TET CUM TRT 2018 ODIA - MATHS 1. The founder of Bachpan Bachao Andolan is 1. Shanta Sinha 2. Kailash Satyarthi 3. Aruna Roy 4. Anil Agarwal ΣεΣτ ΣεΜÙ ΞÙ Αϕ ΘÙΖτ ƒγοι Θι ΘÙΟδ ΥΞν 1. ΜÙϕΘÙ τ Ù 2. ΚΩÙω ΜιƒΥνιƒ 3. ΠÙ ςùµ 4. ±ο ΚνΞÙο 2. This book of ancient India has the love story of son of the founder of Sunga Dynasty 1. Swapnavasavadutta 2. Malavikagnimitra 3. Meghadoota 4. Ratnavali δκ ΞλΜι Θι ΘÙσfl ιθξ τ ΤΚ±τ ΚÙΘο Κ Θ ΚÙηΟ Ση ΟΥ ΒϕƒΥ Ëο 1. Ξκ ΞÙΜΞ ΘιΘÙ 2. ΤÙΖ ΚÙχ± ιςλ 3. ΤΚ ÁΘλ 4. ςι ÙΞ
3. This is not a Union Territory 1. Dadra and Nagar Haveli 2. Nagaland 3. Lakshadweep 4. Puducherry ΤιƒΥ Αγ κσœƒ Î±Υτ ς ΘΜλ( οωùθ 1. ΘÙιςÙ Τσflλ ΡÙΚν Ξ 2. ΡÙΚÙΩÙϕ 3. ΒΩγΜιæ 4. ε Μ 4. In 1939, Subhash Chandra Bose was elected as president of the congress party by defeating 1. Maulana Abul Kalam Azad 2. Pattabhi Sitaramayya 3. Jawaharlal Nehru 4. Gopala Krishna Gokhale 1939ο ΒΞ ς ΘÙσΚ ι ΣÙω Μϕƒς ΣÙυ ΚÙδ ςυ Κγ ι Θ ΩΞςÙΚ Θνϕ Θ χκκσγοùν 1. ΤΖΩÙ Ù ο ΚΩÙλ ΑΜÙι 2. ΣγΟÙ ΘÙςÙ ΤΥÙ 3. ΞΚνΩÙο Ρ 4. ΚÙΣÙΩ ωπ ΚÙΚ Ω
5. The reason for naming the virus as Ebola is 1. The vaccine used to prevent it 2. A river in Congo, one of the first place of out break 3. The first person who was contracted by the virus 4. The physician who first detected the virus»φ ΣÙΩÙµ Φτ λ ΣΥ ς Ι Ξςυχœ ΞκΣΘσΚÙ ΚÙςΠλ 1. Θ Θ χκ ΣΥτΣ ιƒυ Θ κè τ ΣΥν 2. ÿθτÿθ ο Σς Υ ΒΟιƒ ρζ ΚÙδ ΚÙ ΡÙγ τ Ι Ρƒ 3. ÿθτ ÿθ ο π ΥÙƒΥÙο ΘÙχΚκΣγΟ ΡΣ τ ΣΥν 4. ÿθο ÿ [ΥÙΚ ϕθ Ξς ]χ ΚηΟ ϕθ Τ ι Ξ τ ΣΥν
6. The headquarters of the Organization of the Petroleum Exporting Countries (OPEC) is situated in this city, country 1. Vienna, Austria 2. Kuwait City, Kuwait 3. Doha, Qatar 4. Baghdad, Iraq Σγ ςù Υλ ΓσflΤƒ ΜµŸλ ΡÙ Κ τ Τκ τ (OPEC) Θ Ω ΤΥΚλ Τϕ ρζ ΡΚςλ+ ΡÙ 1. Υτ Ù+ Αυƒ ΥÙ 2. œ Ξι ΡΚςλ+ œ Ξι 3. ΘÙ Ù+ ΚΘÙν 4. ΣÙχΘÙι+ ΧςÙχ 7. Good Governance Day is observed on the birthday of 1. Rajiv Gandhi 2. Lal Bahadur Sastri 3. Abdul Kalam 4. Atal Bihari Vajpayee ΒΞ τ [ϕθ ΡÙ Ζ+»ΡοΩÙγ ÿ [ ΡÙΖÙΚµ ΚÙηΟÙ [Ùλ 1. ςù π ΚÙϕƒó 2. ΩÙο ΣΚÁν ΜÙυƒ 3. κ ο ΚΩÙλ 4. Οο ΚÙ ΞÙϖΣÙµ
