Dispersive estimates for rotating fluids and stably stratified fluids
|
|
- Ἀμήνὄφις Λαιμός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 特別講演 17 : msjmeeting-17sep-5i4 Dispersive estimates for rotating fluids and stably stratified fluids ( ) 1. Navier-Stokes (1.1) Boussinesq (1.) t v + (v )v = v q t >, x R, v = t >, x R, t v + (v )v = v q + ηe t >, x R, t η + (v )η = η t >, x R, v = t >, x R. (1.1) (1.) v = (v 1 (t, x), v (t, x), v (t, x)) T, q = q(t, x), η = η(t, x) e = (,, 1) T (1.1), (1.) (1.1) ( ) (v Ω, q Ω ) v Ω (x) = Ωe x, q Ω (x) = Ω (x 1 + x ). Ω R \ } q Ω O(t) cos t sin t O(t) = sin t cos t 1 (1.1) (v, q) u(t, x) = O(Ωt) T v(t, O(Ωt)x) v Ω (x), p(t, x) = q(t, O(Ωt)x) q Ω (x) (v Ω, q Ω ) (u, p) (u, p) Coriolis Navier-Stokes t u + (u )u = u Ωe u p t >, x R, u = t >, x R. (1.) ( :15H546) takada@math.kyushu-u.ac.jp
2 (1.) (1.) q s = η s (v s, η s, q s ) v s, η s (x ) = a + bx, q s (x ) = c + ax + b x (a, b, c R). b = η s > N = b (1.) (η, q) (η s, q s ) θ(t, x) = η(t, x) η s (x ), p(t, x) = q(t, x) q s (x ) (v, θ, p) t v + (v )v = v p + θe t >, x R, t θ + (v )θ = θ N v t >, x R, v = t >, x R. (1.4) (1.), (1.4) Coriolis Ωe u (θe, N v ) T Helmholtz ( ) (δ jk + R j R k ) P = (δ jk + R j R k ) 1 j,k P = 1 j,k 1 R j = xj ( ) 1/ Riesz Coriolis J r, J s 1 J r = 1, J s = 1 1 (1.4) u = (v, θ/n) T = (, ) T Helmholtz (1.), (1.4) Ω 1 : t u u + ΩPJ r Pu + P(u u) =, u =, (1.5) u(, x) = u (x), t u u + NPJ s Pu + P(u u) =, u =, u(, x) = u (x) = (v (x), θ (x)/n). (1.6) PJ r P PJ s P [ ] σ PJ r P = ±ip r (ξ), }, p r (ξ) = ξ ξ, [ ] σ PJ s P = ±ip s (ξ),, }, p s (ξ) = ξ h ξ, ξ h = (ξ 1, ξ )
3 + ΩPJ r P + NPJ s P e t( ΩPJ rp) u = 1 et e iωtp r(d) (I + R)u + 1 et e iωtp r(d) (I R)u e t( NPJsP) u = e t e intps(d) P + u + e t e intps(d) P u + e t P u. I R R R = R R 1, Pj u (ξ) = û (ξ), a j (ξ) C 4 a j (ξ) (j = ±, ), R R 1 a + (ξ) = 1 ξh ξ iξ 1 ξ iξ ξ i ξ h ξ h ξ, a (ξ) = a + (ξ), a (ξ) = 1 ξ h ξ ξ 1 (1.7) a ± (ξ), a (ξ)} PJ s P ±ip s (ξ), } e ±iωtpr(d) e ±intps(d) Fourier e ±iωtpr(d) f(x) = e ix ξ±iωtpr(ξ) f(ξ) dξ, pr (ξ) = ξ R ξ, (1.8) e ±intps(d) f(x) =. R e ix ξ±intp s(ξ) f(ξ) dξ, ps (ξ) = ξ h ξ. (1.9) Coriolis Navier-Stokes (1.5) Babin- Mahalov-Nicolaenko [1] T (1.5) u H s (T ) (s > 1/) Ω = Ω (u ) Ω Ω (1.5) u C([, ); H s (T )) L (, ; H s+1 (T )) Resonant Kishimoto-Yoneda [15] R Chemin- Desjardins-Gallagher-Grenier [5] u Ḣ 1 (R ) Coriolis u Ḣs (R ) (1/ < s < /4) Ω u H s [11] Ω R Giga-Inui-Mahalov-Saal [8], Hieber-Shibata [9], Konieczny-Yoneda [18], Ito-Kato [14] [1] Navier-Stokes Sawada [1], Giga-Inui-Mahalov-Matsui [7] u Ḣs (R ) (1/ < s < 5/4) [1] [1] T Ω
