Orthogonal systems and semigroups

Σχετικά έγγραφα
Example Sheet 3 Solutions

Uniform Convergence of Fourier Series Michael Taylor

SPECIAL FUNCTIONS and POLYNOMIALS

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Iterated trilinear fourier integrals with arbitrary symbols

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Solution Series 9. i=1 x i and i=1 x i.

D Alembert s Solution to the Wave Equation

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Parametrized Surfaces

Homework 8 Model Solution Section

Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Homework 3 Solutions

Math221: HW# 1 solutions

Second Order Partial Differential Equations

Mean-Variance Analysis

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

The Spiral of Theodorus, Numerical Analysis, and Special Functions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

The Pohozaev identity for the fractional Laplacian

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Section 8.3 Trigonometric Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Solutions to Exercise Sheet 5

2 Composition. Invertible Mappings

On the Einstein-Euler Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Geodesic Equations for the Wormhole Metric

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

The k-α-exponential Function

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Reminders: linear functions

Variational Wavefunction for the Helium Atom

The semiclassical Garding inequality

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Heisenberg Uniqueness pairs

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Inverse trigonometric functions & General Solution of Trigonometric Equations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

EE512: Error Control Coding

Finite Field Problems: Solutions

Answer sheet: Third Midterm for Math 2339

( y) Partial Differential Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

C.S. 430 Assignment 6, Sample Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 26: Circular domains

Section 7.6 Double and Half Angle Formulas

Dispersive estimates for rotating fluids and stably stratified fluids

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

12. Radon-Nikodym Theorem

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Other Test Constructions: Likelihood Ratio & Bayes Tests

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

MA 342N Assignment 1 Due 24 February 2016

( ) 2 and compare to M.

The Simply Typed Lambda Calculus

Statistical Inference I Locally most powerful tests

Concrete Mathematics Exercises from 30 September 2016

ST5224: Advanced Statistical Theory II

Branching form of the resolvent at threshold for discrete Laplacians

derivation of the Laplacian from rectangular to spherical coordinates

Exercises to Statistics of Material Fatigue No. 5

Space-Time Symmetries

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Jordan Form of Complex Tridiagonal Matrices

arxiv: v1 [math-ph] 4 Jun 2016

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Computing the Macdonald function for complex orders

6.3 Forecasting ARMA processes

Every set of first-order formulas is equivalent to an independent set

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Tridiagonal matrices. Gérard MEURANT. October, 2008

Empirical best prediction under area-level Poisson mixed models

Additional Results for the Pareto/NBD Model

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Quadratic Expressions

Transcript:

Orthogonal systems and semigroups José Luis Torrea Orthonet Logroño, 23 Febrero 213 () Orthogonal systems and semigroups Logroño, 23 Febrero 213 1 / 29

Jorge Betancor, Raquel Crescimbeni, Eleonor Harboure Teresa Martinez, Ricardo Testoni, Peter Sjögren Orthogonal systems and semigroups Juan Carlos Fariña, José Luis Torrea Oscar Ciaurri Luz Roncal, Juan Luis Varona, Juan Carlos Fariña Beatriz Viviani, Silvia Harzstein, Orthonet Lourdes Rodriguez-Mesa F. J. Martín-Reyes, Logroño, 23 Febrero 213 A. De La Torre, Gustavo Garrigós Alejandro Sanabria, Zhang Chao, Ma Tao Pablo Stinga, Beatriz Viviani, Roberto Macías Mario Pérez, Bruno Bongioanni, Sundaram Thangavelu Carlos Segovia, Cristian Gutierrez, () Orthogonal systems and semigroups Logroño, 23 Febrero 213 2 / 29

Fourier sums Poisson sums f (θ) = k a k e ikθ () Orthogonal systems and semigroups Logroño, 23 Febrero 213 3 / 29

Fourier sums Poisson sums f (θ) = k a k e ikθ P r f (θ) = k r k a k e ikθ = 1 + k> r k a k e ikθ + k> r k a k e ikθ }{{} = 1 + a k z k + r k a k z k = U(z) (z=re iθ ) k> k> () Orthogonal systems and semigroups Logroño, 23 Febrero 213 3 / 29

