF & RPA xt lass: Rarrang th trms Canllatons wth th dvrgn trms from th baground. 9

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr Eltron Gas n Hartr Fo and Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. & Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA

H Hl + Hb + Hl b H H l 4 V π μ Fr Eltron Gas n Postv Jllum Baground Potntal μ dvrgn Dos th dvrgng trm anl wth any art of H l? H σ m σ σ, σ, σ, σ, σ 3 3 4 4 σ, σ σ, σ 3 4 ( +, + ) II Q l δ 3 4 + δ δ V 4π 3 + μ 3 4 4 3 Rarrang th trms Canllatons wth trms from th baground. ' ' δ + + q σ σ σ σ 4 4 3 PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 Momntum transfr

H PCD STTACS Unt 3 Eltron Gas n HF & RPA σ m σ σ, σ, σ, σ, σ 3 3 4 4 ' ' δ ( ), 3 + + 4 + 3+ 4 4 3 q : momntum transfr 3 + q 3 + q + q q 4 3 q q 4 σ, σ σ, σ 3 4 3 ( +, + ) II Q l δ 3 4 + δ δ V Rfrn: Fttr & Wala - Quantum Thory of Many-Partl Systms; ag 4 / Eq.3.5 4π + μ σ σ σ σ 4 4 3 3 4

H II Q l H H PCD STTACS Unt 3 Eltron Gas n HF & RPA II Q σ m σ σ ( +, + ) II Q l δ 3 4 + V 4π σ σ 3 4 σ σ 4σ 3σ 3 + μ ( + q) K.E. trm + qσ σ q q m + + σ 4π + qσ qσ σ + σ V q σ σ q + μ + q; q; ; 3 4 sarat th q trm n th ntraton + + 3 4 4π q + qσ σ σ σ V q σ q σ μ + 4π + σ σ σ σ V σ σ μ q μ q + μ for q + q 3

H II Q 4π q + qσ σ σ σ V q σ q σ μ + 4π + ( σ σ σ q σ ) trm V μ σ σ saratd q, δ δ,, ± ± ± rσ rσ rr σσ rσ rσ rσ rσ σ σ σ σ σ σ σ σ δ δ σ σ σ σ σ σ σ, σ, H IIQ 4π q + qσ σ σ σ V q σ σ q μ + 4π + ( σ σ σ σ, ) σ σ δσ σ δ, V μ σ σ q PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

H 4π + H V μ 4π II Q l II Q + σ H σ V μ + σ m H II Q Rfrn: Fttr & Wala - Quantum Thory of Many-Partl Systms; ag 4 / Eq.3.5 q trms 4π q + qσ σ σ σ V q σ σ q μ + 4π ( + ) σ σ σ σ σ σ δ σ, σ δ, V μ σ σ q q trms PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

H IIQ 4π q + qσ σ σ σ V q σ σ q μ + 4π + ( σ σ σ σ, ) σ σ δσ σ δ, V μ σ σ q W now wrt ths two trms saratly 4π q + qσ σ σ σ V q σ σ q μ + II Q 4π H + σ σ σ σ V μ σ σ q 4π σ σ δ σ, σ δ, V μ σ σ q PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

7 PCD STTACS Unt 3 Eltron Gas n HF & RPA 4 4 4 q q q q q II Q V q H n n V n V σ σ σ σ σ σ σ σ σ σ σ σ π μ π μ π μ + + +,, 4 q q q q II Q q V q H V V σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ π μ δ δ + + +

H H H II Q l, ST 4π q + qσ σ σ σ V q σ σ q μ + 4π 4π + n n σ n σ σ V μ σ V σ μ σ q q 4π q + qσ σ σ σ V q σ σ q μ +, ST 4π 4π + n n σ n σ σ V μ σ σ V μ σ q q Th abov summatons gv th total numbr orator II Q l II Q l, ST V 4 q σ σ 4π ˆ V μ V + PCD STTACS Unt 3 Eltron Gas n HF & RPA q trms 4π ˆ μ q π + μ + qσ qσ σ σ q trms 8

H II Q V 4 + qσ qσ σ σ q σ σ 4π 4π ˆ V μ V μ + ˆ q π + μ W now rla th numbr orators by thr gnvalus H II Q V 4 q σ σ q trms 4π 4π V μ V μ + PCD STTACS Unt 3 Eltron Gas n HF & RPA q π + μ + qσ qσ σ σ 9

q trms 4π 4 π V μ V μ + H C-numbr ontrbutons to H and hn to H H + H + H From sld : H l l b l b 4 V π μ Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms; ag 5 PCD STTACS Unt 3 Eltron Gas n HF & RPA ontrbuton to E HF 4 V : r artl π μ Frst : V, nxt : μ 3 L V : L; μ μ L 3

H H V 4 + qσ qσ σ σ q σ σ 4π 4π V μ V μ + anl q π + μ H H + H + H l b l b q trms E ] Lm HF V Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal ] μ m σ Rfrn: Fttr & Wala σ Quantum Thory of Many-Partl Systms; ag 5 / σ Eq.3.9 4π + qσ qσ σ + σ V q σ q σ PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ Rf: F & W; ag 5 / Eq.3.9 4 3 π rs V rs : radus of a shr whos 3 volum s qual to th avrag volum r ltron. dmnsonlss : lngth sal : Bohr radus rs r a V s 3 s s rs salng: r; V ; r ; q rq m?? V q a m Rfrn: Fttr & Wala PCD STTACS Unt 3 Eltron Gas n HF & RPA Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 3

lngth sal : Bohr radus a m dmnsonlss : V salng: r ; V ; r ; q rq s 3 s s rs r rs a r s m m r s m m m ar m r r m ar Vq s 3 rvq s arvq ar r r Vq PCD STTACS Unt 3 Eltron Gas n HF & RPA 33

Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ H m ar σ σ σ ar r + V q σ σ Rfrn: Fttr & Wala PCD STTACS Unt 3 Eltron Gas n HF & RPA Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 34 r Vq ar Vq 4π q qσ + qσ σ σ

