On Weingarten tube surfaces with null curve in Minkowski 3-space

Σχετικά έγγραφα
Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3

Parametrized Surfaces

Smarandache Curves According to Bishop Frame in Euclidean 3-Space

Second Order Partial Differential Equations

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 3 Solutions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homework 8 Model Solution Section

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

EE512: Error Control Coding

Spherical Coordinates

Example Sheet 3 Solutions

6.3 Forecasting ARMA processes

Homomorphism in Intuitionistic Fuzzy Automata

On a four-dimensional hyperbolic manifold with finite volume

Strain gauge and rosettes

( y) Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

w o = R 1 p. (1) R = p =. = 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

C.S. 430 Assignment 6, Sample Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Reminders: linear functions

Matrices and Determinants

Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Commutative Monoids in Intuitionistic Fuzzy Sets

arxiv: v1 [math.gm] 20 Mar 2012

Homomorphism of Intuitionistic Fuzzy Groups

A summation formula ramified with hypergeometric function and involving recurrence relation

A Note on Intuitionistic Fuzzy. Equivalence Relation

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Statistical Inference I Locally most powerful tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Smarandache Curves of a Spacelike Curve According to the Bishop Frame of Type-2

SOME PROPERTIES OF FUZZY REAL NUMBERS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Tridiagonal matrices. Gérard MEURANT. October, 2008

CRASH COURSE IN PRECALCULUS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

Lecture 15 - Root System Axiomatics

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Every set of first-order formulas is equivalent to an independent set

Section 9.2 Polar Equations and Graphs

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

The Simply Typed Lambda Calculus

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

New bounds for spherical two-distance sets and equiangular lines

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Geometry of the 2-sphere

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) 2 and compare to M.

Lecture 13 - Root Space Decomposition II

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

D Alembert s Solution to the Wave Equation

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Higher Derivative Gravity Theories

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Concrete Mathematics Exercises from 30 September 2016

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ST5224: Advanced Statistical Theory II

Finite Field Problems: Solutions

Second Order RLC Filters

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Numerical Analysis FMN011

Lecture 26: Circular domains

Jordan Form of a Square Matrix

Solution Series 9. i=1 x i and i=1 x i.

derivation of the Laplacian from rectangular to spherical coordinates

Intuitionistic Fuzzy Ideals of Near Rings

1 String with massive end-points

Generating Set of the Complete Semigroups of Binary Relations

Fractional Colorings and Zykov Products of graphs

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Empirical best prediction under area-level Poisson mixed models

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Jordan Normal Forms for a Skew-Adjoint Operator in the Lorentzian Setting

The k-α-exponential Function

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

1. Introduction and Preliminaries.

A General Note on δ-quasi Monotone and Increasing Sequence

The ε-pseudospectrum of a Matrix

Transcript:

NTMSCI 3, No. 3, 168-174 (2015) 168 New Trends in Mathematical Sciences http://www.ntmsci.com On Weingarten tube surfaces with null curve in Minkowski 3-space Pelin (Pospos) Tekin 1 and F. Nejat Ekmekci 2 1 Aksaray University, Faculty of Sciences and Arts, Department of Mathematics 68100, Aksaray, Turkey. 2 Ankara University, Faculty of Sciences, Department of Mathematics 06100, Ankara,, Turkey. Received: 16 February 2015, Revised: 19 May 2015, Accepted: 31 May 2015 Published online: 30 September 2015 Abstract: In this paper, we study a tube surfaces, consisted spline curve is null. Furthermore, we have investigated Weingarten conditions of this surface using the the mean curvatre H, the Gaussian curvature K and the second Gaussian curvature K II, respectively. Keywords: Tube surfaces, Weingarten conditions, null curve, curvatures. 1 Introduction A surface S in either R 3 or E1 3 is called a Weingarten surface if there exists a non-trivial functional relation Ω(K,H) = 0 with respect to its Gaussian curvature K and its mean curvature H. The existence of a non-trivial functional relation Ω(K,H) = 0 on the surface S parametrized by Φ(u,v) is equivalent to the vanishing of the corresponding Jacobian determinant, namely (K,H) (u,v) = 0 Several geometers have studied on Weingarten surfaces and obtained many interesting results. For study of these surfaces, in 1994 W. Kühnel and in 1999 G. Stamou, investigated ruled Weingarten surface in a Euclidean 3-space E 3. Also, in 1997 C. Baikoussis and Th. Koufogiorgos studied helicoidal (H,K II )-Weingarten surfaces. in 1999 F. Dillen and W. Kühnel, in 2005 F. Dillen and W.Sodsiri gave a classification of ruled Weingarten surface in a Minkowski 3-space E 3 1. In 2009 J. Suk Ro and D. Won Yoon studied tubular Weingarten and linear Weingaren surface in three dimension Euclidean space E 3. In this paper we study a tube surface with null curve in a three dimension Minkowski space. 2 Preliminaries Let R 3 = {(x,y,z) : x,y,z R} be a 3-dimension space, and let X = (x 1,x 2,x 3 ) and Y = (y 1,y 2,y 3 ) be two vectors in R 3. The Lorentz scalar product of X and Y is defined by X,Y = x 1 y 1 + x 2 y 2 x 3 y 3 (2.1) Corresponding author e-mail: pelinpospos@gmail.com

169 P. (Pospos) Tekin and F. Nejat Ekmekci: On Weingarten tube surfaces with null curve in Minkowski 3-space E1 3 = (R3, X,Y ) is called Minkowski 3-space. Since the metric is indefinite, x E1 3 has three causal characters: these are spacelike vector, null (lightlike) vector or timelike vector if x,x > 0 or x = 0, x,x = 0 and x 0, x,x < 0, respectively. For x E1 3, the norm of the vector x is given by x = x,x. Therefore, x is a unit vector if x,x = ±1. Similarly, an arbitrary curve α = α(s) E1 3 can locally be spacelike, timelike or null (lightlike) curve, if all of its velocity vectors α (s) are respectively spacelike, timelike or null (lightlike) i.e., α (s),α (s) > 0, α (s),α (s) < 0, α (s),α (s) = 0. So, α(s) is a unit speed curve if α (s),α (s) = ±1, where s is the arc-length parameter of α. Any two vectors X,Y E1 3 are called orthogonal if X,Y = 0 (O Neill, 1983). The vector product of two vectors X = (x 1,x 2,x 3 ), Y = (y 1,y 2,y 3 ) belong to E1 3, is defined as X Y = (x 3 y 2 x 2 y 3,x 1 y 3 x 3 y 1,x 1 y 2 x 2 y 1 ). We also recall that the pseudosphere of radius 1 and center at the origin is the hyperquadric in E1 3 S1 2(1) = {v E3 1 : v,v = 1} (O Neill, 1983). defined by Let α = α(u) : (a,b) E1 3 be a spacelike unit speed curve with a timelike binormal B, where u is the arc length parameter of α. Considering that T = 1, B = T T and N = T T T T, we obtain the orthonormal frame field {T (u),n(u),b(u)}. Consider M is a timelike tube surface parametrized by Ψ : j R E1 3. Then, the position vector of Ψ can be written in the following form Ψ(u,v) = α(u) + r(n(u)coshv + B(u)sinhv) (2.2) where α,n,b : j E1 3 and r : j R. We call α a base curve and a pair of two vectors N,B a director frame of the timelike tube surface Ψ. We must have Ψ(u,v) α(u) 2 = r 2 The last equation expresses analytically the geometric fact that Ψ(u,v) lies on a Lorentzian sphere S1 2 (u) of radius r centered at α(u) (Abdel-Aziz and Saad, 2011). Theorem 2.1. Let Ψ be a timelike tube surface in Minkowski 3-space E1 3 defined in (2.2) satisfying the Jacobi condition Ω(K,H) = 0 (2.3) for the Gaussian curvature K and the mean curvature H of Ψ. Then, Ψ is a Weingarten surface (Abdel-Aziz and Saad, 2011). Theorem 2.2. Let Ψ be a timelike tube surface with non-degenerate second fundamental form in Minkowski 3-space E 3 1 satisfying the Jacobi equation Ω(K II,K) = 0 (2.4) for the second Gaussian curvature K II and the Gaussian curvature K. Then, the surface Ψ is a Weingarten surface (Abdel- Aziz and Saad, 2011).

