ΘΕΜΑ 4 Στο κυρτό εξάγωνο ΑΒΓΔΕΖ ιςχφουν τα εξήσ: α = β, γ = δ και ε = ζ. α) Να υπολογίςετε το άθροιςμα α+ γ + ε. (Μονάδεσ 8) β) Αν οι πλευρζσ ΑΖ και

Σχετικά έγγραφα
ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ (ΑΒ < ΑΓ) και η διχοτόμοσ του ΑΔ. Φζρουμε από το Β κάθετη ςτην ΑΔ που τζμνει την ΑΔ ςτο Ε και την πλευρά ΑΓ ςτο Η.

ΘΕΜΑ 4 Στην παρακάτω εικόνα φαίνεται μια κρεμάστρα τοίχου η οποία αποτελείται από έξι ίσα ευθύγραμμα κομμάτια ξύλου (ΑΔ, ΒΓ, ΓΖ, ΔΗ, ΖΚ, ΗΛ) που

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η.

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΛΛΗΛΕΣ

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΘΕΜΑ 4. Δίνεται τρίγωνο ΑΒΓ, ςτο οποίο η εξωτερική του γωνία ˆΓ είναι διπλάςια τησ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ


Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. 7η έκδοση

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

Επαναληπτικές Ασκήσεις στην Γεωμετρία Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ


α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)

κζντρου Ο. β) Να αποδείξετε ότι (Μονάδεσ 13)

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ

Aν οι ευθείες ΚΒ και ΓΛ τέμνονται στο σημείο Μ, τότε η ΑΜ είναι μεσοκάθετος του ευθυγράμμου τμήματος ΚΛ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

Α Γενικού Λυκείου ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,

Κόλλιας Σταύρος 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΘΕΜΑ 4. Δίνεται ορθή γωνία

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Ε=Α και φέρουµε την ΒΕ που τέµνει τη Γ στο σηµείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές. β) το ΕΒΖ είναι παραλληλόγραµµο.

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

Φυλλάδιο Ασκήσεων 1 Διανύσματα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.1 Γ ΓΥΜΝΑΣΙΟΥ

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ. 2ο ΘΕΜΑ

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

2ηέκδοση 20Ιανουαρίου2015

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41. Ύλη: Τρίγωνα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

Λύκειο Μεταμόρφωσης -Τράπεζα θεμάτων Γεωμετρίας Α Λυκείου-Κεφ. Παράλληλες ευθείες

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Τάξη A Μάθημα: Γεωμετρία

Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals, height.

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

Έκδοση 1 η (διορθωμένη): Μάιος Συγγραφική Ομάδα. Ελληνική Μαθηματική Εταιρεία. Παράρτημα Λάρισας. Επαναληπτικές Ασκήσεις.

MATHematics.mousoulides.com

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ Βεϊζη Αρίων Α.Μ Μουτζιάνου Γεώργιος Α.Μ Παντελάκη Άννα Α.Μ.3341

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:

Επαναληπτικές Ασκήσεις

Transcript:

Ζςτω ότι Ε και Η είναι τα μζςα των πλευρών ΑΒ και ΓΔ παραλληλογράμμου ΑΒΓΔ αντίςτοιχα. Αν για το παραλληλόγραμμο ΑΒΓΔ επιπλζον ιςχφει ΑΒ>ΑΔ, να εξετάςετε αν είναι αληθείσ ή όχι οι ακόλουθοι ιςχυριςμοί: Ισχυρισμός 1: Το τετράπλευρο ΔΕΒΗ είναι παραλληλόγραμμο. Ισχυρισμός 2: ΑΕΔ = ΒΖΓ. Ισχυρισμός 3: Οι ΔΕ και ΒΗ είναι διχοτόμοι των απζναντι γωνιών ΔκαιΒ. α) Στην περίπτωςη που θεωρείτε ότι κάποιοσ ιςχυριςμόσ είναι αληθήσ να τον αποδείξετε. (Μονάδεσ 16) β) Στην περίπτωςη που κάποιοσ ιςχυριςμόσ δεν είναι αληθήσ, ναβρείτε τη ςχζςη των διαδοχικών πλευρών του παραλληλογράμμου ώςτε να είναι αληθήσ. Να αιτιολογήςετε την απάντηςή ςασ. (Μονάδεσ 9)

Στο κυρτό εξάγωνο ΑΒΓΔΕΖ ιςχφουν τα εξήσ: α = β, γ = δ και ε = ζ. α) Να υπολογίςετε το άθροιςμα α+ γ + ε. (Μονάδεσ 8) β) Αν οι πλευρζσ ΑΖ και ΔΕ προεκτεινόμενεσ τζμνονται ςτο Η και οι πλευρζσ ΑΒ και ΔΓ προεκτεινόμενεσ τζμνονται ςτο Θ, να αποδείξετε ότι: i. Οι γωνίεσ Α και Η είναι παραπληρωματικζσ (Μονάδεσ 10) ii. Το τετράπλευρο ΑΘΔΗ είναι παραλληλόγραμμο. (Μονάδεσ 7)

Δίνεται παραλληλόγραμμο ΑΒΓΔ, με ΑΒ > ΑΔ. Θεωροφμε ςημεία Κ, Λ, των ΑΔ και ΑΒ αντίςτοιχα ώςτε ΑΚ = ΑΛ. Ζςτω Μ το μζςο του ΚΛ και η προζκταςη του ΑΜ (προσ το Μ) τζμνει τη ΔΓ ςτο ςημείο Ε. α) ΑΔ =ΔΕ. (Μονάδεσ 8) β) ΒΓ + ΓΕ = ΑΒ. (Μονάδεσ 10) γ) 2. (Μονάδεσ 7)

Δίνεται παραλληλόγραμμο ΑΒΓΔ και ςτην προζκταςη τησ ΑΔ θεωροφμε ςημείο Ε τζτοιο ώςτε ΔΕ = ΔΓ ενώ ςτην προζκταςη τησ ΑΒ θεωροφμε ςημείο θεωροφμε ςημείο Η τζτοιο ώςτε ΒΗ = ΒΓ. α) i.. (Μονάδεσ 10) ii. τα ςημεία Η, Γ, Ε είναι ςυνευθειακά. (Μονάδεσ 10) β) Ζνασ μαθητήσ για να αποδείξει ότι τα ςημεία Η, Γ, Ε είναι ςυνευθειακά ανζπτυξε τον παρακάτω ςυλλογιςμό. «Ζχουμε: τζμνονται από τη ΗΕ) και (ωσ εντόσ εκτόσ και επι τα αυτά μζρη των παραλλήλων ΔΕ και ΒΓ που ΔΓ). (ωσ εντόσ εναλλάξ των παραλλήλων ΔΕ και ΒΓ που τζμνονται από την Όμωσ 180 (ωσ άθροιςμα των γωνιών του τριγώνου ΔΕΓ). Άρα ςφμφωνα με τα προηγοφμενα: 180. Οπότε τα ςημεία Η, Γ, Ε είναι ςυνευθειακά.» Όμωσ ο καθηγητήσ υπζδειξε ζνα λάθοσ ςτο ςυλλογιςμό αυτό. Να βρείτε το λάθοσ ςτο ςυγκεκριμζνο ςυλλογιςμό. (Μονάδεσ 5)

Δίνεται παραλληλόγραμμο ΑΒΓΔ και Μ το μζςο τησ πλευράσ ΔΓ. Φζρουμε κάθετη ςτην ΑΜ ςτο ςημείο τησ Μ, η οποία τζμνει την ευθεία ΑΔ ςτο ςημείο Ρ και την ΒΓ ςτο Σ. α) ΔΡ = ΣΓ. (Μονάδεσ 8) β) Το τρίγωνο ΑΡΣ είναι ιςοςκελζσ. (Μονάδεσ 8) γ) ΑΣ = ΑΔ + ΓΣ. (Μονάδεσ 9)

Σε παραλληλόγραμμο ΑΒΓΔ θεωροφμε ςημεία Ε, Ζ, Η, Θ ςτισ πλευρζσ ΑΒ, ΒΓ, ΓΔ, ΔΑ αντίςτοιχα, με ΑΕ=ΓΗ και ΒΖ=ΔΘ. α) Το τετράπλευρο ΑΕΓΗ είναι παραλληλόγραμμο. (6 μονάδεσ) β) Το τετράπλευρο ΕΖΗΘ είναι παραλληλόγραμμο. (10 μονάδεσ) γ) Τα τμήματα ΑΓ, ΒΔ, ΕΗ και ΖΘ διζρχονται από το ίδιο ςημείο. (9 μονάδεσ)

Ζςτω τρίγωνο ΑΒΓ και ΑΔ η διχοτόμοσ τησ γωνίασ Α, για την οποία ιςχύει Θ ΔΕ είναι διχοτόμοσ τησ γωνίασ ΑΔΒ και η ΔΗ παράλληλη ςτην ΑΒ.. α) Τα τμήματα ΕΔ και ΑΓ είναι παράλληλα. (Μονάδεσ 9) β) Το τρίγωνο ΕΑΔ είναι ιςοςκελζσ. (Μονάδεσ 8) γ) Τα τμήματα ΑΔ και ΕΗ διχοτομούνται. (Μονάδεσ 8)

Δίνεται τρίγωνο ΑΒΓ, με ΑΚ διχοτόμο τησ γωνίασ Α. Στην προζκταςη τησ ΑΚ θεωροφμε ςημείο Δ ώςτε. Η παράλληλη από το Δ προσ την ΑΒ τζμνει τισ ΑΓ και ΒΓ ςτα Ε και Ζ αντίςτοιχα. α) Το τρίγωνο ΑΕΔ είναι ιςοςκελζσ. (Μονάδεσ 6) β) Η ΕΚ είναι μεςοκάθετοσ τησ ΑΔ. (Μονάδεσ 6) γ) Τα τρίγωνα ΑΚΒ και ΚΔΖ είναι ίςα. (Μονάδεσ 7) δ) Το τετράπλευρο ΑΖΔΒ είναι παραλληλόγραμμο. (Μονάδεσ 6)

Ζςτω τρίγωνο, ΑΔ η διχοτόμοσ τησ γωνίασ Α και Μ το μζςον τησ ΑΒ. Η κάθετη από το Μ ςτην ΑΔ τζμνει το ΑΓ ςτο Ε. Η παράλληλη από το Β ςτο ΑΓ τζμνει την προζκταςη τησ ΑΔ ςτο Κ και την προζκταςη τησ ΕΜ ςτο Λ α) Τα τρίγωνα ΑΕΜ, ΜΒΛ και ΑΒΚ είναι ιςοςκελή. (Μονάδεσ 15) β) Το τετράπλευρο ΑΛΒΕ είναι παραλληλόγραμμο. (Μονάδεσ 10)