8. The longest river of Himachal Pradesh is 1. Jhelum 2. Beas 3. Chenab 4. Sutlej ΒΤÙεΜΩκ ς ΘΜιƒτ øζτù Ρƒ 1. ÀΩλ 2. ΥÙυ 3. Ùκ 4. ΜγΩϖ 9. Consider the following. A. Vamsadhara B. Indravati C. Pranahita D. Pennar The tributaries of Godavari river are 1. A and B 2. B, C and D 3. A, B and D 4. B and C θχκηοξσ [ ΚΞ± A. ΞλΜΘÙςÙ B. ΒϕƒςÙΞƒ C. ςùπ ΘÙ D. ΣηΠÙfl ΒΞσ ο ΚÙΘÙΞ τ ΖΡƒΚρ 1. A Τσflλ B 2. B, C Τσflλ D 3. A, B Τσflλ D 4. B Τσflλ C
10. The Nobel prize ceremonies take place annually in this city (except peace prize) 1. London 2. Stockholm 3. Geneva 4. New York Ιπ ΞÙςÙη λ ΡÙΣο Σ Κ Ζ ΒϕΘ ΡΚςιƒο ΤƒχΚÙ ΡÙΣοΣ Μι Θ ς( ΞΨδœ τ[ ν 1. ΒΩηΟτ 2. υοùχ Ùλ 3. ΞÙ 4. ÎΥÙνχ 11. This city of Andhra Pradesh is covered in the third list of Smart Cities announced by Government of India on 20-9-2016 1. Tirupati 2. Kakinada 3. Vijayawada 4. Visakhapatnam ΒϕƒΥ ς 20-9-2016 Αλ Αη ιθ [κ ΡΚςδΚ τ Íτ[ÙΞ Σγ Υ ο ΒΟλ Σσ[ Αϕƒςκ ς ΘΜ ΡΚςλ 1. ƒ κσƒ 2. ΚÙ ΡÙΟÙ 3. ΥΞÙΟÙ 4. ΜÙΚκ Σγ Πλ
12. In Central Cabinet, Minister of Environment, Forest and Climate Change is 1. Dr. Harsha Vardhan 2. Dr. Jitendra Singh 3. Ravi Shankar Prasad 4. Suresh Prabhu ΤιƒΥ Τϕƒ Μ Σ ο σflκ [λ+ ΚÙ Κρ Τσflλ ΞÙ± Ω ΤÙσ[ι [ ΤεΜν 1. ΟÙχΟν ν_ ΞνιΘτ 2. ΟÙχΟν Θϕƒς δ 3. ς ΜδΚν ςμùι 4. ςω ς 13. The red beacons (lights) on top of any VIP vehicle was banned in our country from this date. Ρλ ΡÙγ ο ςσωτù ΞνΚ τ ΞÙΚ δκ τ Ξκ ΖχœΚρ ΒϕΘ Θƒ ϕ Θ Ο ΜµΥκΣγΟ 1. 1-8-2017 2. 1-6-2017 3. 1-5-2017 4. 1-7-2017
14. World s largest Aircraft carrier built by U.S.A is named after 1. Theodore Roosevelt 2. Abraham Lincoln 3. George Washington 4. Gerald R.Ford Τ χκù ΞÙχ Υ Κκ Σ Υ ΤÙ ιƒσœ ΒΞ ΟΥ ΣΥν ΞχΚκΣγ ρζ 1. ƒ ΥÙ ΟÙν Ïυ Ξογ 2. Α ςκùλ δκτ 3. Ùνϖ ΞÙ δοτ 4. ςùογ Αν ΣÙνγ 15. This person was elected as vice chairman of the Press Trust of India (PTI) on 29-9-2018 1. N. Ravi 2. Vijay Kumar Chopra 3. Anil Agarwal 4. Jaswanth Singh ςυ ςυγ Α?κ ΒϕƒΥÙ τ ΠιΘ ΩΞςÙΚ 29-9-2018 ο Θνϕ Θ χκκσγοξν 1. Φτ ς 2. µ œτùν ΜÙκςÙ 3. ±ο ΚνΞÙο 4. υξϕι δ