NTMSCI 3, No. 3, 168-174 (2015) / www.ntmsci.com 170 3 Tubular weingarten surface with a null curve A parametric equation of a Ψ tube surface with C(t) : (a,b) E1 3 null curve is given by Ψ(t,θ) = C(t) + θn(t) + θ 2 B(t) (3.1) where T, N, B vectors are null, spacelike and null vectors respectively. The orthonormal frame is {T (t), N(t), B(t)} and we have the following conditions T,T = B,B = 0 N,N = T,B = 1 N,B = N,T = 0 κ(t) and τ(t) are curvature and torsion respectively and we can give differential formulas for this system as below T (t) = N N (t) = τt B B (t) = τn therefore, differentiation of the tube surface Ψ can be calculate as follows, Ψ t = (1 + τθ)t (t) + ( τθ 2) N(t) + ( θ)b(t) Ψ θ = N(t) + 2θB(t) Ψ t Ψ θ = ( 2τθ 3 + θ ) T (t) + ( 2θ + 2τθ 2) N(t) + ( 1 τθ)b(t) Ψ t Ψ θ = 8τ 2 θ 4 + 12τθ 3 2τθ 2 + 4θ 2 2θ we find the the unit normal vector field of the tube surface Ψ express by ξ (u) = Ψ t Ψ θ Ψ t Ψ θ = 1 ( 2τθ 3 + θ ) T (t) + ( 2θ + 2τθ 2) N(t) + ( 1 τθ)b(t) λ where λ = 8τ 2 θ 4 + 12τθ 3 2τθ 2 + 4θ 2 2θ. furthermore components of the first fundamental form of Ψ are E = Ψ t,ψ t = 2θ (1 + τθ) + τ 2 θ 4 F = Ψ t,ψ θ = τθ 2 + 2θ G = Ψ θ,ψ θ = 1 Components of the second fundamental form of Ψ are P = Ψ tt,σ = 1 λ [( 1 + 2τθ τ θ 2)( 2θ + 2τθ 2) + ( 1 + τ θ τ 2 θ 2) ( 1 τθ) + ( τθ 2)( 2τθ 3 + θ ) ] Q = Ψ tθ,σ = 1 [ ( τ ( 1 τθ) + ( 2τθ) 2θ + 2τθ 2 ) + ( 2τθ 3 θ )] λ W = Ψ θθ,σ = 1 λ [ 4τθ 3 + 2θ ]

