Structure constants of twist-2 light-ray operators in the triple Regge limit

Σχετικά έγγραφα
NLO BFKL and anomalous dimensions of light-ray operators

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Matrices and Determinants

Srednicki Chapter 55

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math221: HW# 1 solutions

Solutions to Exercise Sheet 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Example Sheet 3 Solutions

Section 7.6 Double and Half Angle Formulas

1 String with massive end-points

EE512: Error Control Coding

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Problem Set 3: Solutions

( y) Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

D Alembert s Solution to the Wave Equation

Areas and Lengths in Polar Coordinates

Concrete Mathematics Exercises from 30 September 2016

Parametrized Surfaces

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

From the finite to the transfinite: Λµ-terms and streams

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Finite difference method for 2-D heat equation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Higher Derivative Gravity Theories

Variational Wavefunction for the Helium Atom

derivation of the Laplacian from rectangular to spherical coordinates

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Exercises to Statistics of Material Fatigue No. 5

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Areas and Lengths in Polar Coordinates

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

C.S. 430 Assignment 6, Sample Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Duality Symmetry in High Energy Scattering

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Section 9.2 Polar Equations and Graphs

4.6 Autoregressive Moving Average Model ARMA(1,1)

ST5224: Advanced Statistical Theory II

The Simply Typed Lambda Calculus

PARTIAL NOTES for 6.1 Trigonometric Identities

Statistical Inference I Locally most powerful tests

6.3 Forecasting ARMA processes

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Space-Time Symmetries

Second Order Partial Differential Equations

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Every set of first-order formulas is equivalent to an independent set

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Congruence Classes of Invertible Matrices of Order 3 over F 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

w o = R 1 p. (1) R = p =. = 1

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

What happens when two or more waves overlap in a certain region of space at the same time?

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Andreas Peters Regensburg Universtity

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

The Pohozaev identity for the fractional Laplacian

Answer sheet: Third Midterm for Math 2339

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Second Order RLC Filters

CRASH COURSE IN PRECALCULUS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Uniform Convergence of Fourier Series Michael Taylor

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Durbin-Levinson recursive method

AdS black disk model for small-x DIS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Forced Pendulum Numerical approach

Local Approximation with Kernels

( ) 2 and compare to M.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

F19MC2 Solutions 9 Complex Analysis

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Lifting Entry (continued)

SPECIAL FUNCTIONS and POLYNOMIALS

Transcript:

Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

Outline 1 Setting the stage: correlator of 3 light-ray operators Three-point correlator of local operators: Light-ray operators as analytic continuation of local operators Three-point correlator of LR operators: what to expect CF of two light-ray operators in the BFKL limit Correlation function of two Wilson frames in the BFKL approximation. CF of two light-ray operators. 3 3-point CF in the BK limit 3-point CF of Wilson frames from the BK equation Structure constants at ω 1 = ω + ω 3 4 3-point CF in the triple Regge limit BFKL kernel in a triple Regge limit Structure constants at the triple BFKL point 5 Conclusions and outlook I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Supermultiplet of twist- operators SU 4 singlet operators. (Korchemsky et al) S l 1n(z) = F l n(z) + l 1 4 Λ l n(z) + S l n(z) = F l n(z) 1 4 Λ l n(z) S l 3n(z) = F l n(z) l + 1 Λ l n(z) + l(l 1) Φ l 4 n(z) l(l + 1) Φ l 7 n(z) (l + 1)(l + ) Φ l 4 n(z) F l n(z) i l tr F µn l n C 5 l ( n + n n ) F µ n + O(g ) Λ l n(z) i l 1 l 1 tr λ n C 3 ( n + n ) l 1 λ(z) + O(g ) n Φ l n(z) i l tr φ I l 1 n C 3 l ( n + n n ) φ I (z) + O(g ) C λ l (x) - Gegenbauer polynomials, n = 0, and F µ n F µν n ν etc. All operators have the same anomalous dimension γ S1 l (α s ) γ l (α s ) = α s π N c[ψ(l 1) + C] + O(αs ), γ S l = γ S1 l+1, γs3 l = γ S1 l+ I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