16. The first Arab country to send an unmanned probe Hope to orbit Mars by 2021 1. Kuwait 2. Qatar 3. United Arab Emirates 4. Iran 2021 Αλ Αη σœρ ΜπΞÙµ ΚÙ Ζ σ Ξ λ Ùκ Φτ λ Α οωù Πχ ΚÙ Ζ κ ΞΘσœ ΘΥÙςÙΚ ρζ ÿθο ς Υ ΡÙ 1. œ Ξι 2. ΚιΘÙν 3. Ηχ Υ ς Φ ςγ Κρ 4. ΧςÙτ 17. This university lifted Maulana Abul Kalam Azad Trophy for the 23 rd time 1. Guru Nanak Dev University 2. Punjab University 3. Kurukshetra University 4. Delhi University ΤΖΩÙ Ù οκωùλ ΑΜÙι ΚÙκ Σ Υ 23 Ξ ÿ [ΥÙΚ ΒϕΘ ΣοΚ ΩχΚΨΚλ ΚκΣσ Υ 1. œ ΡÙ χ Θπ ΣοΚ ΩχΚΨΚλ 2. ΣφΜÙκ ΣοΚ ΩχΚΨΚλ 3. œ ε Μιƒς ΣοΚ ΩχΚΨΚλ 4. ο ΣοΚ ΩχΚΨΚλ
18. India Pacific islands sustainable development conference was organized on 25 th and 26 th May, 2017 at 1. Nauru 2. Cook Islands 3. Samova 4. Suva Τ ΤÙΘλ 2017ΑλΑη ο 25 Τσflλ 26 ΘƒΚ ο ΒϕƒΥ,Σ χ æ Κ τ ΩΥÙ ΞΖνε ΤÙΡÙ ΡΟιΘκΣγΟ ΒΟλ 1. ΡΖ 2. œχ æ Κρ 3. Μ ΤÙΞÙ 4. ΞÙ 19. A 200 year old National Museum was destroyed due to fire accident on 2-9-2018 at 1. London 2. Rio de Janeiro 3. Paris 4. Istanbul 2-9-2018 ο 200 Αη ΚÙΩ Θ Υ δκùγ ΥΚλ ΒϕΘ ΡΚςιƒο ΡΟϕΘ æ Σιƒο χκκσγο 1. ΒΩηΟτ 2. ΥÙ ± ςù 3. ΣÙ υ 4. ΒυΘÙτ ο
20. The country that has withdrawn from the Paris Climate Accord on 1-6-2017 is 1. Canada 2. U.S.A. 3. Brazil 4. Russia»ΣÙ υ ΞÙ± Ω ΙκΣϕΘιƒ ϕ µ 1-6-2017 ο Ω Υ ΡÙ 1. Κ ΟÙ 2. Τ χκ Ηχ Υ ΡÙ Κρ 3. ς ο 4. ςωυù
22. The first school for girl children of lower castes was started by 1. Jyothiba Pulle 2. Mahatma Gandhi 3. Vijayalakshmi Pandit 4. Durgabai Deshmuk θξœκ Ση œψϕ ΘΚfiχΚÙΚ ÿθο Σρ Υι ΘÙΟδ ΥΞν 1. ÙƒΣÙ κî Ω 2. ΤΚÙιΤÙ ΚÙϕƒ 3. ΥΩγ Ση γ 4. νκùσùµ Θωÿχ 23. One of the following belongs to thinking skills which is a category of life skills: 1. Coping with stress 2. Communication 3. Creative thinking 4. Interpersonal Relation ΞÙθχ Κι ƒ[τκ ο Ι ΣÙΚΤÙΚ θχκηοξσ ο Ιτfl ΜÙν ƒ[τκfiοτ ΘÙΟν ΟΥ 1. Τ ιθι Θ Φƒνχ ΚÙρfiλ ƒ[τ 2. ΘΚΞο ΘÙΟν 3. ΑχΚκÈνΞΤÙ ϕθ 4. Τ±ΘνΚfiχ Ο ΩÙ ΣςυΣς ΘÙΟν Κρ