171 P. (Pospos) Tekin and F. Nejat Ekmekci: On Weingarten tube surfaces with null curve in Minkowski 3-space The Gaussian curvature K, second Gaussian curvature K II and the mean curvature H are given by K = PW Q2 EG F 2 = 1 2 [ 8τ3 θ 8 + 8τ 2 τ θ 7 + ( 12τ 2 + 8ττ + 20τ 4) θ 6 + ( 4τ 2 τ + 36τ 3 8τ 2 4ττ ) θ 5 + ( 4τ 4ττ + 16τ 2 14τ 6τ 3 8τ 4) θ 4 + ( 6τ 2 + 2ττ 16τ 3 + 4τ ) θ 3 + ( 6τ 2 + 2τ + τ 4 + 5 ) θ 2 + ( 2τ 3 + 2τ ) θ + τ 2 ]/ ( θ ( 1 + 2τθ 2 + (τ + 2)θ )) and H = EW 2FQ + GP 2(EG F 2 ) = 1 4 [4τ3 θ 6 + ( 4τ 2 + 8τ 3 )θ 4 + (24τ 2 2ττ )θ 3 +( 2τ + 17τ + 4τ 2 3τ 3 )θ 2 + ( 7τ 2 + 6τ + ττ )θ 4τ + 2 + τ ]/(1 + 2τθ 2 + (τ + 2)θ). Also, we get K II = 1 4 [(64τ3 (τ ) 2 + 64τ 4 τ )θ 13 + ( 32τ 4 τ 64(τ ) 3 τ 2 160τ 3 τ τ )θ 12 +( 280τ 5 64τ τ 2 τ + τ τ 3 τ 32τ 3 τ 208τ 5 τ + 240τ 6 + 96(τ ) 2 τ τ 2 +128τ 3 (τ ) 2 256τ 4 (τ ) 2 48τ 3 τ 64(τ ) 3 τ + 128τ 4 τ 192(τ ) 2 τ 2 )θ 11 +(96(τ ) 3 τ 320τ 4 τ + 48τ 3 τ 96(τ ) 3 τ 2 + 16τ 4 τ 240τ 5 τ + 80τ 5 τ +288τ 4 τ τ + 160τ τ 2 τ + 96(τ ) 2 ττ + 64τ τ τ 2 + 64(τ ) 2 τ 2 80τ 3 τ +96(τ ) 3 τ 3 + 160τ 3 τ + 160τ 5 + 744τ 4 τ 320τ 3 (τ ) 2 48τ 3 τ τ )θ 10 +(564τ 4 + 192τ 5 + 128τ 3 τ + 208τ(τ ) 2 376(τ ) 2 τ 2 544τ 4 τ + 1852τ 6 +64(τ ) 3 192τ 7 + 240τ 5 (τ ) 2 352τ 4 (τ ) 2 288τ 3 (τ ) 2 + 128(τ ) 3 τ 2 96(τ ) 3 τ + 512τ 3 τ 288τ τ 2 τ 32τ τ 3 τ 96(τ ) 2 τ τ 2 48(τ ) 2 ττ 16τ τ τ 2 + 16τ ττ + 32τ ττ + 288τ 4 τ + 