3-point CF of local operators Rychkov et al: CF of 3 operators with spin (n 1 = n = n 3 = 0) < O l 1 n1 (x)o l n (y)o l 3 n3 (z) >= The sum runs over m 1,m 13,m 3 0 λ m1,m 3,m 13 1 3 l 1 l l 3 m 3 m 13 m 1 m 1 = l 1 m 1 m 13 0, m = l m 1 m 3 0, m 3 = l 3 m 13 m 3 0 where i is dimension and l i is Lorentz spin. 1 3 l 1 l l 3 = (V 1,3) l1 m1 m13 (V,31 ) l m1 m3 (V 3,1 ) l3 m13 m3 (H 1 ) m1 (H 13 ) m13 (H 3 ) m3 x y m 3 m 13 m 1+ 3 x z 1+ 3 y z + 3 1 1 V and H - some tensor structures I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 4

3s If we define forward operators Φ l n(x ) = du φ a AB l nφ ABa (un + x ), Λ l n(x ) = du i λ a A l 1 n σ n λ a A (un + x ) F l (x ) = du Fni a l n Fn ai (un + x ), the renorm-invariant operators are S l 1n = Fl n + 1 4 Λl n 1 Φl n, S l n = Fl n S l 3n = Fl n l + (l 1) Λl n (l + 1)(l + ) Φ l n l(l 1) 1 (l + 1) 4(l 1) Λl n + 6(l 1) Φl n and Rychkov s structures reduce to one (x n 1 = x n = x n 3 = 0) S l 1 n1 (x 1 )S l n (x )S k 3 n 3 (x 3 ) = = C(g, l i ) (n 1 n ) l1+l l3 1 (n 1 n 3 ) l 1 +l 3 l 1 (n n 3 ) l +l 3 l 1 1 x 1 1+ 3 1 x 13 1+ 3 1 x 3 + 3 1 1 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 5

3s If we define forward operators Φ l n(x ) = du φ a AB l nφ ABa (un + x ), Λ l n(x ) = du i λ a A l 1 n σ n λ a A (un + x ) F l (x ) = du Fni a l n Fn ai (un + x ), the renorm-invariant operators are S l 1n = Fl n + 1 4 Λl n 1 Φl n, S l n = Fl n S l 3n = Fl n l + (l 1) Λl n (l + 1)(l + ) Φ l n l(l 1) 1 (l + 1) 4(l 1) Λl n + 6(l 1) Φl n and Rychkov s structures reduce to one (x n 1 = x n = x n 3 = 0) S l 1 n1 (x 1 )S l n (x )S k 3 n 3 (x 3 ) = = C(g, l i ) (n 1 n ) l1+l l3 1 (n 1 n 3 ) l 1 +l 3 l 1 (n n 3 ) l +l 3 l 1 1 x 1 1+ 3 1 x 13 1+ 3 1 x 3 + 3 1 1 Our aim is to find the structure constants C(g, l i ) in the BFKL limit l i 1 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 5

Light-ray operators Gluon light-ray (LR) operator of twist F a i(x + + x )[x +, x + ] ab F b i (x + + x ) Forward matrix element - gluon parton density 1 z µ z ν p Fµξ(z)[z, a 0] ab Fν bξ (0) p µ z =0 = (pz) dx B x B D g (x B, µ) cos(pz)x B Evolution equation (in gluodynamics) µ d dµ Fa i(x + + x )[x +, x + ] ab F b i (x + + x ) = x + x + dz + z + x + 0 dz + K(x +, x + ; z +, z + ; α s )F a i(z + + x )[z +, z + ] ab F b i (z + + x ) Forward LR operator F(L +, x ) = dx + F i(l a + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 6

Light-ray operators Conformal LR operator (j = 3 + iν) F µ j (x ) = 0 dl + L 1 j + F µ (L +, x ) Evolution equation for forward conformal light-ray operators µ d dµ F j(z ) = 1 γ j (α s ) is an analytical continuation of γ n (α s ) 0 du K gg (u, α s )u j F j (z ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 7

Supermultiplet of LR operators Gluino and scalar LR operators Λ(L +, x ) = i dx + [ λ a (L + + x + + x )[x + + x +, x + ] ab σ λ b (x + + x ) + c.c] Φ(L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Λ j (x ) = 0 SU 4 singlet LR operators. dl + L j+1 + Λ(L +, x ), Φ j (x ) = 0 dl + L j+1 + Φ(L +, x ) S 1j (x ) = F j (x ) + j 1 8 Λ j(j 1) j(x ) Φ j (x ) 8 S j (x ) = F j (x ) 1 8 Λ j(j + 1) j(x ) + Φ j (x ) 4 S 3j (x ) = F j (x ) j + 4 Λ (j + 1)(j + ) j(x ) Φ j (x ) 8 All operators have the same anomalous dimension γ S 1 j (α s ) γ j (α s ) = α s π N c[ψ(j 1) + C] + O(αs ), γ S j = γ S 1 j+1, γs 3 j = γ S 1 j+ I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 8