24. Sundering the children with special needs from general schools is nothing but violation of human rights stated by 1. Benda 2. UNESCO 3. Christensen 4. Smith, Naisworth» [κ ι Θ ΞΚρ ΚÙηΟ œψϕ ΘΚ Ζ ΣÙ κσρ ϕ ΞflΣ ι Θο Τ±Θ ΤΚ Ζ flλ ΜΥΩÙœλµ Φτfl ΥΞν 1. ΣηΟÙ 2. Ÿ υ ΚÙ 3. υ Οτ]τ 4. υ ι+ Ρµυ ΞÙνι 25. The general type of register which is maintained in the school under Records and Registers is: 1. Laboratory Register 2. Library Book Register 3. Ledger 4. Logbook Σρ Κ ο νξ χκκσ λ ΑΞΠδΚρ+ Σƒ Ξ Κ ο ΣÙ Ξ ΚΥÙ κ Σƒ Ξ 1. ΑµΞΚκ Σƒ Ξ 2. Ëο ΩΥ Ëο Σƒ Ξ 3. ΣΥ ς 4. ƒ Μ œ κ κ ιθκλ
26. Both in Centre and state of Andhra Pradesh the Ministry of Education was named as 1. Ministry of Human Resource Development 2. Ministry of Health Resource Development 3. Ministry of Human Records Development 4. Ministry of Home Affairs ΤιƒΥ ς λ+ Αϕƒςκ ς ΘΜ ΤÙ Ωιƒ λ Κο ΤεΜΚλ ΒπΞÙfl ΣΥν ΤÙσ[λ ΜµΥκΣγ ρζ 1. Τ±ΘΞΖ ΤλΣÙγ ΤεΜΚλ 2. Α ςùχ Υ ΞΖ ΤλΣÙγ ΤεΜΚλ 3. Τ±Θ ΑΞΠ ΤλΣÙγ ΤεΜΚλ 4. ρ [ ΤεΜΚλ 27. The disease occurs due to the deformities in Chromosomes is 1. Cretinism 2. Hydrocephalus 3. Down s Syndrome 4. Phobia œ ςù ΤÙ ΜÙλΚ τ Ι δκσ[ ΤνΞÙο ΓσΣ λ ΡÙµ 1. ±]λ 2. γ ςù ΜΣÙΩυ 3. ΟΖτυ ηγ ςùλ 4.? ΣÙ ΥÙ
28. The year from which the Model Schools were started functioning in Andhra Pradesh State is Αϕƒςκ ς ΘΜ ΤÙ Ωιƒο ΤÙƒ κσρ Κρ ΜΥοΣΟι ΘÙΟδ Υ Αη 1. 2011 2. 2012 3. 2013 4. 2014 29. Under this section of RTI Act, any officer rejects the application, denies giving information, giving wrong information, the complaint may be given directly to the State Information Commission: RTI ΜγΟιƒο Βκ τ θ ΦϕΘ ƒκù ΥÙΞ ηπκσι Θ ΓσΚ ΤflιΘÙ ΩÙ+ ΘΚΞο Θς ΤflιΘÙ ΩÙ+ ΘΞ[Ù ΘΚΞ Ωι ΘϕΘÙ ΩÙ ΤÙ Ω ΘΚΞο Α ΠΥιƒσœ Ρς ΥÙΚ ΚÙν ΘςΩÙλ 1. 11 (1) 2. 12 (1) 3. 18 (1) 4. 19 (1)
30. In the preparation of Question Paper - Reliability means: 1. To achieve the desired objectives 2. Obtaining the same mark even if it is valued by two different examiners 3. Specifying the accurate answers for evaluation 4. Convenient to conduct the exam evaluate and to interpret the results ÙιΘÙρ ΘΥÙ κ ο, ΡλΣΚιΘτ Τ ΦτΣ 1. λσι ΘχΚ ΡÙχΚδΚ Ζ ΟΘο 2. Βςη ΞflΣγΟ ΘνΞÙΖνΚΖÙο Τƒκ ΜµΥκΣγΟÙ λ Ι ς ΘΤÙ Τƒκ Ση ΣflΘο 3. Τƒκ ΜµΞΘσœ ο ΥΤÙ ΟΚ Ζχ œ κ Θο 4. Θν ΡΟιΘ λ+ Τƒκ ΜµΥ λ+ ÿ Κ Ζ Ζχ flξθσœλ Γσ[ΘÙΚ Β ιθο