224τ 4 τ 16τ 3τ 160τ 5 τ 200τ 3 τ + 40τ 2 τ + 120τ 6 τ + 48τ 2 τ )θ 9 + (216τ 4 + 60τ 2 τ + 3196τ 5 1432τ 3 τ 288τ(τ ) 2 600(τ ) 2 τ 2 + 488τ 4 τ 296τ 6 16(τ ) 3 + 120τ 6 τ 1072τ 5 τ + 512τ 4 (τ ) 2 752τ 3 (τ ) 2 48(τ ) 3 τ 3 + 16(τ ) 3 τ 2 + 48(τ ) 3 τ 3 +16(τ ) 3 τ 2 + 48τ 3 τ 32τ 3 τ τ + 208τ τ 2 τ 240τ 4 τ τ 96(τ ) 2 ττ 64τ τ τ 2 256τ ττ 32τ ττ 480τ 4 τ 24τ 4 τ + 184τ 3 τ + 296τ 5 τ +504τ 3 τ 72τ 5 τ 8τ 2 τ 88τ 2 τ 48(τ ) 2 τ )θ 8 + ( 370τ 3 + 1876τ 4 184τ 2 τ 180τ 5 + 1360τ 3 τ 96(τ ) 2 48τ(τ ) 2 180(τ ) 2 τ 2 2808τ 4 τ +1272τ 6 + 32(τ ) 3 578τ 7 96τ 5 (τ ) 2 + 320τ 5 τ + 128τ 4 (τ ) 2 + 768τ 3 (τ ) 2 64(τ ) 3 τ 2 + 36τ 8 488τ 3 τ τ + 48τ τ 2 τ + 8τ τ 3 τ + 24(τ ) 2 τ τ 2 +48(τ ) 2 ττ + 16τ τ τ 2 + 152τ ττ 32τ ττ + 208τ 4 τ 208τ 4 τ 32τ 3 τ + 4τ 5 τ 684τ 3 τ + 352τ 2 τ 48τ 6 τ + 56τ 2 τ + 44ττ +8τ τ 56ττ 16τ τ )θ 7 + (236ττ + 528τ 3 + 396τ 4 + 1970τ 2 τ +4188τ 5 2376τ 3 τ + 96τ 2 + 532τ(τ ) 2 + 716(τ ) 2 τ 2 + 472τ 4 τ 1468τ 6 8(τ ) 3 + 84τ 7 58τ 6 τ + 624τ 5 τ 224τ 4 (τ ) 2 + 324τ 3 (τ ) 2 + 24(τ ) 3 τ 2 +258τ 6 + 8(τ ) 3 5τ 7 + 4τ 6 τ 92τ 5 τ + 28τ 4 τ 74τ 3 (τ ) 2 50τ + 48τ τ 2 τ 6τ 4 τ τ + 8τ ττ 8τ ττ + 56τ 3 τ + 16τ 5 τ 2τ 3 τ 2τ 5 τ + 114τ 2 τ +12τ 2 τ 12(τ ) 2 + 48ττ 54τ τ 10ττ )θ 4 + ( 31ττ 46τ + 416τ 2 226τ 3 234τ 858τ 4 + 212τ 2 τ + 158τ 5 80τ 3 τ 97(τ ) 2 + 10τ(τ ) 2 28(τ ) 2 τ 2 226τ 4 τ + 22τ 6 6τ 7 + 7τ 5 τ + τ 4 (τ ) 2 + 20τ 3 (τ ) 2 10τ

NTMSCI 3, No. 3, 168-174 (2015) / www.ntmsci.com 172 12τ 3 τ τ 12τ ττ + 14τ 4 τ 6τ 4 τ τ 5 τ 12τ 3 τ + 8τ 2 τ + 12τ 2 τ +17ττ 4ττ )θ 3 + (18τ(τ ) 2 4ττ 2τ 4 τ 6τ 3 τ + 4(τ ) 2 τ 2 10τ 6 44τ 2 5τ 6τ 3 τ + 4(τ ) 2 τ 2 10τ 6 44τ 2 5τ 252τ 3 + 3τ 4 τ + 4τ 3 τ 48(τ ) 3 τ + 48τ 3 τ τ 216τ τ 2 τ + 60τ 4 τ τ + 24τ 2 ττ + 16τ τ τ 2 +112τ ττ + 32τ ττ + 68τ 4 τ + 12τ 4 τ 192τ 3 τ 128τ 5 τ + 60τ 3 τ +20τ 5 τ 504τ 2 τ + 20τ 2 τ + 48(τ ) 2 τ + 64ττ + 108τ τ + 36ττ )θ 6 +(640ττ + 187τ 2 + 264τ 3 + 4851τ 4 1150τ 2 τ 1396τ 5 + 384τ 3 τ +134(τ ) 2 + 216τ(τ ) 2 28(τ ) 2 τ 2 + 1590τ 4 τ 291τ 6 32(τ ) 3 + 120τ 7 +12τ 5 (τ ) 2 136τ 5 τ 34τ 4 (τ ) 2 160τ 3 (τ ) 2 + 32(τ ) 3 τ 3τ 8 30τ 20τ + 120τ 3 τ τ + 56τ τ 2 τ 12(τ ) 2 ττ 4τ τ τ 2 56τ ττ + 8τ ττ 90τ 4 τ + 60τ 4 τ + 24τ 3 τ + 2τ 5 τ + 156τ 3 τ + 78τ 2 τ + 6τ 6 τ 56τ 2 τ 206ττ 4τ τ + 28ττ + 16τ τ )θ 5 + ( 768ττ 114τ 2 + 2239τ 3 107τ 672τ 4 + 16τ 2 τ 962τ 5 + 1154τ 3 τ 20(τ ) 2 338τ(τ ) 2 28(τ ) 2 137τ 4 τ +18τ 4 + 2τ 3 (τ ) 2 142τ 3 τ + 4τ 5 τ + 54ττ 11τ 2 τ + 68τ + 48τ 5 17τ 2 τ 6τ τ 2 τ )θ 2 + ( τ 3 τ + (τ ) 2 8τ 2 τ + 10τ 4 τ 4τ 5 + 8 + 6τ 4τ 3 + 28τ 4 2τ 2 τ ττ + 3(τ ) 2 4τ 2 + 28τ 4 2τ 2 τ ττ + 3(τ ) 2 4τ 2 )θ + 6τ 3 τ +4τ 3 2ττ + 4τ)] /[ ( 8τ 3 )θ 8 + (9τ 2 τ )θ 7 + (20τ 4 + 8ττ + 12τ 2 )θ 6 + ( 4τ 2 τ +36τ 3 8τ 2 4ττ )θ 5 ( 4ττ + 16τ 2 8τ 4 14τ 4τ 6τ 3 )θ 4 + (4τ 6τ 2 16τ 3 + 2ττ )θ 3 + (5 6τ 2 + 2τ + τ 4 )θ 2 + (2τ 3 + 2τ)θ + τ 2 ) 2 ]. We have investigated the Weingarten condition for the Gaussian curvature, Mean curvature and the second Gaussian curvature by taking τ = 1, under this condition we can give the following theorems. Theorem 3.1. Let Ψ be a tube surface in Minkowski 3-space E1 3 defined in (3.1) satisfying the Jacobi condition Ω(K,H) = 0 for the Gaussian curvature K and the mean curvature H of Ψ. Then, Ψ is a Weingarten surface. Proof. Let Ψ be a tube surface in E1 3 parametrized by (3.1) and satisfying Jacobi condition. Then, we have, differentiating K and H with respect to t, K H u v K H v u = 0 (3.2) K t = 1 2 [ 16τ3 τ θ 9 + (8τ 3 τ + 8τ 2 (τ ) 2 24τ 2 τ )θ 8 +(16τ 2 τ + 60τ 4 τ + 16τ(τ ) 2 + 12τ 2 τ )θ 7 +(152τ 3 τ 8τ 2 τ 4τ 2 (τ ) 2 + 8(τ ) 2 4τ 3 τ 4τ 2 τ + 8ττ + 24ττ )θ 6 +(124τ 2 τ 16ττ 8τ 2 τ 8ττ 24τ 4 τ 12τ 3 τ 8τ(τ ) 2 )θ 5 +(32ττ 4ττ 14τ 4τ 64τ 3 τ 24τ 2 τ 4(τ ) 2 + 2τ 2 τ )θ 4 +( 12ττ + 3τ 4 τ + 4ττ τ 54τ 2 τ )θ 3 + (8τ 3 τ 12ττ + 2τ )θ 2 (2τ + 7τ 2 τ )θ + 2ττ ]/((τθ + 1)(1 + 2τθ 2 + (τ + 2)θ)θ),

173 P. (Pospos) Tekin and F. Nejat Ekmekci: On Weingarten tube surfaces with null curve in Minkowski 3-space and H t = 1 4 [8τ3 τ θ 7 + 12τ 2 τ θ 6 + ( 4τ 2 τ + 16τ 3 τ )θ 5 + ( 8ττ + 48τ 2 τ 2τ 2 τ )θ 4 (48ττ 6τ 3 τ 4ττ + 4τ 2 τ )θ 3 + (τ 2 τ 16τ 2 τ + 17τ + 8ττ 2τ )θ 2 (2ττ 14ττ + 4τ )θ + τ 4τ ]/[(τθ + 1)(1 + 2τθ 2 + (τ + 2)θ], differentiating K and H with respect to θ, K θ = 1 2 [ 80τ4 θ 10 + ( 96τ 3 48τ 4 + 64τ 3 τ )θ 9 + (16τ 3 + 120τ 5 + 128τ 2 τ + 40τ 3 τ )θ 8 +(96τ 2 16τ 3 τ + 64τ 2 τ + 16τ 3 + 80τ 5 + 304τ 4 + 64ττ )θ 7 +(224τ 3 + 8ττ + 196τ 4 16τ 2 44τ 2 τ 16τ 5 12τ 3 τ )θ 6 +(4τ 2 24τ 2 τ 44τ 4 56τ + 152τ 3 16τ 5 40ττ 16τ )θ 5 +( 40τ 4 44τ 12τ + 2τ 2 τ 44τ 3 + 40τ 2 2τ 5 12ττ )θ 4 +( 20τ 2 + 8τ + 4ττ 32τ 3 8τ 4 )θ 3 + ( 10τ 3 τ 4 4τ + 2τ + 5 8τ 2 )θ 2 ( 2τ 3 4τ 2 )θ τ 2 ]/(θ 2 (1 + 2τθ 2 + (τ + 2)θ) 2 ), and H θ = 1 4 [32τ4 θ 7 + (40τ 3 + 20τ 4 )θ 6 + (32τ 4 + 8τ 3 )θ 5 ( 4τ 2 τ + 24τ 4 + 84τ 3 24τ 2 )θ 4 ( 4τ 2 τ + 80τ 2 + 80τ 3 8ττ )θ 3 + (34τ 8ττ 2τ 4τ 6τ 3 4ττ )θ 4 + 12τ 2τ 3τ 2 ]/[1 + 2τθ 2 + (τ + 2)θ] 2. From the above equations (3.2) is satisfied, and then, the surface Ψ is a Weingarten surface. Theorem 3.2. Let Ψ be a tube surface with non-degenerate second fundamental form in Minkowski 3-space E 3 1 satisfying the Jacobi condition Ω(K II,K) = 0 (3.3) for the second Gaussian curvature K II and the Gaussian curvature K. Then, the surface Ψ is a Weingarten surface. Proof. For the proof, we can use the similar way with the theorem 3.1. When we take the partial derivative of the Gaussian curvature K and the second Gaussian curvature K II, we can find the following equation Then, Ψ is a Weingarten tube surface. K t K II θ K K II = 0. (3.4) θ t References [1] Abdel-Aziz, H.S., Saad, M.K., Weingarten Timelike Tube Surfaces Around a Spacelike Curve, Int. Journal of Math. Analysis, Vol.5, no.25, 1225-1236, 2011. [2] Balgetir, H., Bektaş, M., Inoguchi, J., Null Bertrand curves in Minkowski 3- space and their Characterizations, Note di Matematica, 23, n.1, 7-13, 2004. [3] Dillen, F.and Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 98, 307 320, 1999. [4] Doğan, F. Genelleştirilmiş Kanal Yüzeyleri, Doktora Tezi, Ankara, 2012. [5] Duggal, K. L., and Bejancu, A., Lightlike submanifolds of semi-riemannian manifolds and applications, Kluwer Academic, Dordrecht and Boston, Mass., 1996.

NTMSCI 3, No. 3, 168-174 (2015) / www.ntmsci.com 174 [6] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course Taught at the Instituto de Matematica e Estatistica (IME-USP), University of Sao Paulo, Brasil, 2008. [7] O Neill, B. Semi Riemannian Geometry with Applications to Relativity, A. Press, 482 p., New York, 1983. [8] Ro, J. S. and Yoon, D. W., Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Mathematical Society, 22(3), 359-366, 2009. [9] Sodsiri, W., Ruled surfaces of Weingarten type in Minkowski 3-space,PhD. thesis, Katholieke Universiteit Leuven, Belgium, 2005. [10] Stamou, G., Regelflachen vom Weingarten-typ, Colloq. Math. 79, 77-84, 1999. [11] Weingarten, J. Ueber eine Klasse auf einander abwickelbarer Flaachen, çjournal für die Reine und Angewadte Mathematik, 59; 382-393, 1861. [12] Weingarten, J. Ueber eine Flaachen, derer Normalen eine gegebene Flaacheberühren, Journal für die Reine und Angewadte Mathematik 62; 61-63, 1863.