H σ σ σ ar + r V q σ σ 4π q qσ + qσ σ σ Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 r st : "hgh dnsty" ordr rturbatv tratmnt ossbl vn f th rturbaton s not wa. 4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ ( unrturbd art ) H ( rturbaton) H + Rfrn: Fttr & Wala Quantum Thory of Many-Partl Systms; ag 5 / Eq.3.4 PCD STTACS Unt 3 Eltron Gas n HF & RPA 35

Φ H Φ Φ H Φ + Φ H Φ Φ Φ Φ Φ H σ m σ σ m m σ F ' π L 3 d 3 STTACS ' : ntgraton n sa Unt 3 Ltur 8 Sld o. 8 V f Φ H Φ 4π d 3 8π m PCD STTACS Unt 3 Eltron Gas n HF & RPA 36

4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ ( unrturbd art ) H ( rturbaton) H + Φ H Φ Φ H Φ + Φ H Φ Φ H Φ Φ σ Φ σ σ m σ m m F V f Φ H Φ 4π d 3 8π K.E. ontrbuton to th m avrag HF ground stat V f 4 4π d nrgy r ltron n a 3 m 8π fr-ltron-gas. 5 V F V 5 4 π 3 () F m 8π 5 mπ E HF. Ryd r s Rf: F & W QToMPS; 7 Eq.3.3 PCD STTACS Unt 3 Eltron Gas n HF & RPA Rf: F & W QToMPS; 5 Eq.3.9 37

4π H q q m σ + σ V +,, q q σ σ σ σ σ σ σ ( unrturbd art ) H ( rturbaton) H + Φ H Φ Φ H Φ + Φ H Φ 4π H q q + σ σ σ σ V, σ, σ q q Φ Φ Φ Φ, σ, σ q Frst ordr Prturbaton Thory 4π Φ Φ q V Φ Φ + qσ qσ σ σ + qσ qσ would b + qσ qσ σ σ unlss, so that annhlat ltrons n thos stats and f σ σ Rf: F & W QToMPS; 7 Eq.3.3 rat artls n th sam/orrsondng mty stats. PCD STTACS Unt 3 Eltron Gas n HF & RPA 38

Φ Φ + qσ qσ σ σ + qσ qσ would b unlss, so that annhlat ltrons n thos stats and f σ σ rat artls n th sam/orrsondng mty stats. () + q, σ, σ & q, σ, σ q or () + q, σ, σ & q, σ, σ sond ossblty must b orrt, not frst. Φ Φ δ δ Φ Φ + qσ qσ σ σ + q, σ, σ + qσ σ + qσ σ a, a δ r s rs σ + q qσ qσ σ + + q Φ Φ δ δ Φ Φ qσ qσ σ + σ + q, σ, σ + qσ + σ σ σ PCD STTACS Unt 3 Eltron Gas n HF & RPA 39

q Φ Φ δ δ Φ Φ qσ qσ σ + σ + q, σ, σ + qσ + σ σ σ 4π w had : Φ H Φ Φ Φ Φ H Φ + qσ qσ σ σ, σ, σ q q V PCD STTACS Unt 3 Eltron Gas n HF & RPA 4π, q σ Φ Φ q V σ Φ H Φ { } δ δ q σ, σ qσ + + + qσ σ σ numbr orators 4π δ δ n n q σ Φ Φ q V σ q, σ, σ + + qσ σ Φ n n Φ, for + q q, F and + σ σ F for + q > or > (or both > ) F F f 4

Φ H Φ 4π δ δ Φ n n Φ + q V q σ σ q, σ, σ + q, σ, σ Φ n n Φ, for + q q, F and + σ σ F for + q > or > or both > F F F Φ n n Φ for + q F and ( F) + qσ σ for + > > ( q ) or ( ) F F Havsd st funton Φ n n Φ ( + q.. ) ( ) + q F F σ σ θ θ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

Φ H Φ 4π δ δ Φ n n Φ + q V q Φ H Φ σ σ q, σ, σ + q, σ, σ Φ n n Φ θ + q θ σ σ + q,, F F 4π δ δ q, σσθ F + θ + F q V q q σ σ 4π θ F + F q V ( q ) θ( ) q q ( q ) ( ) Rf: F & W QToMPS; 8 Eq.3.33 4π Φ H Φ θ F + q F V θ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

4π Φ H Φ θ F + q F V q q θ From Unt 3, Ltur 8, Sld umbr 8: ' L π 3 3 d ' 3 3 L 3 L 3 4π Φ H Φ d dq θ F + q F π π q V θ 3 q now nludd: d q q dqsn d d 4π V 3 3 Φ H Φ d dq θ 6 F + q θ F ( π ) q θ θ φ PCD STTACS Unt 3 Eltron Gas n HF & RPA Rf: F & W QToMPS; 8 Eq.3.34 43

4π V 3 3 Φ H Φ d dq θ 6 F + q θ F ( π ) q hang varabl, + q P.. P q onsquntly: ( + q) P+ q Φ H Φ Rf: F & W QToMPS; 8 Eq.3.34 4π V 3 3 d q dpθ 6 F P q θ F P q ( π ) + q d dp 3 3 ot th symmtry W hav to valuat ths volum n th -sa. PCD STTACS Unt 3 Eltron Gas n HF & RPA 44

Φ H Φ W hav to valuat ths volum n th -sa. 4π V 3 3 d q dpθ 6 F P q θ F P q ( π ) + q P q P q P+ q q q PCD STTACS Unt 3 Eltron Gas n HF & RPA 45

two rls of radus F F P q P q P+ q q q F ot whr th ntrs of th rls ar hosn PCD STTACS Unt 3 Eltron Gas n HF & RPA 46

F : radus of th rls F Evaluat th volum of th ntrston of th two rls n th -sa. n th rgon of ntrston of th two rls, w hav P+ q < F and also P q < P q P q P+ q q q F F Rf: F & W QToMPS; 8 Fg.3. 3 dpθ F P+ q θ F P q PCD STTACS Unt 3 Eltron Gas n HF & RPA 47