32. In your class, one student is very kind, gentle and virtuous. All the students and teachers named him as Vivekananda. According to Freud his state of personality is 1. Id 2. Ego 3. Super Ego 4. Libido δκρ ΞœκΣ [ ο Ι ΤÙΠΞτ ΒςχΚλ+ Κη Υλ Τσflλ Ρο ΩÙ χκÿ ΟΥΞτ Σρ ρζ ι ΤÙΠΞνΚρ+ Α ΥνΚρ Ξ! ΞΚÙ ϕθν& Φ Ψχ τ[ ν? ςùµ τ Κ ιθκσ Ξ ΟΥ Αfi Τ Ω 1. Κλ 2. Θτÿ κ 3. Υν Θτÿ κ 4. ΣÙο Πν
33. In your class you are observing that Siddhartha is bullying every time. Which of the following method you adopt to rectify the undesirable behaviour - 1. Request the parents to provide counselling 2. Request the headmaster to provide counselling 3. Analyse the reason and provide counselling 4. Ask him to sit in the last bench. δκρ Ξœκ ο! ιθùνιθù& Φκ ΣÙ λ [ ςι τ flι Ξ Θ σfl ΡÙχœ»νΚρ λσιθκùθ ΒϕΘ ΡΟι Θ Υ Μ κσ ιθ øδκρ Τσ ΚÙρfiλ ÿ [ 1. Σσ [Ù ς ς ΞΨδœλΣ Ξη Θο 2. Θ Ω ΤΥÙ Υ ς ς ΞΨδœλΣ Ξη Θο 3. ΚÙςΠι Θκ ΣœιΘÙµϕ ς ΞΨδœΘο 4. ΞœκΣ [ τ Κ Ο Β χ Κ ο Ξ Τ λσ flθο
34. Avinash believes re-organisation of the perceptual field belongs to the process and product of thinking. This is related to the following theory. 1. The gestault theory 2. The behaviouristic learning theory 3. Bruner s theory of cognitive development 4. Freud Psycho-analytic theory of thinking ϕ ΚÙρfiλ Ασ[ο Ωιƒτ ς ΤκΣÙ ϕƒιθο ΜΥοÿ [ Τσflλ Ζ Οτ ΘÙΟν ΚÙη χœλ Φ Ùω Ρλ [Ùτ Β θχκù λ ΚÙγΣÙγ Οτ ΘÙΟν ΟΥ 1. ÿ Ξ Ξχ ΚÙγΣÙ 2. ΡΟι ΘΥ κσ Ο ΩÙ Κσ[ο ΚÙγΣÙ 3. Ï τ ΞΖνε χ ΚÙγΣÙ 4.?κςÙµ τ ϕθ Σσ Υ Ζ Υο ΣœκΣÙµ χ ΚÙγΣÙ
35. Rajesh revises the portion of syllabus periodically to strengthen his - 1. Short Term memory 2. Immediate memory 3. Long term memory 4. Sub Conscious memory ςù ω Θτ ΟΥ ΣÙΟιƒγΟι Θ χκ ρ ΣÙν Ξ ΜµΞ Ξ ΟΥ θχκηο λμι Θ Ξ κσ ιθ Θ [ 1. œfl ΥΚÙΩ ΞÙσ[ο 2. Ο ΞÙσ[ο 3. øηοκùω ΞÙσ[ο 4. Π Ρ Ω ΞÙσ[ο