Fourier sums Poisson sums f (θ) = k a k e ikθ P r f (θ) = k r k a k e ikθ = 1 + k> r k a k e ikθ + k> r k a k e ikθ }{{} = 1 + a k z k + r k a k z k = U(z) (z=re iθ ) k> k> Harmonic. ( r 2 2 r + r r + 2 θ) Pr f (θ) = z z U = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 3 / 29

Fourier sums Poisson sums f (θ) = k a k e ikθ P r f (θ) = k r k a k e ikθ = 1 + k> r k a k e ikθ + k> r k a k e ikθ }{{} = 1 + a k z k + r k a k z k = U(z) (z=re iθ ) k> k> Harmonic. ( r 2 2 r + r r + 2 θ) Pr f (θ) = z z U = (r r ) = r r with respect to dµ(r) = dr r en [, 1]. ( θ ) = θ with respect to a dθ. Decomposition: [ ] r 2 r 2 + r r + θ 2 = (r r ) (r r ) + ( θ ) ( θ ) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 3 / 29

Conjugate harmonic function (Fourier series) f (θ) = k a k e ikθ () Orthogonal systems and semigroups Logroño, 23 Febrero 213 4 / 29

Conjugate harmonic function (Fourier series) f (θ) = k a k e ikθ Q r f (θ) = i k = i k> sign k r k a k e ikθ r k a k e ikθ + i k> r k a k e ikθ }{{} = i a k z k + i r k a k z k = V (z) (z=re iθ ) k> k> () Orthogonal systems and semigroups Logroño, 23 Febrero 213 4 / 29

Conjugate harmonic function (Fourier series) f (θ) = k a k e ikθ Q r f (θ) = i k = i k> sign k r k a k e ikθ r k a k e ikθ + i k> r k a k e ikθ }{{} = i a k z k + i r k a k z k = V (z) (z=re iθ ) k> k> Harmonic. ( r 2 2 r + r r + 2 θ) Qr f (θ) =. z z V =. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 4 / 29

Cauchy Riemann equations ( Fourier series) P r f (θ) = k r k a k e ikθ = 1 + k> a k z k + k> r k a k z k = U(z) Q r f (θ) = i sign k r k a k e ikθ = i a k z k + i r k a k z k = V (z) k k> k> () Orthogonal systems and semigroups Logroño, 23 Febrero 213 5 / 29

Cauchy Riemann equations ( Fourier series) P r f (θ) = k r k a k e ikθ = 1 + k> a k z k + k> r k a k z k = U(z) Q r f (θ) = i sign k r k a k e ikθ = i a k z k + i r k a k z k = V (z) k k> k> F (z) = U(z) + iv (z) = 1 + 2 k> a k z k is holomorfic: z F = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 5 / 29

Cauchy Riemann equations ( Fourier series) P r f (θ) = k r k a k e ikθ = 1 + k> a k z k + k> r k a k z k = U(z) Q r f (θ) = i sign k r k a k e ikθ = i a k z k + i r k a k z k = V (z) k k> k> F (z) = U(z) + iv (z) = 1 + 2 k> a k z k is holomorfic: z F = Cauchy-Riemann (Fourier series) θ (P r f )(θ) = r r (Q r f )(θ) ( ) r r (P r f )(θ) = θ (Q r f )(θ) i.e. (r r ) (P r f )(θ) = ( θ ) (Q r f )(θ) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 5 / 29

On R f (x) = f (ξ)e ixξ dξ R () Orthogonal systems and semigroups Logroño, 23 Febrero 213 6 / 29

On R f (x) = R f (ξ)e ixξ dξ P t f (x) = R = }{{} (z=t ix) e t ξ f (ξ) e iξ x dξ e zξ f (ξ)dξ + e zξ f ( ξ)dξ = U(z) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 6 / 29

