Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Σχετικά έγγραφα
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

Solutions to Exercise Sheet 5

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 3: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Srednicki Chapter 55

Math221: HW# 1 solutions

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

2 Composition. Invertible Mappings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EE512: Error Control Coding

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order RLC Filters

Example Sheet 3 Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Section 8.3 Trigonometric Equations

Lecture 26: Circular domains

Finite Field Problems: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Derivation of Optical-Bloch Equations

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

( y) Partial Differential Equations

D Alembert s Solution to the Wave Equation

The Simply Typed Lambda Calculus

( ) 2 and compare to M.

SOLVING CUBICS AND QUARTICS BY RADICALS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Differentiation exercise show differential equation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

w o = R 1 p. (1) R = p =. = 1

Second Order Partial Differential Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1 String with massive end-points

Section 7.6 Double and Half Angle Formulas

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Strain gauge and rosettes

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Homework 8 Model Solution Section

Differential equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ST5224: Advanced Statistical Theory II

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Notes on the Open Economy

Approximation of distance between locations on earth given by latitude and longitude

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Tridiagonal matrices. Gérard MEURANT. October, 2008

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Math 6 SL Probability Distributions Practice Test Mark Scheme

ECON 381 SC ASSIGNMENT 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Quadratic Expressions

6.3 Forecasting ARMA processes

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Variational Wavefunction for the Helium Atom

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Space-Time Symmetries

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Orbital angular momentum and the spherical harmonics

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

CE 530 Molecular Simulation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CRASH COURSE IN PRECALCULUS

Concrete Mathematics Exercises from 30 September 2016

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Answer sheet: Third Midterm for Math 2339

Lifting Entry (continued)

CYLINDRICAL & SPHERICAL COORDINATES

[1] P Q. Fig. 3.1

Statistical Inference I Locally most powerful tests

A Note on Intuitionistic Fuzzy. Equivalence Relation

Congruence Classes of Invertible Matrices of Order 3 over F 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

F19MC2 Solutions 9 Complex Analysis

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

If we restrict the domain of y = sin x to [ π 2, π 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

Forced Pendulum Numerical approach

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Higher Derivative Gravity Theories

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Transcript:

Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset by Cambridge University Press: its format is entirely the responsibility of the author. Appendi A. Derivation of perturbation equations 3 and 3 Elimination of pressure from 9 and by cross differentiation in terms of and y, respectively, followed by subtraction gives a relationship between, K and : +γm ω K 4y + yy t + y w y + yy yy + ωk K ytt d t yt =.A- Solving A- for K and substituting in linearized θ momentum equation results in: K t = ωk y + ωk + yy + + yy yy t ω +γm K ] 4y y w y ytt d t yt.a- Elimination of K from A- and A- by cross differentiation in terms of t and, respectively, followed by subtraction, and multiplying by ωk /, gives + yy + w t + yy + + yy tt ω K K y + w yy yy t [ ω = γm K 4y + t 4y t 3 ytt 3 yt yttt d w ] y tt y w w y. A-3 Differentiation of A-3 with respect to gives 3. Differentiating with respect to gives γm T t + T = γ γ [ ] P y u + γm P t + P T y u A-4.

From 6 we have T = P T. Substituting this in A-4 gives M P t + P γm T t + = γ γ P y T y u. A-5 Using to epress P t and P in A-5 and multiplying by gives [ γm T 3M w t + T M w 3M tt M = M y T y + γ P y M y γ ttt d ] M ytt + M y t M yt. A-6 Differentiating A-6 with respect to gives 3. Appendi B. Boundary conditions for 43 and 44 The substitution of 4 into 3-4 gives boundary conditions for and for and = γm, =,, / =, / B- T y, y = γm y, y + yy, y + ω K w 4y y σ, y + σ yy, y y [ ω K 4y = γm γ, y =, γm, y = y, y, σ, y w + ω K 4y y, y B- B-3 with, = y, =, B-4 ω K K y w yy, y + σ yy, y, y y, y σ y, y σ y, y + σ w yy, y +, y, y + σ, y σ yy w ], y 4σy, y 3σ y, y, B-5 3σ y, y σ w ] y, y y, y w w y, y, B-6 [ ] T σ 3M w, y + T M w, y 3σ M, y = σ y, y σ y, y σ w y, y, B-7, y =, σ, y +, y = B-8

for y /. Appendi C. Analysis of imaginary parts of 43 and 44 Substituting 6 into 43 and 44, collecting terms of the orders ɛ I, σ I, ɛ I σ R, ɛ I Ω and neglecting terms of the orders OσR, σ I, σ Rσ I, σ I ɛ R, σ I Ω and higher gives ɛ I I + Iyy + +σ I c +ɛ I σ R I + Iyy ɛ I I Ω K K y w yy w I + γm Ω K w 4y y I Iy + cyy w yy w c + γm Ω K 4 w y 4y w c 3 cy w yy w I + γm Ω K 4 w y 4y w I 3 Iy K K y +ɛ I Ω w I + γm K } 4y I =, C- M y T y + γ M Ω K 4y I M w Iy σ I T 3M + w T M w c y c + } γ γ cy + ɛ Iσ R T 3M w T M w I y I + } γ γ Iy γ K } +ɛ I Ω γt M w 4y I =. C- γm T M w From B--B-8, the boundary conditions for these equations are: for and I, =, I, / = I, / C-3 I, y =, γm I, y = Iy, y, T ɛ I Iy, y γm Ω K } } y 4y Iy, y σ I γm c, y } ɛ I σ R γm I, y ɛ I Ω γm K } 4y Iy, y = with I, = Iy, =, I, y Ω K K y ɛ I + Iyy, y + w yy w I, y +γm Ω K w 4y y I, y Iy, y Iyy, y } +ɛ I σ R γm wy I, y + Iy, y C-4 C-5 C-6 3