36. Rekha did not like doing her homework. However her teacher started praising her for her performance in the class leaving her slackness in doing home work. She started being regular with home work in order to please her teacher. This is an example of 1. Negative reinforcement 2. Guidance 3. Positive reinforcement 4. No reinforcement γ κ ΣÙΟι Θ Φ ΞΘσœ ςκù λσ ο Ω Α Υν Ξρ γ κ ΣÙΟλ ΜµΞƒο ΚÙγ λ Ωγ Υκ ΣÙχ Κ ι Ξfi ΟΥ Ξœκ ΜÙΘ Υκ ΚΨι ΘÙΟδ Ùν Ξρ Θ Α Υ ς Τ θ χκ γ κ ΣÙΟλ ΜµΞƒο ÿ [ΥÙ Ι χκι Θ Κ Ο ιθùρ Β ΒΘσœ Φ ι χκùγ 1. Τ [ÿκ Ξ Óγ 2. Ξ ΚÙγ Θο 3. Ρς Ξ Óγ 4. Ξ Óγ Θο Βο Ω
37. Ratnakar is an intelligent student in class X. His classmate Ravi scolded him as idiot for not allowing him to copy from his answer sheet, with regard to IQ, Ravi is wrong because. 1. Ratnakar s IQ is 70-89 2. Ravi s IQ is 90-109 3. Ratnakar is intelligent 4. Idiots IQ is greater than 140 ςι ÙΚν ΣιΘÙλ Ξœκ ο Σ χœλ ηπ ρζ ΤÙΠΞτ Θ Οι ΘÙ Ζ ΣÙνι Φ Θ ΤƒχΚÙΘΘÙο ς Ξ!ÍΟτ& Φτfl ƒγ Ùτ ηπ Χ τσ ς τ ΜÙσΚρ ΘΞ[Ù Ξ Γ ±ο 1. ςι ÙΚ τ ηπ 70`89 2. ς τ ηπ Χ 90`109 3. ςι ÙΚν ηπ χκξτ 4. ÍΟνΚ τ ηπ Χ 140 Ο ƒκλ
38. Kamala was adjudged as a well adjusted girl by her teachers. One of the following characteristic is not related to her 1. Respecting herself and others 2. Absence of fault finding attitude 3. Flexibility in behaviour 4. An unrealistic perception of the world ΚΤΩÙ [ϕθ ΣÙ ιθκσù ρζ Ση Φ Α ΥνΚΖÙο œ κ ΟκΣ [Ùρ θχκηοξσ ο Ξfiχœι ΘÙΟν οωùθ Ση 1. Θτ Ÿλ [ ςÿλ ΤƒιΘο 2. œ [ΚÙ λ Τ κσùτ ΤΥσ[Ξρ 3. ΡΟι Θ ο Ξ Ζϕ ΚÙ χœλ Θτ Τ 4. ΩΚι Θχ œ ι η ΤΥσ[ Τ κσùτ Τ
39. According to Maslow s hierarchy of needs. The following statement is related to the most basic needs of human beings. 1. Ramana is doing yoga for self actualization 2. Pratap is struggling to become student leader 3. Gopi is hungry, he is in need of food 4. Sita is an orphan, craves for love ΤÙυ ΚÙ τ Θ ΞΚ τ Σ ιθζχ ΚÙρ ΚκΣ θχκηο ΞÙχ ΥδΚ ο Ιτfl Τ±Θ±τ κσ Οι Θ ΞΚfiΟτ ΘÙΟν ΟΥ 1. ΑτΤ ΜÙΘ χκùκ ςτπù ΥÙΚÙ Μµ [Ùτ 2. ΤÙΠΞνΚ τ Θ ΩΞ ÙΚ ΤÙ[ ςθùκ ΘÙΟνϕ ΣÙςÙ [Ùτ 3. ΚÙ χœ Σ κσθùο Ξ χœ Π Θ ΞκΣ [ 4. ΘÙ Ù ΘΥÙΚ Β κσθùο τ χκùκ Γδœ [Ùρ