On R f (x) = R f (ξ)e ixξ dξ P t f (x) = R = }{{} (z=t ix) e t ξ f (ξ) e iξ x dξ e zξ f (ξ)dξ + e zξ f ( ξ)dξ = U(z) Harmonic. ( 2 t + 2 x ) Pt f (x) = z z U = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 6 / 29

On R f (x) = R f (ξ)e ixξ dξ P t f (x) = R = }{{} (z=t ix) e t ξ f (ξ) e iξ x dξ e zξ f (ξ)dξ + e zξ f ( ξ)dξ = U(z) Harmonic. ( 2 t + 2 x ) Pt f (x) = z z U = ( x ) = x with respect to dx ( t ) = t with respect to dt Decomposition. [ ] t 2 + x 2 = ( t ) ( t ) + ( x ) ( x ) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 6 / 29

Conjugate harmonic function (line) f (x) = f (ξ)e ixξ dξ R () Orthogonal systems and semigroups Logroño, 23 Febrero 213 7 / 29

Conjugate harmonic function (line) f (x) = R f (ξ)e ixξ dξ Q t f (x) = i R }{{} = i (z=t ix) sign ξ e t ξ f (ξ) e iξ x dξ e zξ f (ξ)dξ + i e zξ f ( ξ)dξ = V (z) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 7 / 29

Conjugate harmonic function (line) f (x) = R f (ξ)e ixξ dξ Q t f (x) = i R }{{} = i (z=t ix) sign ξ e t ξ f (ξ) e iξ x dξ e zξ f (ξ)dξ + i e zξ f ( ξ)dξ = V (z) Harmonic. ( 2 t + 2 x ) Qt f (x) = z z V = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 7 / 29

Cauchy Riemann equations (line) P t f (x) = e t ξ f (ξ) e iξ x dξ = R Q t f (x) = i sign ξ e t ξ f (ξ) e iξ x dξ = i R e zξ f (ξ)dξ + e zξ f ( ξ)dξ = U(z) e zξ f (ξ)dξ + i e zξ f ( ξ)dξ = V (z) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 8 / 29

Cauchy Riemann equations (line) P t f (x) = e t ξ f (ξ) e iξ x dξ = R Q t f (x) = i sign ξ e t ξ f (ξ) e iξ x dξ = i R e zξ f (ξ)dξ + e zξ f ( ξ)dξ = U(z) e zξ f (ξ)dξ + i e zξ f ( ξ)dξ = V (z) F (z) = U(z) + iv (z) is holomorphic: z F = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 8 / 29

Cauchy Riemann equations (line) P t f (x) = e t ξ f (ξ) e iξ x dξ = R Q t f (x) = i sign ξ e t ξ f (ξ) e iξ x dξ = i R e zξ f (ξ)dξ + e zξ f ( ξ)dξ = U(z) e zξ f (ξ)dξ + i e zξ f ( ξ)dξ = V (z) F (z) = U(z) + iv (z) is holomorphic: z F = Cauchy Riemann (line) x P t f (x) = t Q t f (x) ( ) t P t f (x) = x Q t f (x) i.e. ( t ) P t f (x) = ( x ) Q t f (x) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 8 / 29

Orthogonal polynomials (Hermite) Hermite Polynomials on R: H n (x) = ( 1) n e x 2 /2 d n 2 dx n e x /2. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 9 / 29

Orthogonal polynomials (Hermite) Hermite Polynomials on R: H n (x) = ( 1) n e x 2 /2 d n 2 dx n e x /2. f (x) = n a n H n (x) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 9 / 29

Orthogonal polynomials (Hermite) Hermite Polynomials on R: H n (x) = ( 1) n e x 2 /2 d n 2 dx n e x /2. f (x) = n a n H n (x) Poisson sums : P r f (x) = r n a n H n (x)... (r = e t ) n= () Orthogonal systems and semigroups Logroño, 23 Febrero 213 9 / 29