Correlators of LR operators Since LR operators are analytic continuation of local operators, we expect (j 1 = 3 + iν 1, j = 3 + iν ) S j 1 n1 (x 1 )S j n (x ) = δ(ν 1 ν )f (α s, j) (n 1 n ) ω 1(µ ) γ(j 1,α s) x 1 (αs,j 1) for -point CF and similarly (j i 1 + ω i ) S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 (n 1 n 3 ) x 1 1+ 3 F(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) ω 1 +ω 3 ω ω +ω 3 ω 1 (n n 3 ) x 13 1+ 3 x 3 µ γ(j 1) γ(j ) γ(j 3 ) + 3 1 for the 3-point CF ( = j + γ(j) = 1 + ω + γ ω - dimension). I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 9

Correlators of LR operators Since LR operators are analytic continuation of local operators, we expect (j 1 = 3 + iν 1, j = 3 + iν ) S j 1 n1 (x 1 )S j n (x ) = δ(ν 1 ν )f (α s, j) (n 1 n ) ω 1(µ ) γ(j 1,α s) x 1 (αs,j 1) for -point CF and similarly (j i 1 + ω i ) S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 (n 1 n 3 ) x 1 1+ 3 F(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) ω 1 +ω 3 ω ω +ω 3 ω 1 (n n 3 ) x 13 1+ 3 x 3 µ γ(j 1) γ(j ) γ(j 3 ) + 3 1 for the 3-point CF ( = j + γ(j) = 1 + ω + γ ω - dimension). The goal is to calculate f (α s, j) and F(α s, j 1, j, j 3 ) at j i = 1 + ω i in the BFKL limit g 0, ω 0, and g ω = fixed I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 9

Warm-up exercise: LO Since LR operators are analytic continuation of local operators, we expect S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 (n 1 n 3 ) x 1 1+ 3 = j + γ(j) - dimension Warm-up exercise: LO F(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) ω 1 +ω 3 ω ω +ω 3 ω 1 (n n 3 ) x 13 1+ 3 x 3 + 3 1 F L 1 F x 1 n 1 F x n 3 F + perm. L n L3 x 3 F F I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

Warm-up exercise: LO S 1+ω 1 n 1 (x 1 )S 1+ω n (x )S 1+ω (N 3 c 1)F(α s, ω 1, ω, ω 3 ) n 3 (z 3 ) = 4π 6 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) 1 (n 1 n ) ω 1 +ω ω 3 (n 1 n 3 ) ω 1 +ω 3 ω (n n 3 ) ω +ω 3 ω 1 x 1 x 13 x 3 x 1 x 13 x 3 F(α s, ω 1, ω, ω 3 ) = Γ ( 1 + ω 1 + ω ω 3 ) Γ ( 1 + ω + ω 3 ω 1 ) ( ω 1 + ω 3 ω ) Γ 1 + + ) Γ(1 ω i )Γ ( ω 1 + ω ω 3 + ) Γ ( ω + ω 3 ω 1 + ) Γ ( ω 1 + ω 3 ω i { (e iπω 3 1 )[ e iπ(ω 1 ω ) + e iπ(ω ω 1 ) e iπω ] 3 + ( e iπω 1 1 )[ e iπ(ω ω 3 ) + e iπ(ω 3 ω ) e iπω ] 1 + ( e iπω 1 )[ e iπ(ω 3 ω 1 ) + e iπ(ω 1 ω 3 ) e iπω ] } +e iπ(ω 1+ω ω 3 ) + e iπ(ω +ω 3 ω 1 ) + e iπ(ω 1+ω 3 ω ) e iπ(ω 1+ω +ω 3 ) At small ω s F(ω 1, ω, ω 3 ) π (ω 1 + ω + ω 3) π (ω 1 + ω + ω 3 ω 1 ω ω 1 ω 3 ω ω 3 ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