Φ H Φ 4π V 3 3 dq dpθ 6 F P+ q θ F P q ( π ) q 3 4π 3 3 3 dpθ ( ) F P+ q θ F P q F x+ x θ x, 3 F&W: QToMPS; 8 Eq.3.35 q wth x Φ H Φ F 4π V 4π q 6 ( π ) whol sa wth F dx dq 4π dq 3 3 3 ( ) F x+ x θ x q 3 4πV 4π 3 3 3 4π 6 Fdx F x x θ x ( π ) + 3 whol sa 48 PCD STTACS Unt 3 Eltron Gas n HF & RPA

Φ H Φ 4π V 3 3 dq dpθ 6 F P+ q θ F P q ( π ) q 4πV 4π 3 3 3 4π 6 Fdx F x x θ x ( π ) + 3 whol sa x 3 3 4πV 4π 3 6 F ( 4π F) dx x x ( π ) 3 + x wth x q F r s ( π ) /3 9 4... atom unts ( 4πε )...from sld 89, STTACS, Unt3, Ltur 9 f nrgy atom unts 4 m 4πε dstan a atom unts m rmttvty 4πε of vauum nrgy atom unts a a E ( 4πε ) Rydbrgs au Hartr of nrgy I ordr PT.96 r s rs Rydbrs PCD STTACS Unt 3 Eltron Gas n HF & RPA 49

For E HF-SCF fr ltron gas n jllum otntal : HF..96 Ryd rs r s As r (low dnsty) s E.P.Wgnr Phys Rv 46: (934) E For fr ltron gas n jllum otntal : Prturbaton thory gvs th sam rsult E I ordr PT..96 Ryd rs r s rs Wgnr sold.79.66 + +.. a rs r s Mnmum At ngatv nrgy Systm: bound Rfrn: Fttr & Wala Quantum Thory of Many- Partl Systms; Fg.3./ag 9 EXT CLASS: RPA PCD STTACS Unt 3 Eltron Gas n HF & RPA Qustons: d@hyss.tm.a. 5

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr Eltron Gas n th Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

htt://www.hyss.ws.du/musum/ Exhbts- /Modrn/PlasmaTub/ndx_lasma. html htt://s.hys.ut.du/astr6/lt/arth/atmoshr.html PLASMA: 4 th stat of mattr.. hghly onzd rgon.. ostv hargd ons and vrtually fr ltrons PCD STTACS Unt 3 Eltron Gas n HF & RPA htt://www.rdorbt.om/duaton/rfrn_lbrary/sa_/solar_systm/5746/van_alln_radaton_blt/ 5

Ignor moton of th ons. as f thy ar frozn. Ions: rlatvly far mor massv and hav larg nrta. Mtal lasma Whol systm: ltrally nutral. PCD STTACS Unt 3 Eltron Gas n HF & RPA 53

Postv and gatv harg n balan ξ Dslamnt of all th ltrons to th rght nt ostv harg r unt ara + ρ ξ nt ngatv harg r unt ara ρ ξ surfa harg dnsty : σ ρξ nt fld n-btwn E ρξuˆ ε PCD STTACS Unt 3 Eltron Gas n HF & RPA 54

Eq. of moton nt fld n-btwn d ξ E ρξuˆ m ε dt ρξ ε ρ ω mε SI unts d ξ ρ CGS unts ξ CGS unts dt mε 4πρ ; 4π ω 4πε m ε Frquny of lasma osllatons Thrmal moton of ltrons: gnord xt that mltly w assumd that thrmal flutuatons would hav ausd dartur from qulbrum n lasma dnsty and thrby aus an onst of lasma osllatons. PCD STTACS Unt 3 Eltron Gas n HF & RPA 55

nt fld n-btwn E ρξuˆ ε ω ρ 3 CGS unts 4πρ m 4 3 π r 4 s ω 3 π r 3 3 s 3 mrs PCD STTACS Unt 3 Eltron Gas n HF & RPA Eq. of moton d ξ m ρξ dt ε d ξ dt ρ mε ξ Frquny of lasma osllatons ω Thrmal moton dsrson whn dsrson s rsnt: ω 4π 3 4 π r m 3 s E m F ω 56

For fr ltron gas n jllum otntal HF EPT..96 Ryd rs r s E BP β + + f 4. 3.96 β β β 3 rs r rs 48 s ; : ur bound to th wav numbr osllatons gt damd by random thrmal moton of th ltrons ω ( 3 )( ) 3/ m r s : Bohm & Pns: md-ffts D.Pns (963) Elmntary xtatons n solds (Bnjamn, Y) zro ont nrgy of th lasma osllatons 3 ω whr ω Ryd 3 r Random Phas Aroxmaton s PCD STTACS Unt 3 Eltron Gas n HF & RPA 57

Fld Orators ψˆ ( q) ψˆ ( q) ψ * ψ q q Rfrn: STTACS / Unt 3 / ltur 9 / H ψˆ ( q) f ( q) ψˆ( q) dq + ψˆ ( q) ψˆ ( q ')v( q, q ') ψˆ( q ') ψˆ( q) dqdq ' quvalnt H f j + j v l j j l j j l Comlt xrssons for th orators, nlusv of sn labls PCD STTACS Unt 3 Eltron Gas n HF & RPA 58

Comlt xrssons for th orators, nlusv of sn labls aσ aσ aa σσ aσ aσ aσ aσ H ψˆ ˆ ˆ ˆ v(, ') ˆ ( ') ˆ α q f qψβ q dq+ ψα qψ β q q q ψδ q ψγ( q) dqdq' PCD STTACS Unt 3 Eltron Gas n HF & RPA * ˆ ˆ α α α β jβ j α β j ψ q ψ q ψ q ψ q β ( q) f( q) ψ * H ψ j q dq α α β jβ j +, δ δ,, ± ± ± boms, nlusv of th xlt sn labls: + α β j l α β δ γ v( * * ψ α q ψ jβ q q, q') ψl δ q ψγ dqdq ' γ l δ α jβ H α f jβ + α, jβ v lδ, γ α jβ α jβ γ lδ j j l α β α β δ γ Rams /.4 / Eq..7 nlusv of sn labls 59

q r, ζ sa + sn oordnat ψ ψ ρ ζ q q ( q) artl dnsty orator 3 3 drρ( q) drψ qψ q : numbr of ltrons n th rgon ψ δ ψ ζ ' ζ ( q') ( q q') ( q) dq' ψ ( r') χ ζ ' δ( r r') ψ( r) χ ζ d r' ζ ' δ 3 ζ, ζ ' χ ζ ' χ ζ ψ ( r') δ( r r') ψ( r) d r' δ 3 ζ, ζ ' χ ζ χ ζ ψ ( r) ψ( r) ψ q ψ q ρ( q) PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