Orthogonal polynomials (Hermite) Hermite Polynomials on R: H n (x) = ( 1) n e x 2 /2 d n 2 dx n e x /2. f (x) = n a n H n (x) Poisson sums : P r f (x) = r n a n H n (x)... (r = e t ) n= There is a kernel : [ P t f (x) = e tn a n H n (x) = e tn n= = R n= [ ] e tn H n (y) H n (x) f (y)e y 2 dy = n= R ] f (y)h n (y)e y 2 dy H n (x) R K t (x, y)f (y)e y 2 dy... () Orthogonal systems and semigroups Logroño, 23 Febrero 213 9 / 29

Literature B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 118 (1965), 17-92. B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 244-26. B. Muckenhoupt and E. M. Stein Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 1 / 29

Literature () Orthogonal systems and semigroups Logroño, 23 Febrero 213 11 / 29

Understanding Muckenhoupt Two alternatives following Muckenhoupt P t f (x) = n e t2n a n H n (x) versus P t f (x) = n e t 2n a n H n (x). () Orthogonal systems and semigroups Logroño, 23 Febrero 213 12 / 29

Understanding Muckenhoupt Two alternatives following Muckenhoupt P t f (x) = n e t2n a n H n (x) versus P t f (x) = n e t 2n a n H n (x). The second satisfies ( 2 t + x 2 ) 2x x (Pt f )(x) = ( t 2 ) + ( x 2x) x (Pt f )(x) ] = [( t ) ( t ) + ( x ) x (P t f )(x) = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 12 / 29

Understanding Muckenhoupt Two alternatives following Muckenhoupt P t f (x) = n e t2n a n H n (x) versus P t f (x) = n e t 2n a n H n (x). The second satisfies ( 2 t + x 2 ) 2x x (Pt f )(x) = ( t 2 ) + ( x 2x) x (Pt f )(x) ] = [( t ) ( t ) + ( x ) x (P t f )(x) = ( x ) = ( x 2x) Adjoint with respect to measure dγ(x) = e x 2 dx () Orthogonal systems and semigroups Logroño, 23 Febrero 213 12 / 29

Q t f (x) = n Understanding Muckenhoupt Moreover 2n e t 2n a n H n 1 (x) satisfies ( 2 t + x ( x 2x) ) (Q t f )(x) = [ ( t )( t ) + x ( x ) ] (Q t f )(x) = () Orthogonal systems and semigroups Logroño, 23 Febrero 213 13 / 29

Understanding Muckenhoupt Moreover 2n e t 2n a n H n 1 (x) Q t f (x) = n satisfies ( 2 t + x ( x 2x) ) (Q t f )(x) = [ ( t )( t ) + x ( x ) ] (Q t f )(x) = Cauchy Riemann equations (Hermite) x P t f (x) = t Q t f (x) ( ) t P t f (x) = ( x 2x)Q t f (x), i.e. ( t ) P t f (x) = ( x ) Q t f (x) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 13 / 29

Common path? In all the cases, lim Q tf (x) = t () Orthogonal systems and semigroups Logroño, 23 Febrero 213 14 / 29

Common path? In all the cases, Hence Q t f (x) = t s Q s f (x) ds = lim Q tf (x) = t t x P s f (x) ds = x P s f (x) ds t () Orthogonal systems and semigroups Logroño, 23 Febrero 213 14 / 29

Common path? In all the cases, Hence Q t f (x) = t s Q s f (x) ds = lim Q tf (x) = t lim Q tf (x) drives to an important operator: t t x P s f (x) ds = x P s f (x) ds (1) lim i sign k r k a k e ikθ = i sign k a k e ikθ (Conjugate function). t k k (2) lim i sign ξe t ξ f (ξ)e iξx dξ = Ĥf (ξ)e iξx dξ (Hilbert transform). t R R t () Orthogonal systems and semigroups Logroño, 23 Febrero 213 14 / 29