4 Boussinesq (1.6) Charve [,4] (1.6) Coriolis Ωe v [,4] (1.7) u = u = P + u +P u +P u P ± u Ḣ 1 (R ), P u H 1 +ε (R ) (ε > ) u N = N (u ) Ω = Ω (u ) N N Ω Ω (1.6) u L (, ; Ḣ 1 (R )) L (, ; Ḣ (R )) Koba-Mahalov-Yoneda [16] N Ω u Ḣ 1 (R ) Ibrahim-Yoneda [1] Babin-Mahalov-Nicolaenko [] (1.8), (1.9) p r (ξ) p s (ξ) Littlewood-Paley U r ± (t)f(x) = e ix ξ±itpr(ξ) ψ(ξ) f(ξ) dξ, p r (ξ) = ξ R ξ, (.1) U s ± (t)f(x) = R e ix ξ±itps(ξ) ψ(ξ) f(ξ) dξ, p s (ξ) = ξ h ξ, (t, x) R1+. (.) ψ S (R ) supp ψ ξ } ψ(ξ) = 1 ( 1 ξ ) Dutrifoy [6] [1] U ± r (t) U ± r (t)f L C log(e + t ) 1 + t } 1 fl 1.1. C = C(ψ) U r ± (t)f L C(1 + t ) 1 f L 1 t R f L 1 (R ) 1 U s ± (t).. C = C(ψ) U ± s (t)f L C(1 + t ) 1 fl 1 t R f L 1 (R ) 1/ Coriolis Navier- Stokes (1.5).1 [11] u Ḣs (R ), 1/ < s < /4
5 .. (s, p, q) 1 < s < 9 1, 1 + s 9 1 p < 7 1 s 6, max, 1 p + s 1 } < 1 q < 5 8 p + s 4, 4 p 1 q < p. δ = δ(s, p, q) u Ḣs δ Ω 1 (s 1 ) (.) Ω R \ } u Ḣs (R ) ( u = ) (1.5) u C([, ); Ḣs (R )) L q (, ; Ẇ s,p (R )).4.. (.) u Ḣs (R ) Ω = ( ) δ 1 s 1/ u Ḣs Ω Ω (1.5) u.1 [11] s < /4 s < 9/1 Boussinesq (1.6).5. 1/ < s 5/8 δ 1 = δ 1 (s) δ P + u Ḣs + P u Ḣs δ 1 N 1 (s 1 ), P u Ḣ 1 δ (.4) N > u Ḣ 1 (R ) Ḣs (R ) ( u = ) (1.6) u C([, ); Ḣ 1 (R )) L 4 (, ; Ẇ 1, (R )).6..5 (.4) (v, θ ) ( h ) 1 ( ) 1 xj x v,j Ḣs δ 1N 1 (s 1 ) (j = 1, ), ( h ) 1 ( ) 1 v, δ Ḣs 1N 1 (s 1 ), θ Ḣs δ 1N 1 (s 1 )+1, ( h ) 1 ( x1 v, x v,1 ) Ḣ 1 δ. δ 1 = δ 1(s) δ 1 N > (1.6) θ Ḣs -..1,. p r (ξ) = ξ / ξ ξ } p s (ξ) = ξ h / ξ ξ h = }.1 p r (ξ) C ( ξ }) Littman
6 .1 ([], [, Corollary., page 4]). ψ C (R d ) p C (supp ψ; R) supp ψ rank p(ξ) k C = C(d, ψ, p) e ix ξ+itp(ξ) ψ(ξ) dξ C(1 + k t ) R d (t, x) R 1+d.1.1 ξ } rank p r (ξ) p r (ξ) = 1 ξ (ξ1 ξ ) ξ 1 ξ ξ ξ 1 (ξ ξ ) ξ 5 ξ 1 ξ ξ ξ (ξ ξ ) ξ (ξ ξ ) ξ 1 (ξ ξ ) ξ (ξ ξ ) ξ ξ h det p r (ξ) = (ξ 1 + ξ)ξ p ξ 9 r (ξ) ξ h = } ξ = } p r (, ξ ) = 1 ξ 5 ξ ξ, p r (ξ h, ) = 1 ξ h ξ 1 ξ ξ 1 ξ rank p r (ξ) p s (ξ) = ξ h / ξ ξ h = }.1 det p s (ξ) = ξ4 ξ 9 ξ h ξ h = } ξ = } Littlewood-Paley ψ h S (R ), ψ S (R) supp ψ h 1 ξ h }, supp ψ 1 ξ } ψ ( k ξ ) = 1 (ξ h, ξ ) j Z ψ h ( j ξ h ) = k Z U s ± (t) U s ± (t)f(x) = e ix ξ±itps(ξ) ψ h ( j ξ h )ψ ( k ξ )ψ(ξ) f(ξ) dξ j,k Z R ( = + + ) e ix ξ±itps(ξ) ψ h ( j ξ h )ψ ( k ξ )ψ(ξ) f(ξ) dξ j, k j, R k 4 k, j 4 =: I 1 (t, x) + I (t, x) + I (t, x). I 1 (det p s (ξ) ) I I I ξ = } k k N e ix ξ±itps(ξ) ψ h (ξ h )ψ ( k ξ ) dξ C(1 + 1 t ) R k k
7 ξ k ξ e ix ξ±itps(ξ) ψ h (ξ h )ψ ( k ξ ) dξ = k R R e i(x h, k x ) ξ±itp s (ξ h, k ξ ) ψ h (ξ h )ψ (ξ ) dξ p s (ξ h, k ξ ) Taylor k 1 p s (ξ h, k ξ ) } ( ) 1 } = 1 k 1 + k ξ = 1 ξ ξ h ξ h + E k(ξ), E k C N (supp ψ h ψ ) C N k (N N }) p (ξ) = 1 ξ h supp ψ h ψ ξ det p (ξ) = ξ4 ξ h 1 k N e ix ξ±itps(ξ) ψ h (ξ h )ψ ( k ξ ) dξ k k R = k e k k R i(x h, k x ) ξ±itp s (ξ h, k ξ ) ψ h (ξ h )ψ (ξ ) dξ = k e ±it e k k R i(x h, k x ) ξ i k t k 1 p s (ξ h, k ξ )} ψh (ξ h )ψ (ξ ) dξ = k e k k R i(x h, k x ) ξ i k tp (ξ)+e k (ξ)} ψ h (ξ h )ψ (ξ ) dξ C } k min 1, (1 + k t ) k k C } min k, k (1 + t ) k k C(1 + t ) 1 I (t, x) j N e ix ξ±itps(ξ) ψ h ( j ξ h )ψ (ξ ) dξ C(1 + t ) R j j I 1 (t, x) det p s (ξ) (1 + t ). Youngwoo Koh Kongju National University Sanghyuk Lee Seoul National University [17, 19]