ψ ψ ρ q q ( q) artl dnsty orator ρ( r ) δ r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 3 drρ( r) drδ r r 3 δ Rams, Many Eltron Thory Eq. 4.4; ag 7 ρ : dmnsonlss dr r r Fourr xanson: ρ( r) ρ V r 6

Postv harg dnsty ρ smard out unformly. ltrons r unt volum: ρ/v Fourr xanson of th ltron-ltron Coulomb ntraton [ ] [ ] harg L r j r rj ( ) V PCD STTACS Unt 3 Eltron Gas n HF & RPA Th abov sum s a trl sum, ovr th thr omonnts of. 6

r rj ( ) V multlyng both r onsdr frst ' j ( rj r) sds by ' r r ' r r r r r V j ( j ) ( j ) ( j) ' r r r r r V j j ' ( j ) j ' ( j) dr dr 3 ' r r 3 r r j j rj V PCD STTACS Unt 3 Eltron Gas n HF & RPA Th Wav Mhans of Eltrons n Mtals by Stanly Rams, ag 85 63

4π 4π ' PCD STTACS Unt 3 Eltron Gas n HF & RPA 3 ' ( r rj) d r j V Dra δ ( ' ) r δ ( ') ' 3 ' rj r 3 ' r r j drj drj rj V ' ( rj r) 3 3 r r j j rj V d r d r ' from sld 7, L9 : FT of C 4π r '.. ( ') ( j ) 4π xt whn [ ] [ ] harg L 64

r j Intgratng r rj ( ) V 3 3 j rj V 4π xt whn What s whn { } r r j j d r d r? 3 ' ( r rj) now, d r ( ') j δ V 3 r r j.. for ' : d r j δ δ V PCD STTACS Unt 3 Eltron Gas n HF & RPA Eq.3.; ag 3; F&W 65

3 3 j rj V 3 ( r r ) r r r j { } r r j j d r d r j V dr 3 d r δ r j δ Th Wav Mhans of Eltrons n Mtals by Stanly Rams, ag 85 3 d r r Potntal nrgy of th th ltron du to on ltron harg unformly smard throughout th box. PCD STTACS Unt 3 Eltron Gas n HF & RPA 66

Potntal nrgy of th th ltron du to th j th : r j r rj ( ) V Potntal nrgy of th th ltron du to all th ltrons: Pr V r r j rj j j j ( j) 4π xt whn 3 d r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 67

Potntal nrgy of th th ltron du to all th ltrons: Pr Potntal nrgy of th th ltron du to all th ltrons and th ostv baground: V r r j rj j j j 4π xt whn Ur j j ( j) Sld 3 (rvous lass) trm anls th ostv jllum 4π V 3 d r r r r ( j) PCD STTACS Unt 3 Eltron Gas n HF & RPA 68

Potntal nrgy of th th ltron du to all th ltrons and th ostv baground: For xrtd on th th ltron: PCD STTACS Unt 3 Eltron Gas n HF & RPA Ur 4π V j j mr mv U ( r ) war magnt fors gnord 4π r v U( r) m V j m j alraton of th th ltron j j ( ( r )) rj 4π j V m ( ( r r )) r r ( j) 69

4π r v U( r) m V m j j ( ( r )) rj Du to th symmtral dstrbuton of th vtors th summand on th 4π RHS for ( j ) s ( ) m Hn no nd to xlud j trm.. 4π r v U( r) m V m PCD STTACS Unt 3 Eltron Gas n HF & RPA j ( ( r )) rj 7

4π r v U( r) m Vm alraton of th th ltron ltron harg dnsty ρ( r ) δ r r j r r ( j ) 3 3 drρ( r) dr r r δ ( ) Fourr xanson of harg dnsty ρ( r) ρ V r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA : dmnsonlss 7

ρ Fourr xanson of harg dnsty ρ( r) ρ V 3 r drρ( r ) ρ ρ r r 3 r drδ r r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA ρ( r ) δ r r 3 r dr δ ( r r ) total numbr of ltrons omonnts: dnsty flutuatons ovr th avrag ρ : dmnsonlss 7

r 4π r v U( r) m Vm alraton of th th ltron r 4π v mv j 4π ρ mv j r PCD STTACS Unt 3 Eltron Gas n HF & RPA j ρ r r ( j ) r d r r v ρ ρ dt ρ r ρ ( ) r d dt r ( r) 73

ρ ( ) r r d d ρ ρ r r dt dt r ρ r r + r r ρ r ( ) r r PCD STTACS Unt 3 Eltron Gas n HF & RPA 74

ρ r ( ) r PCD STTACS Unt 3 Eltron Gas n HF & RPA r r ρ r r from Sld 7: ρ 4π v ρ mv r r r 4 π ' ' r r r ρ ' mv ' ' ' ρ r 4π ' ( ' ) r r ρ ' m V ' ' ' 75 r

ρ r 4 π ' ( ' ) r r ρ ' V m ' ' ' ( ) r 4π ρ V m π ρ r 4π ( r ) r ρ 4 ' ρ ' V m ' ' ' V 4 π ' ρ ' V m ' ' ' m ρ ( ' ) r ( ' ) r ' PCD STTACS Unt 3 Eltron Gas n HF & RPA ' trm trms 76