40. Mr. Chandra Sekhar is class X English teacher. Every student likes him because, he 1. Encourages rote memory. 2. Allows them for group discussions 3. Engages himself in continuous lecturing 4. Liberal in assessment ƒ Μϕƒς ΜΚν ΣιΘÙλ Ξœκ Αδ Ω Α Υν Ιπ ΞÙ ΤÙΠΞ λ Ξ ς λ τ[ ν ΒΘσœχ ΚÙςΠλ Ξν 1. Τ κσùο ΞÙσ[ Ω ΕχΚκΣ ι [Ùν 2. œ χ ΚΩϕ ςυùο ο Σδœ ΚÙρΖ ΞÙµκΣ χ [Ùν 3. ΘÙΟνε ΥÙΚ ςυùσflξƒο Θτ Χ Σ ιƒχ ΚÙρ [Ùν 4. Τƒκ Ξƒο ΘÙςÙΖΤÙ ΞςÙΚ Β χ [Ùν
SA Maths Maths Content ( Tamil Medium) (41 to 80) 41. The population of a town increases by 20% every year of its population is 2,16,000 then its population 2 years ago is Ι ΡΚςιƒτ ΤχΚρ ΘÙ ΚΥÙ + Ξ Οϕ ΘÙflλ 20% ƒκ χ [ ϕρκςιƒτ Θσ ΣÙ ΘΥ ΤχΚρ ΘÙ Κ 2,16,000 Φ±ο 2 Ξ ΟδΚfiχœ ÿτ ϕρκςιƒτ ΤχΚρ ΘÙ Κ 1. 1,50,000 2. 1,72,800 3. 1,94,000 4. 1,61,400 42. The compound interest calculated yearly at 10% on a certain sum of money, amounts to ` 665.50 in the fifth year then the C.I for the fourth year on the same sum at the same rate is Ι œ κ γο ΘÙ Κχœ+ Ξ Οιƒσœ Ι ÿ [ 10% Ξγ Θλ ΚΠχ ΟκΣγ + Ηϕ Ξ ΟδΚ τ ΣÙ Α γ Ξγ ` 665.50 Φ±ο Θ ΘÙ Κχœ+ Θ Ξγ Θιƒο ΡÙτΚÙΞ Ξ Οιƒτ ΣÙ Αœλ γ Ξγ ΥÙ 1. ` 498.95 2. ` 552.50 3. ` 605.00 4. ` 625.50
43. The compound ratio of squares of the ratio 5 : 6 and the reciprocal ratio of 25 : 42 is 5 : 6 τ ΞνχΚ Θλ Τσflλ 25 : 42 τ Θ Ω θ Θλ Α ΥΞσ τ γ Θλ 1. 7 : 6 2. 7 : 5 3. 6 : 7 4. 5 : 7 44. The length of rectangle is increased by 20% and breadth is decreased by 10% then the percentage increasing in the area is Ι ΜπΞΚιƒτ øζι Θ 20% ƒκ ι + ΚΩι Θ 10% œ [ιθùο Θτ ΣςκΣΖ Υ λ ΜΘ Θλ 1. 6% 2. 8% 3. 10% 4. 15%
45. If x + 5 is the mean proportion between x + 2 and x + 9 then the value of x is x + 2 Τσflλ x + 9 Α ΥΞσ σœ Β Ο ΩÙ Β Ο Θ ΜΤτ x +5 Φ±ο x τ Τƒκ 1. 2 2. 5 3. 7 4. 9 46. A person bought two articles for each ` 3000. He sold one article at a gain of 20% and other one at a loss of 10% then the percentage of gain on whole transaction is Ι ΡΣν Βςη ΣÙ γκ Ζ+ Ιπ ΞÙτ [Ÿλ ` 3000 χœ ΞÙδ Ùν Ι ΣÙ Ζ 20% ΒΩÙΣιƒ λ+ Τσ [Ù ΣÙ Ζ 10% ΡωΟιƒ λ σ[ùν Φ±ο ΤÙιΘιƒο Ξν ΟϕΘ ΒΩÙΣ ΜΘ Θλ 1. 15% 2. 10% 3. 8% 4. 5%