8 [1] A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), [] A. Babin, A. Mahalov, and B Nicolaenko, Fast singular oscillating limits and global regularity for the D primitive equations of geophysics, MAN Math. Model. Numer. Anal. 4 (), 1. [] F. Charve, Global well-posedness and asymptotics for a geophysical fluid system, Comm. Partial Differential Equations 9 (4), [4], Global well-posedness for the primitive equations with less regular initial data, Ann. Fac. Sci. Toulouse Math. (6) 17 (8), 1 8. [5] J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier, Mathematical geophysics, The Clarendon Press Oxford University Press, Oxford, 6. [6] A. Dutrifoy, Examples of dispersive effects in non-viscous rotating fluids, J. Math. Pures Appl. (9) 84 (5), [7] Y. Giga, K. Inui, A. Mahalov, and S. Matsui, Navier-Stokes equations in a rotating frame in R with initial data nondecreasing at infinity, Hokkaido Math. J. 5 (6), [8] Y. Giga, K. Inui, A. Mahalov, and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J. 57 (8), [9] M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z. 65 (1), [1] S. Ibrahim and T. Yoneda, Long-time solvability of the Navier-Stokes-Boussinesq equations with almost periodic initial large data, J. Math. Sci. Univ. Tokyo (1), 1 5. [11] T. Iwabuchi and R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework, Math. Ann. 57 (1), [1], Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal. 67 (14), [1], Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework, Funkcial. Ekvac. 58 (15), [14] H. Ito and J. Kato, A remark on a priori estimate for the Navier-Stokes equations with the Coriolis force. arxiv: [15] N. Kishimoto and T. Yoneda, Global solvability of the rotating Navier-Stokes equations with fractional Laplacian in a periodic domain. arxiv: [16] H. Koba, A. Mahalov, and T. Yoneda, Global well-posedness of the rotating Navier-Stokes- Boussinesq equations with stratification effects, Adv. Math. Sci. Appl. (1), [17] Y. Koh, S. Lee, and R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Differential Equations 19 (14), [18] P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier- Stokes equations, J. Differential Equations 5 (11), [19] S. Lee and R. Takada, Dispersive estimates for the stably stratified Boussinesq equations. to appear in Indiana Univ. Math. J. [] W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (196), [1] O. Sawada, The Navier-Stokes flow with linearly growing initial velocity in the whole space, Bol. Soc. Parana. Mat. () (4), [] E. M. Stein and R. Shakarchi, Functional analysis, Princeton Lectures in Analysis, vol. 4, Princeton University Press, Princeton, NJ, 11. Introduction to further topics in analysis.
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Orthogonal systems and semigroups
Orthogonal systems and semigroups José Luis Torrea Orthonet Logroño, 23 Febrero 213 () Orthogonal systems and semigroups Logroño, 23 Febrero 213 1 / 29 Jorge Betancor, Raquel Crescimbeni, Eleonor Harboure
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
On a free boundary problem of magnetohydrodynamics in multi-connected domains
On a free boundary problem of magnetohydrodynamics in multi-connected domains V.A.Solonnikov June 212, Frauenhimsee 1 Formulation of the problem Domains 1t : variable domain filled with a liquid, 2t :
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection
Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR 2D SHALLOW WATER EQUATIONS WITH ITS DEGENERATE VISCOSITY
EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR 2D SHALLOW WATER EQUATIONS WITH ITS DEGENERATE VISCOSITY ALEXIS F. VASSEUR AND CHENG YU Abstract. In this paper, we prove the existence of global weak solutions for
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Journal of Differential Equations
J. Differential Equations 47 9) 6 76 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde Global well-posedness for the generalized D Ginzburg Landau
A thermodynamic characterization of some regularity structures near the subcriticality threshold
Nils Berglund nils.berglund@univ-orleans.fr http://www.univ-orleans.fr/mapmo/membres/berglund/ SPA 2017 Invited Session: Regularity structures A thermodynamic characterization of some regularity structures
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at
Θέματα Αρμονικής Ανάλυσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 3: Αρμονικές Συναρτήσεις Μιχ. Μ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping
5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation
Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.
338-8570 255 e-mail: tkishimo@rimath.saitama-u.ac.jp 1 C T κ(t ) 1 [Projective] κ = κ =0 κ =1 κ =2 κ =3 dim = 1 P 1 elliptic others dim = 2 P 2 or ruled elliptic surface general type dim = 3 uniruled bir.
Θέματα Αρμονικής Ανάλυσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 5: Οι κλασικές διαφορικές εξισώσεις Μιχ. Μ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
Heisenberg Uniqueness pairs
Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,
REMARK ON WELL-POSEDNESS FOR THE FOURTH ORDER NONLINEAR SCHRÖDINGER TYPE EQUATION
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 12, Pages 3559 3568 S 0002-9939(04)07620-8 Article electronically published on July 12, 2004 REMARK ON WELL-POSEDNESS FOR THE FOURTH
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.
Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,
Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D
Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D Shijin Ding Changyou Wang Huanyao Wen Abstract We consider the equation modeling the compressible hydrodynamic flow of liquid crystals
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
REMARK ON THE OPTIMAL REGULARITY FOR EQUATIONS OF WAVE MAPS TYPE
REMARK ON THE OPTIMAL REGULARITY FOR EQUATIONS OF WAVE MAPS TYPE Sergiu Klainerman and Sigmund Selberg 1 Introduction Department of Mathematics Princeton University Princeton, NJ 08544, USA The goal of
Ultra-analytic effect of Cauchy problem for a class of kinetic equations
Ultra-analytic effect of Cauchy problem for a class of kinetic equations Yoshinori Morimoto, Chao-Jiang Xu To cite this version: Yoshinori Morimoto, Chao-Jiang Xu. Ultra-analytic effect of Cauchy problem
M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko
M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using
n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =
Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B26:
Title On a Bilinear Estimate of Schroding Analysis and Nonlinear Partial Diff Author(s) Fang, Yung-fu Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (011), B6: 1-14 Issue Date 011-05 URL http://hdl.handle.net/433/187887
Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography
Nonlinear Fourier transform for the conductivity equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki CoE in Analysis and Dynamics Research What is the non linear
W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r
2018 : msjmeeting-2018sep-09i004 ( ), Cahn Hilliard..,.,. 1.,,,. Dirichlet( ), Neumann( ), Robin(, ), 1, 2, 3., dynamic( ).,.,, system( ) transmission problem( ). 2. Cahn Hilliard 0 < T < +, R d (d = 2,
Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography
Nonlinear Fourier transform and the Beltrami equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki Beltrami equation: z f(z) = µ(z) z f(z) non linear Fourier transform
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών. i ΠΡΟΛΟΓΟΣ ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα
Θέματα Αρμονικής Ανάλυσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 1: Αρμονικές Συναρτήσεις στο επίπεδο, Μετασχηματισμός Hilbert (Εισαγωγή) Μιχ. Μ. Μαριάς Άδειες Χρήσης
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
100x W=0.1 W=
1 2 abstract: 1 [1] 1970 Furstenberg [2] 1 [3] 1979 Anderson [4] 1 2 1 H = NX n=1 jn >V n < nj); fv n g HjΨ >= EΨ > (ffi n =), ffi n+1 + ffi n 1 + V n ffi n = Effi n,
Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται
LOW REGULARITY SOLUTIONS OF THE CHERN-SIMONS-HIGGS EQUATIONS IN THE LORENTZ GAUGE
Electronic Journal of Differential Equations, Vol. 2009(2009), No. 4, pp. 0. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu LOW REGULARITY SOLUTIONS
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
An Essay on A Statistical Theory of Turbulence
53 特集 注目研究 in 年会 04 ɹ Պڀݚ Ӄཧ ژ দɹຊ ਓ Պ ཧ ɹ ɹ ɹ ɹوɹ೭ ɹ ࡔ Պڀݚ Ӄཧ ژ Kolmogorov Onsager Kármán-Howarth- Monin Euler An Essay on A Statistical Theory of Turbulence Takeshi MATSUMOTO, Faculty of Science, Kyoto
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)
On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1 1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y)
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation
Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 5 (2016, pp. 3885 3893 Research India Publications http://www.ripublication.com/gjpam.htm Eigenvalues and eigenfunctions
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Θέματα Αρμονικής Ανάλυσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 4: Μετασχηματισμός Fourier Μιχ. Μ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες
DERIVATION OF THE REYNOLDS TYPE EQUATION WITH MEMORY EFFECTS, GOVERNING TRANSIENT FLOW OF LUBRICANT. Antonija Duvnjak University of Zagreb, Croatia
GLASNIK MATEMATIČKI Vol. 39(59)(24), 77 1 DERIVATION OF THE REYNOLDS TYPE EQUATION WITH MEMORY EFFECTS, GOVERNING TRANSIENT FLOW OF LUBRICANT Antonija Duvnjak University of Zagreb, Croatia Abstract. In
Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with
Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics (, Based on joint research with ( ( Contents 1. Physical background of the problem 2. Mathematical formulation
H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1
44Ñ Vol.44, No. 015 3Ù ADVANCES IN MATHEMATICSCHINA Mar., 015 H Witten- ¾ É ÁÅ ³ Ý 1,, Õ doi: 10.11845/sxjz.014186b 0 1. Æ Þ ÆÔÅ Ø, Æ,, 5300;. Þ Ê, Æ,, 310018 : Ë Ñ H- ÔÖ Witten- ÐÒÐÛÜÅ G+ G, Gϕ Þ Đß.
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Θέματα Αρμονικής Ανάλυσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 2: Πραγματική Ανάλυση Μιχ. Μ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation
J. Math. Anal. Appl. 339 (28) 359 371 www.elsevier.com/locate/jmaa emarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation Xinwei Yu Mathematics Department, UCLA,
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
On Lie Reduction of the MHD Equations to Ordinary Differential Equations
Symmetry in Nonlinear Mathematical Physics 1997, V.1, 227 231. On Lie Reduction of the MHD Equations to Ordinary Differential Equations Victor POPOVYCH Institute of Mathematics of the National Academy
C-19 (B) Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI)
C-9 2 3 3 (B) 2005 2008 7340029 Development of stochastic numerics and probability theory via lacunary series (FUKUYAMA KATUSI) 6028956 discrepancy Hardy-Littewood-Pólya 3,200,000 0 3,200,000 2,600,000
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Lecture 12: Pseudo likelihood approach
Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions
ΘΕΩΡΗΜΑΤΑ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΥΞΗΤΙΚΟΤΗΤΑΣ-ΠΑΡΑΛΛΑΓΕΣ ΤΟΥ ΛΗΜΜΑΤΟΣ SCHWARZ ΓΙΑ ΟΛΟΜΟΡΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Γαλάτεια Κλεάνθους Υποστήριξη διδακτορικής διατριβής 25/02/2014 Monotonicity theorems for analytic functions
Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 016-017 Κβαντομηχανική Ι 3o Σετ Ασκήσεων Άσκηση 1 Οι λύσεις του αρμονικού ταλαντωτή, με V = x είναι της μορφής ψ n (x) = ( mω π )1/4 1 n n! H n (x)e x /, n = 0,1, (1) Με Η n τα πολυώνυμα
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material
A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads Electronic Supplementary Material Ivan Jarić 1,2*, Jörn Gessner 1 and Mirjana Lenhardt 3 1 Leibniz-Institute