In higher orders one should expect Sn 1+ω1 1 (x 1 )Sn 1+ω (x )Sn 1+ω3 3 (z 3 ) = = N c 1 1 4π 6 x1 x 13 x 3 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (n 1 n ) ω1+ω ω3 (x1 ) 1 + 3 (n 1 n 3 ) ω 1 +ω 3 ω (x13 ) 1 + 3 (n n 3 ) ω +ω 3 ω 1 (x3 ) + 3 1 ) ] n ω i F(ω 1, ω, ω 3 ; g ) F(ω 1, ω, ω 3 ) [1 + (g c n F(ω 1, ω, ω 3 ; g ), It could be obtained from the CF of three color dipoles with long sides collinear to n 1, n, and n 3 and transverse short sides. This means analyzing QCD (or N=4 SYM) in the triple Regge limit. Triple Regge limit: scattering of 3 particles moving with speed c in x, y, and z directions. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

In higher orders one should expect Sn 1+ω1 1 (x 1 )Sn 1+ω (x )Sn 1+ω3 3 (z 3 ) = = N c 1 1 4π 6 x1 x 13 x 3 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (n 1 n ) ω1+ω ω3 (x1 ) 1 + 3 (n 1 n 3 ) ω 1 +ω 3 ω (x13 ) 1 + 3 (n n 3 ) ω +ω 3 ω 1 (x3 ) + 3 1 ) ] n ω i F(ω 1, ω, ω 3 ; g ) F(ω 1, ω, ω 3 ) [1 + (g c n F(ω 1, ω, ω 3 ; g ), It could be obtained from the CF of three color dipoles with long sides collinear to n 1, n, and n 3 and transverse short sides. This means analyzing QCD (or N=4 SYM) in the triple Regge limit. Triple Regge limit: scattering of 3 particles moving with speed c in x, y, and z directions. What we can do in a meantime is to take n 3 n and consider the CF of a dipole in n 1 = n + direction and two dipoes in n = n 3 = n directions which can be obtained using the BK evolution. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

CF of two light-ray operators S j + (x ) = dx + dl + L 1 j + Fa i(l + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) 0 + gluinos + scalars S j (y ) = dy dl L 1 j Fa i(l + y + y )[L + y, y ] ab F (y bi + y ) 0 + gluinos + scalars A general formula for the correlation function of two LR operators reads S + j= 3 +iν(x )S j = 3 +iν (y ) = δ(ν ν )a(j, α s )(µ ) γ(j,αs) ((x y) )j+1+γ(j,αs) δ(ν ν ) reflects boost invariance: x + λx +, x 1 λ x does not change the correlation functions which depend on x + y. We need to reproduce it and find γ(j, α s ) and a(j, α s ) as j 1. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

Correlator of two Wilson frames Wilson frame : light-ray operator with point-splitting in the transverse direction I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

Correlator of two color dipoles U σ (x 1, z )V σ+ (y 1, w ) = = 8g4 dν ν d ( z 0 (x 1 z) N ( 1 4 + ν ) (x 1 z 0 ) (z z 0) ( (y 1 w) ) 1 iν ( ) ℵ(ν) σ+ σ (y 1 z 0 ) (w z 0). σ +0 σ 0 where ℵ(ν) = αs π N c[ ψ(1) ψ ( 1 + iν 1) ψ ( 1 iν 1)]. From experience with 4-point CFs in the BFKL limit ) 1 +iν ( σ+ σ ) ℵ(ν) σ +0 σ 0 i (((x 1 y 3 ) ) ℵ(ν) ((x 3 y 1 ) ) ℵ(ν) sin πℵ(ν) (x13 ) ℵ(ν) (y 13 ) ℵ(ν) ((x 1 y 1 ) ) ℵ(ν) ((x 3 y 3 ) ) ℵ(ν) (x13 ) ℵ(ν) (y 13 ) ℵ(ν) (For small x13 and y 13 Wilson frames are approximately conformally invariant) XV Non-perturbative QCD 13 June 018 1 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit ).