ρ ρ r 4π r V m Eq. of moton for dnsty flutuatons 4 π ' ρ ' V m ' ' ' 4 π ' ρ ' ' ' ' ρ ( ' ) r r 4π r ρ V m V m ( ' ) r ow, rmmbr that r ρ ρ Qustons: d@hyss.tm.a. PCD STTACS Unt 3 Eltron Gas n HF & RPA r 4π r V m V m 4 π ' ρ ' ' ' ' ' ρ ( ρ ) 77

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr Eltron Gas n th Random Phas Aroxmatons QUATUM THEORETICAL TREATMET Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 78

Fourr xanson of harg dnsty ρ( r) ρ V ρ 3 r drρ( r ) r ρ : dmnsonlss ρ( r ) δ r r ρ 3 r drδ r r ρ r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA total numbr of ltrons omonnts: dnsty flutuatons ovr th avrag 79

ρ ρ r 4π r V m Eq. of moton for dnsty flutuatons ( r ) 4 π ' ρ ' V m ' ' ' 4π ρ ( ' ) r r ρ V m ρ 4 π ' ( ' ) r ρ ' ' ' ρ ' ' V m Smlar to r ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA r 4π r V m 4 π ' ρ ' ' V m ' ' ' ρ ( ρ ) 8

ρ r 4π r V V m π Eq. of moton for dnsty flutuatons y PCD STTACS Unt 3 Eltron Gas n HF & RPA 4 ' ρ ρ ' ' mv ' ' ' r ρ ρ ' ρ Quadrat trms n dnsty flutuatons ( ' ) r θ x Phas fators of modulus unty Sum of vtors, n random drtons, n th omlx lan zx+y Random Phas Aroxmaton: glt quadrat trms n dnsty flutuatons omard to th lnar trms. OTE: LIEARIZATIO Bohm & Pns (95,53) 8

ρ ρ r 4π r V m π Eq. of moton for dnsty flutuatons RPA 4 ' ρ ρ ' ' m ' ' ' ( r ) r 4π V m ρ ρ Random Phas Aroxmaton LIEARIZATIO from Sld o.5; L : ρ RPA ρ ( r ) V r? ρ 4πρ m r ρ 8

ρ RPA ( r ) r 4πρ m ρ Ths trm dos not hav any alraton trm. It has only vlots: du to thrmal moton; t s not du tm-ndndnt to - ntraton st : trm Ο gnorabl for small valus of not gnorabl f would gt larg byond som lmt. must hav an ur lmt RPA + 4πρ ρ ρ ω ρ m PCD STTACS Unt 3 Eltron Gas n HF & RPA 83

ρ RPA ( r ) r 4πρ m ρ RPA + 4πρ ρ ρ ω ρ m ρ ω ρ + Th Fourr omonnts of th ltron dnsty osllat at th lasma frquny. PCD STTACS Unt 3 Eltron Gas n HF & RPA 84

ρ RPA ( r ) r 4πρ m ρ ρ ω ρ + RPA + Th Fourr omonnts of th ltron dnsty osllat at th lasma frquny. Colltv osllatons PLASMOS of th ltron gas Quantzd olltv xtatons lmntary xtatons W shall now xamn th ur lmt on PCD STTACS Unt 3 Eltron Gas n HF & RPA 85

ρ V r r 4 πρ m ρ ρ ω ρ r r V ρ r ρ r r ω r ρ + r ω r PCD STTACS Unt 3 Eltron Gas n HF & RPA 86

ρ + r ω glt of trm rqurs: r ( r ) ω st avrag r ρ v ω... for all, nludng for ltrons at th Frm surfa v(max) v v Frm f v f ω max ω v must hav an ur lmt f dnotd by Ur bound to wav numbr of lasma osllatons Lowr bound to wav lngth PCD STTACS Unt 3 Eltron Gas n HF & RPA 87

Quantum tratmnt H ψ Eψ Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal H Hl + Hb + Hl b H 4π + m V j j r r ( j) H + m V j j PCD STTACS Unt 3 Eltron Gas n HF & RPA π r r ( j) 88

H + m V j j Mthod: transform th abov Hamltonan suh that lasma osllatons aar xltly as solutons of a st of Hamltonans for sml harmon osllators for varous valus of ω wth max v PCD STTACS Unt 3 Eltron Gas n HF & RPA π f r r H ( j) Quantum tratmnt ψ D. Bohm and D. Pns Phys. Rv. 8 65 (95) D. Pns and D. Bohm Phys. Rv. 85 338 (95) D. Bohm and D. Pns Phys. Rv. 9 69 (953) D. Pns Rvws of Modrn Physs 8 84 (956) S Rams 957 R. Prog. Phys. Th thory of lasma osllatons n mtals Eψ 89

H π + m V j j PCD STTACS Unt 3 Eltron Gas n HF & RPA r r ( j) Mthod: transform th abov Hamltonan suh that lasma osllatons aar xltly as a st of Hamltonans for sml harmon osllators for varous valus, ω wth max h' v SHO + q + mω q f m m ω ; mω m h' hsho + ω q m H P P + ω Q Q Hrmtan q, : Hrmtan Q, P : Hrmtan? anonally onjugat orators 9

H π + m V j j r r ( j) π H r + m V j j PCD STTACS Unt 3 Eltron Gas n HF & RPA ρ * r ρ j + rj r Inlud th j trm, and thn subtrat ts fft! H? j trms would gv : +++.+ π + ( * ρ ρ ) m V j 9

H π + ( * ρ ρ ) m V Transformaton Mthod: start wth a modl Hamltonan 4π H P P M P M ρ wth V Q, P : OT Hrmtan H P P + ω Q Q P P ; Q Q ρ r * + r ρ ρ ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA H Hrmtan 9

4π H P P M P M ; ρ V H P P M P ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA H P P M P ρ * H P P M P ρ H P P M P ρ H ρ * + r ρ ρ ρ P P ; P P r MP H sa symmtry ρ Hrmtan MP Q, P : OT Hrmtan ρ 93