K K y +ɛ I Ω w I, y + γm K } 4y I, y =, C-7 I, y ɛ I + γm Ω K w 4y y I, y Iy, y +σ I c, y y + cyy, y +γm Ω K 4y w I, y +ɛ I σ R + Iyy, y y K +γm Ω K yy w 4 y c, y yy w I, y c, y 3 cy, y 4w 4y w y I, y 3 Iy, y } +ɛ I Ω γm 4y I, y =, C-8 σ I T 3M ɛ I I, y + w T M w c, y y c, y + } γ γ cy, y + ɛ Iσ R T 3M w T M w I, y y I, y + } γ γ Iy, y =, C-9 I, y =, σ I c, y + ɛ I I, y + ɛ I σ R I, y = C- for y /. Two integrations with respect to of C- and C- and the use of boundary conditions C-4 and C-7-C- result in I ɛ I + Ω K K y Iyy + w +σ I c +ɛ I σ R I + Iyy ɛ I I w yy I + γm Ω K w 4y y I Iy + cyy w yy w c + γm Ω K 4 w y 4y w c 3 cy w yy w I + γm Ω K 4 w y 4y w I 3 Iy K K y +ɛ I Ω w I + γm K } 4y I = ɛ I σ R f y, C- M y T y + γ M Ω K 4y I M w Iy σ I T 3M + w T M w c y c + } γ γ cy + ɛ Iσ R T 3M w T M w I y I + } γ γ Iy γm T M w γ K } +ɛ I Ω γt M w 4y I 4 = σ I f y + ɛ I σ R f 3 y, C-

Here f y = Iyy, y yy w f y = T M w f 3 y = T M w I, y + γm Ω K w ] y 4y w I, y Iy, y, M Sy + y Φy γ γ Φ yy, C-3 M I, y + y I, y γ γ Iy, y. Solution of C- for ɛ I I, substitution of the result in C-, multiplication by T M w /T and an additional integration with respect to gives 6. Appendi D. Analysis of real parts of 43 and 44 Substituting epansions 6 into 43 and 44 and neglecting terms of the orders OσR, σ I, σ Rɛ R, σ I ɛ I, σ R Ω and higher gives ɛ R R + Ryy + +σ R c ɛ R R Ω K K y w yy w R + γm Ω K w 4y y R Ry + cyy w yy w c + γm Ω K 4 w y 4y w c 3 cy K K y + Ω w c + γm K } 4y c =, D- M y T y + γ M Ω K 4y R M w Ry σ R T 3M + w T M w c y c + } γ γ cy γ K } Ω γt M w 4y c =. D- γm T M w From B--B-8, the boundary conditions for these equations are: for and R, =, R, / = R, / D-3 R, y =, γm R, y = Ry, y, T ɛ R Ry, y γm Ω K } } y 4y Ry, y σ R γm c, y = with R, = Ry, =, R, y Ω K K y ɛ R + Ryy, y + w yy w R, y +γm Ω K w 4y y R, y Ry, y D-4 D-5 D-6 5

ɛ R R, y K K y + Ω w c, y + γm K } 4y c, y =, D-7 + γm Ω K w 4y y R, y Ry, y +σ R c, y y + cyy, y Ω K yy c, y w +γm 4 w y 4y w c, y 3 cy, y =, D-8 ɛ R R, y σ R T 3M + w T M w c, y y c, y + } γ γ cy, y =, D-9 R, y =, σ R c, y + ɛ R R, y = D- for y /. Two integrations of D- and D- with respect to and the use of boundary conditions D-4, D-7-D- result in ɛ R R + Ryy + +σ R c ɛ R R Ω K K y w yy w R + γm Ω K w 4y y R Ry + cyy w yy w c + γm Ω K 4 w y 4y w c 3 cy K K y + Ω w c + γm K } 4y c =, D- M y T y + γ M Ω K 4y R M Ry σ R T 3M + w T M w c y c + } γ γ cy γ K } Ω γt M w 4y c = σ R f y. D- γm T M w Here f y is defined in C-3. Also, the conditions in D-5 and D-6 can be solved and show that ɛ R R, y = σ R γm π y y epαy [ gy ep αy dy ] dy, 4 γm R, y = σ R γm π y epαy [ gy ep αy dy ] D-3 4 where αy = y py dy, py = T T y K γm Ω, 4y T gy = Φy y y T y. Note that R, y = when M =. Also, note that in the general case R, / is now determined and may not be zero. For eample, in the case of a solid-body rotation 6

profile where K = and = T = we find py = γm Ω, αy = γm Ω y, and then R, y = γm π 4 y y epγm Ω y [ Φy y ep γm Ω y dy ] dy. D-4 Eamples of calculating R, y according to D-4 are shown in Fig. D- for various Mach numbers. It is clear that R, / is not zero. Solving D- for ɛ R R and substituting in D-, multiplying by T M w /T, and integrating again with respect to gives 63. 7

6 4 Mo=. Mo=.3 Mo=.5 4 Φ R...3.4.5.6.7.8.9 r Figure : D-: Solutions of R, y for a solid-body rotation flow at various Mach numbers. 8