Correlator of two Wilson frames V. Kazakov, E. Sobko, I.B. S +ω 1 S +ω gl+ gl = g 4 in 4π 3 ν δ(ω 1 ω ) ( 1 4 + ν ) ( x 13 y 13 ℵ(ν) )1+ where dν( )ℵ(ν) ω B( ω, ω ℵ(ν)) 1 eiπ(ℵ(ν) ω) sin πℵ(ν) ( ) ( x 13 ) 1 +iν ( y 13 ) 1 +iν ( x y G(ν) + (ν ν) )1+iν 4 1 iν π 3 (i ν) G(ν) = i Γ ( 3 iν)γ (1 + iν) sinh(πν). Now we can carry out the last integration over ν as the pole contribution at ω = ℵ(ν). We pick here the first pole Ψ-functions in pomeron intercept which corresponds to the operator with the lowest possible twist=. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

Correlator of two Wilson frames V. Kazakov, E. Sobko, I.B. + (x 1, x 3 )S 1+ω (y 1, y 3 ) δ(ω 1 ω )Υ( γ) (x 13 ) γ ω (y 13 ) γ ω x 13, y 13 0 ((x y) )+ γ, S 1+ω 1 Υ( γ) = N g 4 1 γ π γ Γ (1 γ )Γ ( 1 + γ ) sin(π γ)ˆℵ ( γ) γ = 1 + iν is the solution of ω = ˆℵ( γ) We use the point-splitting regularization in the orthogonal direction for our light-ray operators cutoffs are defined as Λ x = 1 x 13 and Λ y = 1 y 13 Rewrite + (x 1, x 3 )S 1+ω (y 1, y 3 ) δ(ω 1 ω )Υ(γ + ω) (x 13 ) γ (y 13 ) γ x 13, y 13 0 ((x y). )+ω+γ S 1+ω 1 The anomalous dimension γ = γ ω satisfies - Lipatov-Fadin formula ω = ˆℵ(γ + ω) = ˆℵ(γ) + ˆℵ (γ)ˆℵ(γ) + o(g 4 ). XV Non-perturbative QCD 13 June 018 1 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

CF of three Wilson frames: one in + direction and two in - x 3 [x 1, x 3 ] Wilson frame (without F insertions) x1 x3 dx 1 dx 3 (x 1 x 3 ) ω [x 1, x 3 ] x 1 y 1 z 1 x 13 γj c(g YM, N c, ω) S +ω (x 1 ). x 13 0, ω 0 [x 1, x 3 ] U σ1 (x 1, x 3 ) with some cutoff σ 1 y 3 z 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

Using decomposition over Wilson lines we get: = D dx 1 dx 3 x ω1 31 x 1 S +ω 1 + (x 1, x 3 )S +ω (y 1, y 3 )S +ω 3 (z 1, z 3 ) = dy 1+ dy 3+ y ω 31+ y 1+ dz 1+ 31+ z 1+ dz 3+ z ω3 U σ 1 (x 1, x 3 )V σ + (y 1, y 3 )W σ 3+ (z 1, z 3 ), where D = N 3 c(ω 1 )c(ω )c(ω 3 ) ( x 1 x 3 )( y 1 y 3 )( z 1 z 3 ). I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 1

BK equation: where K BK in LO approximation: σ d dσ Uσ (z 1, z ) = K BK U σ (z 1, z ), = g π K LO BK U(z 1, z ) = d z 3 z 1 [U(z 1, z 3) + U(z 3, z ) U(z 1, z ) U(z 1, z 3)U(z 3, z )]. z 13 z 3 Schematically calculation of correlation function of 3 dipoles can be wrote as: ( ) dy 0(U Y 1 U Y 0 U Y 0 V Y ) (BK vertex at Y 0) U Y 0 W Y 3 where we introduced rapidity Y i = ln σ i I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