47. A card is randomly choosen from a pack of cards with numbers 1 to 200 then the probability of that card number is a perfect square is 1 ÿθο 200 Ξ ς Φη γ ΟΚρ ΟΥ Κγ ϕ + ΜΤΞÙµκ ÿ [ ο Ι γ Ο Φ χκκσ [ Φ±ο ϕθ γ Ο ΦηΠÙ Ι ÿ ΞνχΚ ΦηΠÙΚ Β κσθσκù ΚθΘΚ 1. 0.07 2. 0.7 3. 0.12 4. 0.13 48. A card is drawn randomly from a well shuffled pack of cards then the probability of that card is red numbered card is Ρτœ œ χκκσγο Ι γ χκγ ϕ + ΜΤΞÙµκ ÿ [ ο Ι γ Φ χκκσγοùο+ ε γοù Ι Ξκ [ Φη γ ΟΥÙΚ Β κσθσκù ΚθΘΚ 1. 2. 3. 4. 9 13 10 13 9 26 10 26
49. The mean of 1, 7, 5, 3, 4 and 4 is m, the mean of 3, 2, 4, 2, 3, 3 and P is m 1 and median Q then the average of P and Q is 1, 7, 5, 3, 4 Τσflλ 4 Α ΥΞσ τ ΜςÙΜ m, Τ λ 3, 2, 4, 2, 3, 3 Τσflλ P Α ΥΞσ τ ΜςÙΜ m 1 Τ λ Β Ο Ω Ζ Q Φ±ο P Τσflλ Q τ ΜςÙΜ 1. 2.5 2. 3 3. 3.5 4. 4 50. Class Interval Ξœκ Β Ο Ξ Cumulative frequency œ Κθ Ξη 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 7 21 34 46 66 77 92 100 The modal class of the above data is ΤσΚηΟ Ξςιƒτ ÿκγ Ξœκ 1. 20 30 2. 30 40 3. 40 50 4. 50 60
51. The median of the observations 11, 12, 14, x 2, x+4, x+9, 32, 38 arranged in ascending order is 24 then the mean of the observation is 11, 12, 14, x 2, x+4, x+9, 32, 38 Φ λ ΓflΞ Μ ο Τϕ ρζ Σƒ Κ τ Β Ο Ω Ζ 24 Φ±ο κσƒ Κ τ ΜςÙΜ 1. 2. 3. 4. 197 8 191 8 189 8 187 8 52. The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is 2, 9, 9, 3, 6, 9, 4 Φ λ ΞςδΚfiχœ ΜςÙΜ ϕ + ΜςÙΜ ΩχΚΤÙ 1. 2. 3. 4. 15 7 16 7 18 7 22 7
53. The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is 6, 5, 9, 13, 12, 8, 10 Φ λ ΞςδΚ τ ƒγο ΩχΚλ 1. 52 7 2. 6 3. 52 7 4. 6 54. If the variance of the data 2, 4, 5, 6, 8, 17 is 23.33 then variance of 4, 8, 10, 12, 16, 34 will be 2, 4, 5, 6, 8, 17 Φ λ ΞςδΚ τ ΩχΚΞνχΚ ΜςÙΜ 23.33 Φ±ο 4, 8, 10, 12, 16, 34 Α ΥΞσ τ ΩχΚΞνχΚ ΜςÙΜ 1. 23.33 2. 23.33 3. 46.66 4. ( ) 2 23.33
55. Cos 38 o Sec (90 o 2A) = 1 then the value of angle A is Cos 38 o Sec (90 o 2A) = 1 Φ±ο A τ ΚÙΠ Τƒκ 1. 52 o 2. 38 o 3. 26 o 4. 19 o 56. The length of the shadow of vertical tower on ground increases by 10m, when the altitude of the Sun changes from 45 o to 30 o then the height of the tower is (in meters) Ι Μδœι ΚÙ ςιