Weak Lensing Tomography

Σχετικά έγγραφα
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Approximation of distance between locations on earth given by latitude and longitude

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Reminders: linear functions

Introduction to the ML Estimation of ARMA processes

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

TMA4115 Matematikk 3

w o = R 1 p. (1) R = p =. = 1

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ECE 468: Digital Image Processing. Lecture 8

The Simply Typed Lambda Calculus

Non-Gaussianity from Lifshitz Scalar

Bayesian modeling of inseparable space-time variation in disease risk

Hadronic Tau Decays at BaBar

EE 570: Location and Navigation

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

5.4 The Poisson Distribution.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

EE512: Error Control Coding

Second Order RLC Filters

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Strain gauge and rosettes

Lecture 34 Bootstrap confidence intervals

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Finite Field Problems: Solutions

Srednicki Chapter 55

6. MAXIMUM LIKELIHOOD ESTIMATION

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

A Lambda Model Characterizing Computational Behaviours of Terms

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Durbin-Levinson recursive method

CE 530 Molecular Simulation

The ε-pseudospectrum of a Matrix

Dark matter from Dark Energy-Baryonic Matter Couplings

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China


(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Homework 3 Solutions

Numerical Analysis FMN011

ST5224: Advanced Statistical Theory II

Solar Neutrinos: Fluxes

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Elements of Information Theory

Local Approximation with Kernels

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Probability and Random Processes (Part II)

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Cosmological dynamics and perturbations in Light mass Galileon models

Three coupled amplitudes for the πη, K K and πη channels without data

Module 5. February 14, h 0min

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Concrete Mathematics Exercises from 30 September 2016

Forced Pendulum Numerical approach

Primordial non-gaussianity from inflation

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Other Test Constructions: Likelihood Ratio & Bayes Tests

Impact of ozone cross-section choice on (WF)DOAS total ozone retrieval

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Biostatistics for Health Sciences Review Sheet

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Solution Series 9. i=1 x i and i=1 x i.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Space-Time Symmetries

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Supplementary Appendix

Parametrized Surfaces

Assalamu `alaikum wr. wb.

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

Finite difference method for 2-D heat equation

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Empirical best prediction under area-level Poisson mixed models

[1] P Q. Fig. 3.1

Buried Markov Model Pairwise

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Modbus basic setup notes for IO-Link AL1xxx Master Block

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

2 Composition. Invertible Mappings

Aluminum Electrolytic Capacitors (Large Can Type)

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Computing the Gradient

Transcript:

Weak Lensing Tomography 1.4 1.2 1.0 0.8 0.6 m tot =0.2eV 0.6 0.4 0.2 windows 0.5 1 1.5 2 z Wayne Hu Fermilab, October 2002

Collaborators Chuck Keeton Takemi Okamoto Max Tegmark Martin White

Collaborators Chuck Keeton Takemi Okamoto Max Tegmark Martin White Microsoft http://background.uchicago.edu /~whu/presentations/ferminu.pdf

Massive Neutrinos Relativistic stresses of a light neutrino slow the growth of structure Neutrino species with cosmological abundance contribute to matter as Ω ν h 2 = m ν /94eV, suppressing power as P/P 8Ω ν /Ω m P P 0.6 ( mtot ev ) min. ~3% (atmospheric)

Absolute effect is large! Galaxy Surveys SDSS BRG P(k) (arbitrary norm.) 1 0.1 m v = 0 ev m v = 1 ev nonlinear scale W. Hu Feb. 1998 0.01 0.1 k (h Mpc -1 )

Galaxy Surveys But because of bias we can only use the shape information not the much larger overall suppression Current constraints from 2dF suggest m ν < 1.8eV SDSS BRG P(k) (arbitrary norm.) 1 0.1 m v = 0 ev m v = 1 ev nonlinear scale W. Hu Feb. 1998 0.01 0.1 k (h Mpc -1 )

Massive Neutrinos Current data from 2dF galaxy survey indicates m ν <1.8eV assuming a ΛCDM model with parameters constrained by the CMB. Elgaroy et al (2002) 10 5 2dF P(k) (h-1 Mpc)3 10 4 10 3 0.01 decorrelation by Tegmark, Hamilton, Xu (2002) 0.1 1 k (h Mpc-1)

Example of Weak Lensing Toy example of lensing of the CMB primary anisotropies Shearing of the image

Lensing Observables Image distortion described by Jacobian matrix of the remapping A = 1 κ γ 1 γ 2 γ 2 1 κ + γ 1, where κ is the convergence, γ 1, γ 2 are the shear components

Lensing Observables Image distortion described by Jacobian matrix of the remapping A = 1 κ γ 1 γ 2 γ 2 1 κ + γ 1, where κ is the convergence, γ 1, γ 2 are the shear components related to the gravitational potential Φ by spatial derivatives ψ ij (z s ) = 2 zs 0 dz dd dz D(D s D) D s Φ,ij, ψ ij = δ ij A ij, i.e. via Poisson equation κ(z s ) = 3 2 H2 0Ω m zs 0 dz dd dz D(D s D) D s δ/a,

Gravitational Lensing by LSS Shearing of galaxy images reliably detected in clusters Main systematic effects are instrumental rather than astrophysical Colley, Turner, & Tyson (1996) Cluster (Strong) Lensing: 0024+1654

Cosmic Shear Data Shear variance as a function of smoothing scale compilation from Bacon et al (2002)

Shear Power Modes Alignment of shear and wavevector defines modes ε β

Shear Power Spectrum Lensing weighted Limber projection of density power spectrum ε shear power = κ power εε l(l+1)cl /2π 10 4 10 5 10 6 k=0.02 h/mpc zs Linear Non-linear 10 7 Limber approximation 10 100 1000 l zs=1 Kaiser (1992) Jain & Seljak (1997) Hu (2000)

COMBO-17 Brown et al (2002) Recent Measurement -1-1 50 h Mpc 5 h Mpc -1 0.5 h Mpc σ 8 = (0.74 ± 0.09) A = 1.25deg 2 z m = 0.85 ± 0.05 ( Ωm 0.3 ) 0.5 iterated quadratic estimator a la Bond, Jaffe, Knox (1998); Hu & White (2001)

PM Simulations Simulating mass distribution is a routine exercise Convergence Shear 6 6 FOV; 2' Res.; 245 75 h 1 Mpc box; 480 145 h 1 kpc mesh; 2 70 10 9 M White & Hu (1999)

Degeneracies All parameters of initial condition, growth and distance redshift relation D(z) enter Nearly featureless power spectrum results in degeneracies 10 4 εε l(l+1)cl /2π 10 5 10 6 10 7 10 100 1000 l zs=1

Degeneracies All parameters of initial condition, growth and distance redshift relation D(z) enter Nearly featureless power spectrum results in degeneracies T 100 80 60 40 20 CMB 10 100 MAP Planck l (multipole) Combine with information from the CMB: complementarity (Hu & Tegmark 1999) Crude tomography with source divisions (Hu 1999; Hu 2001) Fine tomography with source redshifts (Hu & Keeton 2002; Hu 2002)

Error Improvement Error improvements over MAP/CMB with a 1000 deg 2 survey 100 Error Improvement 30 10 3 1 MAP 0.029 0.0026 0.76 1.0 0.29 0.64 0.11 0.45 1.2 Ω m h 2 Ω b h 2 m ν Ω Λ Ω K τ n S T/S A Hu & Tegmark (1999)

Crude Tomography Divide sample by photometric redshifts g i (D) ni(d) 3 2 1 0.3 0.2 0.1 (a) Galaxy Distribution 1 2 (b) Lensing Efficiency 2 Power 10 4 10 5 25 deg 2, z med =1 22 0 0.5 1 1.5 2.0 D 100 1000 10 4 l Hu (1999)

Crude Tomography Divide sample by photometric redshifts Cross correlate samples g i (D) ni(d) 3 2 1 0.3 0.2 0.1 Order of magnitude increase in precision even after CMB breaks degeneracies Hu (1999) (a) Galaxy Distribution 1 1 2 0 0.5 2 (b) Lensing Efficiency 1 1.5 2.0 D Power 10 4 10 5 25 deg 2, z med =1 22 12 11 100 1000 10 4 l

Efficacy of Crude Tomography Error improvements over MAP/CMB with a 1000 deg 2 survey Error Improvement 100 30 10 3 MAP + photo-z no-z 1 MAP 0.029 0.0026 0.76 1.0 0.29 0.64 0.11 0.45 1.2 Ω m h 2 Ω b h 2 m ν Ω Λ Ω K τ n S T/S A Hu & Tegmark (1999); Hu (2000)

Dark Energy & Tomography Both CMB and tomography help lensing provide interesting constraints on dark energy 2 MAP no z 1 w 0 1000deg2 0 0.5 1.0 Ω DE l<3000; 56 gal/deg2 Hu (2001)

Dark Energy & Tomography Both CMB and tomography help lensing provide interesting constraints on dark energy 2 1 MAP no z 3 z w 0 1000deg2 0 0.5 1.0 Ω DE l<3000; 56 gal/deg2 Hu (2001)

Dark Energy & Tomography Both CMB and tomography help lensing provide interesting constraints on dark energy 2 1 MAP no z 3 z 0.6 0.7 0.8 w 0 0.9 1000deg2 0 0.5 1.0 Ω DE 1 0.55 0.6 0.65 0.7 l<3000; 56 gal/deg2 Hu (2001)

DarkSector and Radial Information Much oftheinformationonthe darksector ishiddeninthe temporal or radial dimension Evolution of growth rate (dark energy pressure slows growth) Evolution of distance-redshift relation Lensing is inherently two dimensional: all mass along the line of sight lenses Tomography implicitly or explicitly reconstructs radial dimension with source redshifts Photometricredshift errors currently z <0.1out toz~1and allow for fine tomography

Tomography in Practice Localization and selection of clusters 0.1 0.04 0.02 γ t 0.05 0 0 0 0.5 1 z phot -0.02 0 1 2 3 z phot Wittman et al. (2001; 2002)

Hidden in Noise Derivatives of noisy convergence isolate radial structures 400 200 (a) Density 0.6 κ 0.4 0.2 (b) Convergence 0 0.5 1 1.5 z Hu & Keeton (2001)

Fine Tomography Convergence projection of = δ/a for each z s κ(z s ) = 3 2 H2 0Ω m zs 0 dz dd dz D(D s D) D s,

Fine Tomography Convergence projection of = δ/a for each z s κ(z s ) = 3 2 H2 0Ω m zs 0 dz dd dz Data is linear combination of signal + noise d κ = P κ s + n κ, D(D s D) D s, [P κ ] ij = { 3 2 H2 0Ω m δd j (D i+1 D j )D j D i+1 D i+1 > D j, 0 D i+1 D j,

Fine Tomography Convergence projection of = δ/a for each z s κ(z s ) = 3 2 H2 0Ω m zs 0 dz dd dz Data is linear combination of signal + noise d κ = P κ s + n κ, D(D s D) D s, [P κ ] ij = { 3 2 H2 0Ω m δd j (D i+1 D j )D j D i+1 D i+1 > D j, 0 D i+1 D j, Well-posed (Taylor2002) but noisy inversion (Hu &Keeton2002) Noise properties differ from signal properties optimal filters

Fine Tomography Tomography can produce direct 3D dark matter maps, but realistically only broad features (Hu & Keeton 2002) 1 0.5 0 0.5 1 Radial density field 0 0.5 1 1.5 z

Fine Tomography Tomography can produce direct 3D dark matter maps, but realistically only broad features (Taylor 2002; Hu & Keeton 2002) 1 0.5 0 0.5 1 Radial density field Wiener reconstruction 0 0.5 1 1.5 z

Fine Tomography Tomography can produce direct 3D dark matter maps, but realistically only broad features (Taylor 2002; Hu & Keeton 2002) 1 0.5 0 0.5 1 Radial density field Wiener reconstruction 0 0.5 1 1.5 z

Fine Tomography Tomography can produce direct 3D dark matter maps, but realistically only broad features (Hu & Keeton 2002) 1 0.5 0 0.5 1 Radial density field Wiener reconstruction 0 0.5 1 1.5 z

Fine Tomography Tomography can produce direct 3D dark matter maps, but realistically only broad features (Hu & Keeton 2002) 1 0.5 0 0.5 1 Radial density field Wiener reconstruction 0 0.5 1 1.5 z

Growth Function Localized constraints (fixed distance-redshift relation) 1.4 4000 sq. deg 1.2 1.0 0.8 0.6 m tot =0.2eV 0.6 0.4 0.2 windows 0.5 1 1.5 2 z Hu (2002) 3 degenerate mass ν's assumed e.g. Beacom & Bell (2002)

Dark Energy Density Localized constraints (with cold dark matter) 1.5 4000 sq. deg ρ DE /ρ cr0 1.0 0.5 w= 0.8 0.5 0-0.5 windows 0.5 1 1.5 2 z Hu (2002)

Dark Energy Parameters Three parameter dark energy model (Ω DE, w, dw/dz=w') 1 0.5 none -0.9 σ(w')=0 none w' 0-0.5 0.03 σ(ω DE )=0.01 w -1-1.1-1 4000 sq. deg. 0.6 0.65 0.7 0.6 0.65 0.7 Ω DE Ω DE Hu (2002)

Lensing of a Gaussian Random Field CMB temperature and polarization anisotropies are Gaussian random fields unlike galaxy weak lensing Average over many noisy images like galaxy weak lensing

Lensing by a Gaussian Random Field Mass distribution at large angles and high redshift in in the linear regime Projected mass distribution (low pass filtered reflecting deflection angles): 1000 sq. deg rms deflection 2.6' deflection coherence 10

Lensing in the Power Spectrum Lensing smooths the power spectrum with a width l~60 Convolution with specific kernel: higher order correlations between multipole moments not apparent in power 10 9 10 10 Power 10 11 10 12 10 13 lensed unlensed power rms deflection 2.6' coherence 10 Seljak (1996); Hu (2000) 10 100 1000 l

Reconstruction from the CMB Correlation between Fourier moments reflect lensing potential κ = 2 φ x(l)x (l ) CMB = f α (l, l )φ(l + l ), where x temperature, polarization fields and f α is a fixed weight that reflects geometry Each pair forms a noisy estimate of the potential or projected mass - just like a pair of galaxy shears Minimum variance weight all pairs to form an estimator of the lensing mass

Ultimate (Cosmic Variance) Limit Cosmic variance of CMB fields sets ultimate limit Polarization allows mapping to finer scales (~10') mass temp. reconstruction EB pol. reconstruction 100 sq. deg; 4' beam; 1µK-arcmin Hu & Okamoto (2001)

Matter Power Spectrum Measuring projected matter power spectrum to cosmic variance limit across whole linear regime 0.002< k < 0.2 h/mpc Linear P P deflection power 0.6 ( mtot ev 10 7 10 8 ) Hu & Okamoto (2001) "Perfect" 10 100 1000 L σ(w) 0.06

Matter Power Spectrum Measuring projected matter power spectrum to cosmic variance limit across whole linear regime 0.002< k < 0.2 h/mpc Linear deflection power 10 7 10 8 "Perfect" Planck Hu & Okamoto (2001) 10 100 1000 L σ(w) 0.06; 0.14

Summary Gravitational lensing is the only direct probe of the dark sector: composition of dark matter: massive neutrinos nature of the dark energy: scalar field? Λ?

Summary Gravitational lensing is the only direct probe of the dark sector: composition of dark matter: massive neutrinos nature of the dark energy: scalar field? Λ? With sources distributed in redshift, tomography possible Coarse radial resolution sufficient for recoving linear growth rate dark energy density evolution Requires good photometric redshifts, elimination of systematics, avoidance of intrinsic alignment contamination

Summary Gravitational lensing is the only direct probe of the dark sector: composition of dark matter: massive neutrinos nature of the dark energy: scalar field? Λ? With sources distributed in redshift, tomography possible Coarse radial resolution sufficient for recoving linear growth rate dark energy density evolution Requires good photometric redshifts, elimination of systematics, avoidance of intrinsic alignment contamination CMB provides ultimate high-z source for tomography; precision neutrino constraints in principle possible