The structure of 3-point correlator in d - space Figure : The structure of 3-point correlator. Red circles correspond to BFKL propagators (the crossed one has extra multiplier ( 1 4 + ν 1 ) ). The blue blob corresponds to the 3-point functions of -dimensional BFKL CFT. The triple veritces correspond to E-functions. The αβγ-triangle in the first, planar, term and βγ-link in the second, nonplanar, term correspond to triple pomeron vertex. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Result: Sn 1+ω1 1 (x 1, x 3 )Sn 1+ω (y 1, y 3 )Sn 1+ω3 (z 1, z 3 ) = = ig 10 δ(ω 1 ω ω 3 ) c(ω 1 )c(ω )c(ω 3 ) H Ψ(ν1, ν, ν 3 ) x 13 γ1 y 13 γ z 13 γ3 x y +γ1+γ γ3 x z +γ1+γ3 γ y z +γ+γ3 γ1 where ν i is a solution of BFKL equation for anomalous dimensions ω i = ℵ(ν i ) H = 10 (Nc 1) γ1( + γ 1) 4 ( + γ ) ( + γ 3) G(ν1 ) G(ν ) G(ν3 ) π Nc 5 ℵ (ν1 ) ℵ (ν ) ℵ (ν3 ), γ i = γ(j i) - anomalous dimension (j i = 1 + ω i) and ν πγ ( 1 G(ν) = + iν)γ( iν) ( 1 +, 4 ν ) Γ ( 1 iν)γ(1 + iν) Ψ(ν 1, ν, ν 3) = Ω(h 1, h, h 3) π Λ(h 1, h, h 3)Re(ψ(1) ψ(h 1) ψ(h ) ψ(h 3)), Nc where h i = 1 + iνi = 1 + γ i. Expression for Ω and Λ was obtained by G.Korchemsky in terms of higher hypergeometric and Meijer G-functions. XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

n n 3 limit To identify the function Ψ(ν1, ν, ν 3 ) with structure constants of CF of three LR operators we need to consider limit n n 3 in the formula S j 1 n1 (x 1 ) S j n (x ) S j n3 (x 3 ) = (n 1 n ) ω1+ω ω3 x 1 1+ 3 1 (n 1 n 3 ) ω 1 +ω 3 ω x 13 1+ 3 1 C(α s, ω 1, ω, ω 3 ) (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (n n 3 ) ω +ω 3 ω 1 x 3 + 3 1 1 The limit n n 3 is tricky: in the limit n n 3 we get a zero mode coming from boost invariance at n = n 3 1 ( (n, n 3 ) ) ω +ω 3 ω 1 n n 3 dξe ξ(ω 1 ω ω 3 ) = δ(ω 1 ω ω 3 ) ω 1 ω ω 3 s I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Limit n n 3 Rapidity integral at n = n 3 dy 1 dy dy 3 dy 0 θ(y 1 Y 0 )θ(y 0 + Y )θ(y 0 + Y 3 )e ω 1Y 1 ω Y ω 3 Y 3 e ℵ 1(Y 1 Y 0 )+ℵ (Y 0 +Y )+ℵ 3 (Y 0 +Y 3 ) = δ(ω 1 ω ω 3 ) (ω 1 ℵ 1 )(ω ℵ )(ω 3 ℵ 3 ) Let us take n n 3 but n 1 n n 1 n 3. We can use our formulas for n = n 3 case until longitudinal distances between frames and 3 are smaller than typical transverse separation, i.e. when (y 1 z 1 ) l l 3 n 3. In terms of rapidities Y = ln l n 1, Y 3 = ln l n 1 3 this restriction means Y + Y 3 r, r ln n 1 n n n 3. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Limit n n 3 Rapidity integral with restriction Y + Y 3 r, r ln n 1 n n n 3. dy 1 dy dy 3 dy 0 θ(y 1 Y 0 )θ(y 0 + Y )θ(y 0 + Y 3 )θ ( Y + Y 3 < r ) e ω 1Y 1 ω Y ω 3 Y 3 +ℵ 1 (Y 1 Y 0 )+ℵ (Y 0 +Y )+ℵ 3 (Y 0 +Y 3 ) = e r (ω +ω 3 ω 1 ) (ω 1 ω ω 3 )(ω 1 ℵ 1 ) ( ω ℵ + ω 1 ω ω 3 ω +ω 3 ω 1 n 1 n ) ω +ω 3 ω 1 ( n n 3 (ω 1 ω ω 3 )(ω 1 ℵ 1 )(ω ℵ )(ω 3 ℵ 3 ) )( ω3 ℵ 3 + ω 1 ω ω 3 ) 1 ( (n, n 3 ) ) ω +ω 3 ω 1 n n 3 δ(ω1 ω ω 3 ) ω 1 ω ω 3 s I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Structure constant in the BFKL limit V. Kazakov, E. Sobko, I.B. Finally for normalized structure constant C ω1,ω,ω 3 = C + ({ i },{1+ω i }) b1+ω1 b 1+ω b 1+ω3 we get: C ω1,ω,ω 3 = i 3/ g 4 N c 1 γ1( + γ 1) G(ν1 ) G(ν ) G(ν3 ) π 5 Nc ℵ (ν1 ) ℵ (ν ) ℵ (ν3 ) Ψ(ν 1, ν, ν3 ), where ω i = ℵ(ν i ) and ν πγ ( 1 G(ν) = + iν)γ( iν) ( 1 +, 4 ν ) Γ ( 1 iν)γ(1 + iν) Ψ(ν 1, ν, ν 3) = Ω(h 1, h, h 3) π Λ(h 1, h, h 3)Re(ψ(1) ψ(h 1) ψ(h ) ψ(h 3)) Nc with notation h i = 1 + iνi = 1 + γ i, ωi = ℵ(νi) The structure of the formula is C ω1,ω,ω 3 = g Nc 1 Nc f ( g ω 1, g ω, g ω 3 ) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Structure constant in the BFKL limit In the limit g ω i 0 we get the asymptotics: Ω(h 1, h, h 3) 16π3 γ1 [γ1(γ + γ 3 ) + γ(γ 1 + γ 3 )+ γ γ 3 +γ3(γ 1 + γ ) + γ 1 γ γ 3 )(1 + O(g /ω i )) Λ(h 1, h, h 3) 8π (γ 1 + γ + γ 3 ) γ 1 γ γ 3 (1 + O(g /ω i )) γ i = 8g ω i + o( g ω i ) C ω1,ω,ω 3 = ig N c 1 πn c 1 ω 5 1 ω 1 ω 1 3 (ω 1(ω + ω 3 )+ ω (ω 1 + ω 3 ) + ω 3(ω 1 + ω ) + ω 1 ω ω 3 )(1 + O(g )) I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Wilson frames in the triple Regge limit n 1 Sn ω1 1 (z 1, z 1 ) = du 1 dl l ω1 Tr{F n1i(u 1 n 1 + ln 1 + z 1 )Fn i 1 (un 1 + z 1 )} 0 z 1 n 1 = n = n 3 = 0, z n i = 0, n 1 n n n 3 n 1 n 3 z 1 z 13 z 3 z 1 z 11 z z 33 z 3 n 3 z z n z 3 Triple Sudakov variables : k = αn 1 + βn + γn 3 + k I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018

Triple BFKL evolution n 1 z 1 z 1 k = k + αβs 1 + αγs 13 + βγs 3 s 1 n 1 n, s 13 n 1 n 3, s 3 n n 3 z 4 z 5 z 9 z 8 z 6 n 3 z 7 z 3 z z z 3 If α β, γ eikonal n α k + iɛ 1 β + γ + iɛα XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

Check: BFKL kernel in the triple Regge regime n 1 k 1 k' 1 k k' n n 3 L µ (k, k 1 )L µ (k, k 1) = ( k 1 k 1) + k 1 k + k k 1 ( k 1 + k ) BFKL kernel with k = k + s 1s 3 s 13 β k, s ik = n i n k I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

BFKL evolution in triple Regge limit n 1 k 1 k' 1 k 1 k = α 1 n 1 + β 1 n + γ 1 n 3 + k 1 = α n 1 + β n + γ n 3 + k k = α n 1 + β n + γ n 3 + k k k' n n 3 The BFKL evolution is logarithmic until α 1 β s 1, α 1 γ s 13 m. In terms of rapidities η 1 ln α, η ln β, η 3 ln γ η 1 + η ln s 1, η 1 + η 3 ln s 13, I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

BFKL evolution of Wilson frames Evolution from α max l1 s z 11 to α min n 1 z 1 z 1 z 4 z 5 du 1 Tr{F n1i(u 1 n 1 + l 1 n 1 + z 1 )Fn i 1 (un 1 + z 1 ) z 11 0 = s N c dν Γ ( 3 16l 1 z 11 π 4 4iν iν) Γ(1 + iν) [ z Γ ( 11 z 45 3 + iν) Γ( iν) z 14 z 15 η 1 = ln l1 s z 11, y 1 = ln α min ] 1 +iν e ℵ(ν)(ln l1 y1) Tr{U z4 U z 5 } y1 At small z 11 we can close the contour over 1 + iν in the right half-plane and the leading contribution comes from the pole of ℵ(ν) at iν = 1 αsnc πω 1 XV Non-perturbative QCD 13 June 018 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