4π H P P M P M ; ρ V max ω v f ω max v f Th ur lmt on lmts th total dgrs of frdom so that th total numbr of dgrs rmans fxd at 3 H ψ Eψ Th wavfunton must b a funton only of th ltron oordnats. PCD STTACS Unt 3 Eltron Gas n HF & RPA 94

ω max v H PCD STTACS Unt 3 Eltron Gas n HF & RPA f Th ur lmt on lmts th total dgrs of frdom so that th total numbr of dgrs rmans fxd at 3 ψ Eψ Th wavfunton must b a funton only of th ltron oordnats. ( ; f ) ψ funton Q ψ ψ Q funton q : ltron oordnats for < [, ] P Q Subsdary ondton Rams: Many Eltron Thory; Eq.4., ag 76 W must not ntrodu any addtonal dgrs of frdom Pψ for < Q P δ ', ' anonal onjugaton 95

H ψ ψ Q Eψ for < ;.. Pψ Hψ PCD STTACS Unt 3 Eltron Gas n HF & RPA 4π H P P M P M ; ρ V H + H ψ Eψ ow, w fft a UITARY TRASFORMATIO of H + H th Hamltonan S M Q ρ ; S * ; ; M Q ρ U M Q ρ S S U S UITARITY S U U Rams: Many Eltron Thory; ag 76,77 96

U S S M Q ρ ; Transformaton of all orators and th wavfunton undr th untary transformaton S * ; ; M Q ρ M Q ρ S Ω Ω Ω U nw U U U U S S S U U ψ nw U ψ ψ r U r U r nw Q U Q U Q nw U ρ ρ U ρ nw PCD STTACS Unt 3 Eltron Gas n HF & RPA sn ρ r r, Q, ρ : nvarant HOWEVER :, P : hang undr th transformaton 97

P Q P U P U nw q F r [, ] δ [, ] ', ' [, ] δ [, ] P Q P F Q ', ' [ P, U] U Q U P U UP nw + Q U P U? U S Fr q FQ Q U PU + UP Q S MQρ ; [ ] Q P, P nw + U P U PCD STTACS Unt 3 Eltron Gas n HF & RPA 98

P P + U [ P, U] nw P P nw + U U Q S Q S S Q S U Q PCD STTACS Unt 3 Eltron Gas n HF & RPA U Q S [ P, U] U wth S M Qρ U Q U M ρ ; U Q P P nw + U U Mρ P + U UM ρ P P + M ρ nw Rams: Many Eltron Thory; Eq.4.35, ag 77 99

Transformaton of th x omonnt of th momntum orator for th th ltron: U U x nw x q F r [, ] δ [, ] ', ' Fr q U U U U q [, ] U ( ) U U U x nw x x qx U q x PCD STTACS Unt 3 Eltron Gas n HF & RPA

U ( ) U U U x nw x x qx U q x [, ] [ U], x x nw x U U U U U q + U [ U], x nw x x PCD STTACS Unt 3 Eltron Gas n HF & RPA

+ U [ U], x nw x x ( ) U x nw x q x PCD STTACS Unt 3 Eltron Gas n HF & RPA U S ; ow : U wth S M Q ρ ; sn, U x U q [ ] U S ρ q q q U U M Q x x x ρ x nw x U U M Q q x ; ρ ( x ) nw x + M Q ; q x x

ρ x nw x M Q q x ρ + ; rj qx qx j q x r ρ r + { r } M Q x nw x x ; r ( x ) x nw x x ; PCD STTACS Unt 3 Eltron Gas n HF & RPA M Q r Smlar rlatons for y and z omonnts 3

M Q nw ; r Rams: Many Eltron Thory; Eq.4.38, ag 78 Smlar rlatons for y and z omonnts r, Q, ρ : nvarant undr th transformaton HOWEVER,, P : hang undr th transformaton PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

H ψ ( ; f ) ψ funton Q < ψ Eψ Th wavfunton must b a funton only of th ltron oordnats. funton q : ltron oordnats W must not ntrodu any addtonal dgrs of frdom ψ Q for < [, ] ' Subsdary ondton PCD STTACS Unt 3 Eltron Gas n HF & RPA Pψ for < P Q P δ, ' Q anonal onjugaton 5

ψ Q for < P Q Pψ for < P ψ < for ( )( ψ ) nw nw U PU U for < P P + M ρ from sld 95: nw ( ) for + < P M ρ ψ nw Qustons: d@hyss.tm.a. Subsdary ondton PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 3 Eltron Gas n th Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

H π + ( * ρ ρ ) m V H P P M P ρ wth M 4π V Hamltonan for a bul ltron gas n a unform ostv baground jllum otntal Ω Ω Ω nw U U U U nw ; PCD STTACS Unt 3 Eltron Gas n HF & RPA U M Q S S ; r, Q, ρ : nvarant undr th transformaton W now as: H nw r M Qρ H U H + H U P P + M ρ nw? 8

Transformaton of all orators and th wavfunton undr th untary transformaton Ω Ω Ω nw U U U U S ψ nw U ψ ψ Subsdary ondtons ψ Q S U ; for < Pψ for < S M Qρ PCD STTACS Unt 3 Eltron Gas n HF & RPA P ψ < for nw nw 9

H + M m H P P M P ρ H * ( ρ ρ ) + H H + H ψ Eψ * + M P P M P m + ρ ρ ρ H Hl + Hb + Hl b Eltrons + Postv Baground Auxlry Hamltonan π M V Our quston: PCD STTACS Unt 3 Eltron Gas n HF & RPA H H U H + H U nw?

H + H + M + P P M P (T ) nw * m ρ ( ρ ρ ) T T Our quston: + ; ρ x nw x M Q q x Hnw U H + H U? r j MQ ( j + ) m m j m nw j M M Q Q m j ( + ) r Rams: Many Eltron Thory; Eq.4.48, ag 79 T 3 (T ) nw ( * M ρ ρ ) PCD STTACS Unt 3 Eltron Gas n HF & RPA ; sn : nvarant ρ

H + H + M + P P M P * m ρ ( ρ ρ ) T (T ) ( * M ) nw ρ ρ ; sn : nvarant ρ sarat th summaton n two arts: for () > and () < ; ω max v f (T ) nw H sr.. * M + ; ( * ρ ρ M ρ ρ ) ; > < Short rang long rang PCD STTACS Unt 3 Eltron Gas n HF & RPA

H + H + M + P P M P * m ρ ( ρ ρ ) U P P M P ρ U (T 3 ) nw P P + M ρ nw ( ) ( ρ.. ) P P + M P P + M nw nw T 3 ( P ) P ( P + M ρ )( P + M ρ ) nw ( + ) P P P P + M P ρ ρ P + M ρ ρ nw ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

( + ) P P P P + M P ρ ρ P + M ρ ρ nw * + r & P P ρ ρ ρ ( ) ( * M + ) P ρ ρ P M P ρ M ρ P + < < < shral symmtry of vtors ( ) ( * M + ) P ρ ρ P M P ρ M ρ P + < < < < Hn: + ( ) ( ρ ρ ) M P M P < < ( ρ + ρ M P ρ ) M P P < PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

U P P M P ρ U (T 3 ) nw P P U P P U nw ( + ) P P P P + M P ρ ρ P + M ρ ρ nw ( P ) P P P + M ( P ρ+ ρ P) nw < < < ( ρ + ρ ρ ) M P P M P < < + < M ρ ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

(T 3 ) nw U P P M P ρ U nw ( P ) P P P + M ( P ρ+ ρ P) < < < ( ρ ) ( ρ ) MP U MP U? nw ( ρ ρ ρ ) w hav sn that: M P + P M P + < < P P P P M P nw < < < + + < < ρ M M ρ ρ ρ ρ * 6 PCD STTACS Unt 3 Eltron Gas n HF & RPA

(T 3 ) nw U P P M P ρ U ( ρ ) ( ρ ) MP U MP U? nw MPρ MPρ + M ρ ρ nw * + r & P P ρ ρ ρ ( ) ( ρ.. ) P P + M ρ nw P P + M P P + M nw nw ( ) ( MPρ M P ) ρ nw nw M P + M ρ ρ ρ 7 PCD STTACS Unt 3 Eltron Gas n HF & RPA

U P P M P ρ U (T 3 ) nw MPρ MPρ + M ρ ρ nw * + r & P P ρ ρ ρ MPρ MPρ + M ρ ρ * nw MP ρ MP ρ M ρ * ρ nw Earlr, w showd that: P P P P M P M ρ ρ + ρ + (T 3 ) nw has * nw < < < < 8 PCD STTACS Unt 3 Eltron Gas n HF & RPA

H + H * + M P P M P m + ρ ρ ρ T T T 3 W had asd: H H U H + H U nw? PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

H nw (T ) nw H ( ) j + (T ) nw m m j m j MQ r M M Q Q j ( + ) r ( * ) ( * + M ρ M ) ρ + ρ ρ ; ; > < Short rang long rang j (T 3 ) nw + P P + M P ρ + M * < < < ρ ρ (T 3 ) nw has MP ρ M * PCD STTACS Unt 3 Eltron Gas n HF & RPA ρ ρ

H nw H sr.. H ( ) j + m m j m j MQ r M M Q Q j ( + ) r ( * ) ( * + M ρ M ) ρ + ρ ρ ; ; > < Short rang long rang + P P + M P ρ + M * < < < ρ ρ j > * Hsr.. M ; ( ρ ρ ) MP ρ M ρ ρ * PCD STTACS Unt 3 Eltron Gas n HF & RPA

H nw H ( ) j + Th thr trms shown by th arrows togthr anl ah othr. m m j m j MQ ; r M M Q Q ( ρ ρ ) * + H sr.. + M > < + P P + M ρ ρ * < < j ( + ) r j PCD STTACS Unt 3 Eltron Gas n HF & RPA (T 3 ) nw has * M ρ ρ

H nw H ( ) j + m m j m j + P P + < MQ H sr.. r M M Q Q ; M j ( + ) r j n th nxt st, w us: < < P P P P M 4π 4π V V.. M PCD STTACS Unt 3 Eltron Gas n HF & RPA 3

H nw m m H ( ) j + j m j MQ π sr.. ; V < r M M Q Q + H + P P j ( + ) r j PCD STTACS Unt 3 Eltron Gas n HF & RPA m m j j M M Q Q M M Q Q ( + ) r ( + ) r j j 4

m m m m j j j j M M Q Q M M Q Q shral symmtry of ( + ) r ( + ) r M M Q Q ( + ) M M Q Q ( + ) j j vtors r r j j PCD STTACS Unt 3 Eltron Gas n HF & RPA 5

m m j j M M Q Q r ( + ) M M Q Q r ( + ) j M j 4π V M m + m j M Q Q M M Q Q r ( + ) j PCD STTACS Unt 3 Eltron Gas n HF & RPA 6

m m m + m j j j M Q Q M M Q Q r ( + ) M M Q Q r ( + ) M M Q Q r ( + ) j M j j 4π M V shral symmtry of vtors PCD STTACS Unt 3 Eltron Gas n HF & RPA 7

H H nw ( j + ) HH nw j m m j m j MQ sr.. ; V < r M M Q Q π + H + P P sr.. ; V ( + ) PCD STTACS Unt 3 Eltron Gas n HF & RPA j ( + ) r M Q ( j + ) + M Q Q m m m rj + M M Q Q m j Qustons? Wrt to: d@hyss.tm.a.n π + H + < P P r j j 8

Slt/Sal Tos from Thory of Atom Collsons and Strosoy P. C. Dshmuh Dartmnt of Physs Indan Insttut of Thnology Madras Chnna 636 Unt 3 Ltur umbr 4 Eltron Gas n th Random Phas Aroxmatons Plasma Osllatons n Fr Eltron Gas Rfrns: Th thory of lasma osllatons n mtals - by S Rams 957 R. Prog. Phys. Also: Chatr 4 n Many Eltron Thory by Stanly Rams PCD STTACS Unt 3 Eltron Gas n HF & RPA 9

H H nw Hnt M Q ( j + ) + M Q Q m m m j + m ( H ) nt MQ j + m j PCD STTACS Unt 3 Eltron Gas n HF & RPA j sr.. ; V rj π + H + M M Q Q < r j r ( + ) P P K K M M Q Q m j j r j ( + ) 3

H H H M Q Q nw + nt + m m + K + H π + P P sr.. ; V < ( H ) nt MQ j + m K M M Q Q m j j r j M M r j ( + ) PCD STTACS Unt 3 Eltron Gas n HF & RPA 4π V 4π V 3

M M H H H M Q Q nw + nt + m m π sr.. ; V < + K + H + P P 4π V 4π V 4πρ ω ; ρ m V M ω m P M M M 4 mω ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA π V P mω ρ P V V 3

H Hnw + Hnt + Q Q m P + K + H π + P P sr.. ; V < ω H π H + P P + Q Q nw ( ω ) m ; V + H + H + K sr.. nt PCD STTACS Unt 3 Eltron Gas n HF & RPA 33

H π H + P P + Q Q nw ( ω ) m ; V + H + H + K sr.. nt EXACT Rams: Many Eltron Thory Eq.4.58, ag 58 > * H sr.. M ; ( ρ ρ ) ( H ) nt MQ j + m j r j K M M Q Q m j Random Phas Aroxmaton LIEARIZATIO j ( + r r ) PCD STTACS Unt 3 Eltron Gas n HF & RPA j 34

H Hnw ( P P + ω Q Q) + + m ; Quas artls ntratng va H s.r. π + H + H nt s.. r ; V > H M * sr.. ; short rang ntraton ( ρ ρ ) M 4π V H > π V sr.. ; ( * ρ ρ ) PCD STTACS Unt 3 Eltron Gas n HF & RPA 35

Potntal nrgy of th th ltron du to all th ltrons and th ostv baground: trms anl th ostv jllum Ur 4π V j j r r ( j) Total otntal nrgy du to Coulomb ntratons of all th ltrons and th ostv baground: π Ur V j j Sum ovr all th ltrons,,,.. r r ( j) PCD STTACS Unt 3 Eltron Gas n HF & RPA 36

Total otntal π nrgy du to r rj Ur ( ) Coulomb V j j ntratons of all th ltrons and th ostv add and subtrat j trms baground: π ( r rj) π Ur ( ) V V ρ PCD STTACS Unt 3 Eltron Gas n HF & RPA j V slf r ; π nrgy π π * Ur ( ) ρ V ρ V π ( * Ur ρ ρ ) V 37

Total otntal nrgy du to Coulomb ntratons of all th ltrons and th ostv baground: FT of FT μr 4π r μ + of SC C 4π r π ( * Ur ρ ρ ) H V > π V sr.. ; > μ + κ κ μ ( * ρ ρ ) Srnd Coulomb PCD STTACS Unt 3 Eltron Gas n HF & RPA H sr.. total otntal nrgy du to SHORT RAGE ntratons 38

H nt MQ + m j ( ) j r K M M Q Q m j { } r ( + ) j j Bohm and Pns: FURTHER transformaton of th Hamltonan HH nw PCD STTACS Unt 3 Eltron Gas n HF & RPA an b arrd out to aount for H nt. 39

( H ) nt MQ j + m j ; r j H Hnw + P P + Q Q m ( ω ) π V + + + H sr.. H nt K Ths two trms gt modfd as a rsult of ths furthr transformaton Bohm and Pns: FURTHER transformaton of th Hamltonan an b arrd out to aount for H nt. PCD STTACS Unt 3 Eltron Gas n HF & RPA Rams: Many Eltron Thory; ag 8 4

H Hnw + P P + Q Q m F ( s Sld 56, L) ( ω ) π V + + + H sr.. H nt K Ths two trms gt rlad, on ; aount of furthr β transformaton, + + by m 6 wth β ω ω + E ω ω m and F wa dsrson. max ( P P ω Q Q) ω v f PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

H Hnw + P P + Q Q m F ( s Sld 56, L) ( ω ) π V + + + H sr.. H nt K Ths two trms gt rlad, on ; aount of furthr β transformaton, + + by m 6 wth β ω ω + E ω ω m and F wa dsrson. max ( P P ω Q Q) ω v f PCD STTACS Unt 3 Eltron Gas n HF & RPA 4

H Hnw P P + Q Q + ( ω ) π + H + H + K m ; V sr.. nt π H H P P Q Q H nw + ( + ω ) + s.. r m ; V Subsdry ondton: ( ) for + < P M ρ ψ nw What nd of a systm dos ths Hamltonan dsrb? PCD STTACS Unt 3 Eltron Gas n HF & RPA 43

H Hnw + P P + Q Q m R-arrang th trms: ( ω ) π + V ; H s.. r H Hnw P P + Q Q ; ( ω ) + π + Hsr.. m ; V PCD STTACS Unt 3 Eltron Gas n HF & RPA 44

Rams: Many Eltron Thory; Eq.4.63, ag 8 π H H P P Q Q H nw ( + ω ) + + s.. r m ; V ; Subsdry ondton: for P ψ < nw nw What nd of a systm dos ths Hamltonan dsrb? SHO Hamltonan H + mω x m Plasma osllatons Quas artls ntratng va H s.r. A onstant trm that s art of th ltron slf-nrgy whh not aountd for n th lasma osllatons. Long rang ntraton s aountd for by PLASMOS, and th short rang art that rmans s a srnd Coulomb ntraton. PCD STTACS Unt 3 Eltron Gas n HF & RPA 45

Random Phas Aroxmaton LIEARIZATIO j K M M Q Q m j ( + r r ) Bohm and Pns Transformaton of th Hamltonan Othr aths to RPA Equaton of Moton mthod Row (968) Grns funton mthod Thoulss (96) Dagrammat rturbaton thory.. Lnarzd Tm Dndnt Hartr/Dra Fo Alx Dalgaarno.. Waltr Johnson RRPA PCD STTACS Unt 3 Eltron Gas n HF & RPA 46 j Qustons: d@hyss.tm.a.