Common path? In all the cases, Hence Q t f (x) = t s Q s f (x) ds = lim Q tf (x) = t lim Q tf (x) drives to an important operator: t t x P s f (x) ds = x P s f (x) ds (1) lim i sign k r k a k e ikθ = i sign k a k e ikθ (Conjugate function). t k k (2) lim sign ξe t ξ f (ξ)e iξx dξ = Ĥf (ξ)e iξx dξ (Hilbert transform). i t R (3) lim t t s Q s f (x) ds = x P s f (x) ds R t () Orthogonal systems and semigroups Logroño, 23 Febrero 213 14 / 29

Common path? In all the cases, Hence Q t f (x) = t s Q s f (x) ds = lim Q tf (x) = t lim Q tf (x) drives to an important operator: t t x P s f (x) ds = x P s f (x) ds (1) lim i sign k r k a k e ikθ = i sign k a k e ikθ (Conjugate function). t k k (2) lim sign ξe t ξ f (ξ)e iξx dξ = Ĥf (ξ)e iξx dξ (Hilbert transform). i t R (3) lim t t s Q s f (x) ds = x P s f (x) ds R x P s f (x) ds? () Orthogonal systems and semigroups Logroño, 23 Febrero 213 14 / 29 t

Diffusion semigroups E. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley theory, Princeton, 197. (M, dµ) measure space. {T t } t> : L 2 L 2 : T t1+t 2 = T t1 T t2. T = Id. lim t T t f = f in L 2. T t f p f p, (1 p ). Contraction. T t selfadjoint in L 2. T t f si f. Positivity. T t 1 = 1. Markov. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 15 / 29

First example of semigroup. Classical heat equation The example of diffusion semigroup in L 2 (R): 1 T t f (x) = e x y 2 (4πt) 1/2 4t f (y) dy R () Orthogonal systems and semigroups Logroño, 23 Febrero 213 16 / 29

First example of semigroup. Classical heat equation The example of diffusion semigroup in L 2 (R): 1 T t f (x) = e x y 2 (4πt) 1/2 4t f (y) dy For good functions f we have: t (T t f (x)) = 2 x (T t f (x)) = x (T t f (x)) R In symbols T t f (x) = e t f (x) heat semigroup () Orthogonal systems and semigroups Logroño, 23 Febrero 213 16 / 29

First example of semigroup. Classical heat equation The example of diffusion semigroup in L 2 (R): 1 T t f (x) = e x y 2 (4πt) 1/2 4t f (y) dy For good functions f we have: t (T t f (x)) = 2 x (T t f (x)) = x (T t f (x)) R In symbols Interesting remark T t f (x) = e t f (x) heat semigroup T t f (ξ) = e t ξ 2 f (ξ) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 16 / 29

Second example of diffusion semigroup. Orthogonal polynomials Ilustration. L with eigenfunctions {φ k } k and eigenvalues {λ k } k e tl φ k (x) = e tλ k φ k (x), e tl( ) c k φ k (x) = e tλ k c k φ k (x) k k () Orthogonal systems and semigroups Logroño, 23 Febrero 213 17 / 29

Second example of diffusion semigroup. Orthogonal polynomials Ilustration. L with eigenfunctions {φ k } k and eigenvalues {λ k } k e tl φ k (x) = e tλ k φ k (x), e tl( ) c k φ k (x) = e tλ k c k φ k (x) k k We have the heat equation for L: t (e tl f (x)) = Le tl f (x) () Orthogonal systems and semigroups Logroño, 23 Febrero 213 17 / 29

Second example of diffusion semigroup. Orthogonal polynomials Ilustration. L with eigenfunctions {φ k } k and eigenvalues {λ k } k e tl φ k (x) = e tλ k φ k (x), e tl( ) c k φ k (x) = e tλ k c k φ k (x) k k We have the heat equation for L: t (e tl f (x)) = Le tl f (x) Fourier series case. e ikθ = k 2 e ikθ. e t( )( a k e ikθ) = k k e t k 2 a k e ikθ () Orthogonal systems and semigroups Logroño, 23 Febrero 213 17 / 29

Second example of diffusion semigroup. Orthogonal polynomials Ilustration. L with eigenfunctions {φ k } k and eigenvalues {λ k } k e tl φ k (x) = e tλ k φ k (x), e tl( ) c k φ k (x) = e tλ k c k φ k (x) k k We have the heat equation for L: t (e tl f (x)) = Le tl f (x) Fourier series case. e ikθ = k 2 e ikθ. e t( )( a k e ikθ) = k k e t k 2 a k e ikθ Hermite polynomials case. L = x 2 + 2x x, LH n = 2nH n. Then e tl( ) a n H n (x) = e t2n a n H n (x) n (remember Muckenhoupt) n () Orthogonal systems and semigroups Logroño, 23 Febrero 213 17 / 29

Third example of Poisson semigroup Formula for Gamma function: e t λ = t 2 π e t2 4s s 3/2 e sλ ds, λ >. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 18 / 29

Third example of Poisson semigroup Formula for Gamma function: e t λ = t 2 π e t2 4s s 3/2 e sλ ds, λ >. If L is positive, e t L f = t 2 π e t2 4s s 3/2 e sl f ds. Harmonic ( 2 t L ) (e t L f ) = e t L f : Poisson semigroup () Orthogonal systems and semigroups Logroño, 23 Febrero 213 18 / 29

Third example of Poisson semigroup Formula for Gamma function: e t λ = t 2 π e t2 4s s 3/2 e sλ ds, λ >. If L is positive, e t L f = t 2 π e t2 4s s 3/2 e sl f ds. Harmonic ( 2 t L ) (e t L f ) = e t L f : Poisson semigroup If L can be decompose L = ( x ) ( x ), we get the conjugate harmonic function: Q t f = t s Q s f ds = t x P s f ds () Orthogonal systems and semigroups Logroño, 23 Febrero 213 18 / 29

Determination of kernels If we know e tl then we know e t L. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 19 / 29

Determination of kernels If we know e tl then we know e t L. t 2 π e t2 4s s 3/2 e sl (x, y) ds = t 2 e t2 /4s π = }{{} ( t2 + x y 2 4s =u) = t π s 3/2 1 t π(t 2 + x y 2 ). e x y 2 4s 4πs ds 1 (t 2 + x y 2 ) e u du () Orthogonal systems and semigroups Logroño, 23 Febrero 213 19 / 29

Determination of kernels If we know e tl then we know e t L. t 2 π e t2 4s s 3/2 e sl (x, y) ds = t 2 e t2 /4s π = }{{} ( t2 + x y 2 4s =u) = t π s 3/2 1 t π(t 2 + x y 2 ). e x y 2 4s 4πs ds 1 (t 2 + x y 2 ) e u du Conclusion. If we know the kernel of the heat semigroup, we know the kernel of the Poisson semigroup. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 19 / 29

Riesz Transforms Gamma function firmula: λ α = 1 Γ(α) t α e λt dt, λ, α >. t () Orthogonal systems and semigroups Logroño, 23 Febrero 213 2 / 29

Riesz Transforms Gamma function firmula: λ α = 1 Γ(α) t α e Given φ k, eigenfunction of L with eigenvalue λ k, we have λt dt, λ, α >. t L α φ k = 1 λ α φ k = 1 k Γ(α) t α e λ k t φ k dt t = 1 Γ(α) t α e tl φ k dt t Hence, L α f = 1 Γ(α) t α e tl f dt t () Orthogonal systems and semigroups Logroño, 23 Febrero 213 2 / 29

Riesz Transforms Gamma function firmula: λ α = 1 Γ(α) t α e Given φ k, eigenfunction of L with eigenvalue λ k, we have λt dt, λ, α >. t L α φ k = 1 λ α φ k = 1 k Γ(α) t α e λ k t φ k dt t = 1 Γ(α) t α e tl φ k dt t Hence, L α f = 1 Γ(α) t α e tl f dt t L 1/2 f = ( L) 1 f = 1 Γ(1) Going back to our slide (?) t 1 e t L f dt t = e t L f dt lim Q tf = lim t t t s Q s f (x)ds = x P s f (x)ds = x L 1/2 f () Orthogonal systems and semigroups Logroño, 23 Febrero 213 2 / 29

Stein knew everything!.

Stein knew everything!. Look into the red book. 197! () Orthogonal systems and semigroups Logroño, 23 Febrero 213 21 / 29

Stein knew it... () Orthogonal systems and semigroups Logroño, 23 Febrero 213 22 / 29

Boundedness in L 2 of Riesz transforms L = x x () Orthogonal systems and semigroups Logroño, 23 Febrero 213 23 / 29

Boundedness in L 2 of Riesz transforms L = x x Eigenvalue case: ψ k = x (L) 1/2 φ k ( ) ψ k ψ l dµ = x (L) 1/2 φ k )( x (L) 1/2 φ l dµ ( )( ( ) = x x (L) 1/2 φ k (L) 1/2 φ l )dµ = L(L) 1/2 φ k )((L) 1/2 φ l dµ ( ) = (L) 1/2 φ k )((L) 1/2 φ l dµ = λ 1/2 k λ 1/2 l φ k φ l dµ () Orthogonal systems and semigroups Logroño, 23 Febrero 213 23 / 29

Boundedness in L 2 of Riesz transforms L = x x Eigenvalue case: ψ k = x (L) 1/2 φ k ( ) ψ k ψ l dµ = x (L) 1/2 φ k )( x (L) 1/2 φ l dµ ( )( ( ) = x x (L) 1/2 φ k (L) 1/2 φ l )dµ = L(L) 1/2 φ k )((L) 1/2 φ l dµ ( ) = (L) 1/2 φ k )((L) 1/2 φ l dµ = λ 1/2 k λ 1/2 l φ k φ l dµ Spectral theorem: x (L) 1/2 f, x (L) 1/2 f = x x (L) 1/2 f, (L) 1/2 f = (L) 1/2 f, (L) 1/2 f = f, f () Orthogonal systems and semigroups Logroño, 23 Febrero 213 23 / 29

Boundedness in L p of Riesz transforms General procedure in Harmonic Analysis. Once we know the L 2 -boundedness, the kernel is used to get L p boundedness. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 24 / 29

Boundedness in L p of Riesz transforms General procedure in Harmonic Analysis. Once we know the L 2 -boundedness, the kernel is used to get L p boundedness. x L 1/2 f (x) = x e tl 1/2 dt f (x) t t = x e tl 1/2 dt f (x) t t = x e tl 1/2 dt (x, y)f (y) dy t R t ( n ) = x e tl 1/2 dt (x, y) t f (y) dy R n t = K(x, y)f (y) dy. R n () Orthogonal systems and semigroups Logroño, 23 Febrero 213 24 / 29

Possible Applications a priori estimates a priori estimates L = i ( i ) i Lu = f f L p = i j u L p () Orthogonal systems and semigroups Logroño, 23 Febrero 213 25 / 29

Possible Applications a priori estimates a priori estimates L = i ( i ) i Lu = f f L p = i j u L p i j u = i j L 1 f L p () Orthogonal systems and semigroups Logroño, 23 Febrero 213 25 / 29

Application Sobolev Spaces Assume f L p L 1/2 f L p. Equivalently L 1/2 g L p g L p. () Orthogonal systems and semigroups Logroño, 23 Febrero 213 26 / 29

Application Sobolev Spaces Assume f L p L 1/2 f L p. Equivalently Then L 1/2 g L p g L p. {f L p : L 1/2 f L p } = {f L p : f L p } () Orthogonal systems and semigroups Logroño, 23 Febrero 213 26 / 29

Application Sobolev Spaces Assume f L p L 1/2 f L p. Equivalently Then L 1/2 g L p g L p. {f L p : L 1/2 f L p } = {f L p : f L p } Sobolev spaces W k,p L = {f L p : k f L p } = {f L p : L k/2 f L p } () Orthogonal systems and semigroups Logroño, 23 Febrero 213 26 / 29

Muchas gracias! () Orthogonal systems and semigroups Logroño, 23 Febrero 213 27 / 29