Result = longitudinal integral transverse integral Longitudinal integral dη 1 dη dη 3 η1 η η3 dy 1 dy dy 3 e ω 1η 1 ω η ω 3 η 3 +ℵ 1 (η 1 y 1 )+ℵ (η y )+ℵ 3 (η 3 y 3 ) θ (y 1 + y ln ) θ (y + y 3 ln ) θ (y 1 + y 3 ln ) s 1 s 3 s 13 4 = (ω 1 ℵ 1 )(ω ℵ )(ω 3 ℵ 3 ) (s 1z 1 ) ω1+ω ω3 (s 13 z 13 ) ω 1 +ω 3 ω (s 3 z 3 ) ω +ω 3 ω 1 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) η 1 ln l 1 s1 s 13 s 3 z 11, η ln l s1 s 3 s 13 z, η 3 ln l 3 s13 s 3 s 1 z 33 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

At the end of evolution As usual, the end of evolution means s leading-order tree diagrams m 1 but α s ln s m 1 n 1 z 4 z 5 z 9 z 8 n 3 z 6 z 7 n ln Z(1) 46 Z (1) 57 Z (1) 47 Z (1) 56 ln Z(3) 68 Z (3) 79 Z (3) 69 Z (3) 78 Z (kl) ij z ij (z ij n k )(z ij n l ) n k n l ln Z(3) 48 Z (13) 59 Z (3) 49 Z (13) 58 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

Transverse integral The transverse planes of the evolution of Wilson frames are different the resulting integral is two-dimensional but not translation invariant 1 a z z 1 1 a 1 1 a 1 z 5 z 4 1+a 1 ln z ln 56 6 z 9 1 a 1+a ln z 7 1+a 3 78 z 8 1 a 3 49 14 1 a 3 z 3 = (z z ) + z 49 1 4 9 = (z z ) +(z +z ) 4 9 1 1 a ( 39) 3 4 9 = (z 1 ) 1+a 1+a a 3 (z 13 ) 1+a 1+a 3 a (z 3 ) 1+a +a 3 a 1 Φ(a 1, a, a 3 ) a 1 = 1 iν 1 etc XV Non-perturbative QCD 13 June 018 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit

Result = longitudinal integral transverse integral Result = dν 1 dν dν 3 z iν 1 1 11 z iν 1 z iν 3 1 33 Longitudinal integral Transverse integral Longitudinal integral = 4 (ω 1 ℵ(ν 1 ))(ω ℵ(ν ))(ω 3 ℵ(ν 3 )) (s 1z 1 ) ω1+ω ω3 (s 13 z 13 ) ω 1 +ω 3 ω (s 3 z 3 ) ω +ω 3 ω 1 (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) Transverse integral = (z 1 ) 1 iν 1 iν +iν 3 (z 13 ) 1 iν 1 iν 3 +iν (z 3 ) 1 iν iν 3 +iν 1 Φ ( 1 iν 1, 1 iν, 1 iν ) 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

Three-point CF in the triple Regge limit Taking residues at ν 1 = ℵ 1 (ω 1 ), ν = ℵ 1 (ω ), ν 3 = ℵ 1 (ω 3 ) we get S j 1 n1 (z 1 ) S j n (z ) S j n3 (z 3 ) Φ( γ 1, γ, γ 3 ) = (ω 1 + ω ω 3 )(ω 1 + ω 3 ω )(ω + ω 3 ω 1 ) (s 1) ω1+ω ω3 (s 13 ) z 1 1+ 3 ω 1 +ω 3 ω ω +ω 3 ω 1 (s 3 ) z 13 1+ 3 z 3 µ γ(ω 1) γ(ω ) γ(ω 3 ) + 3 1 where i = 1 + ω i + γ i and γ i = 1 + iν i is a solution of ω i = ℵ(ν i ) To compare to previous results (for tree approximation and for ω 1 = ω + ω 3 ) we need Φ(a 1, a, a 3 ) at a 1, a, a 3 1. I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3

Conclusions and Outlook Conclusions Outlook QCD structure constants in the triple BFKL limit ω i 0 at g ω 1 are expressed in terms of the transverse integral Φ(γ 1, γ, γ 3 ). Calculate this transverse integral and compare to previous result in the limit n n 3 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators in the triple Regge limit XV Non-perturbative QCD 13 June 018 3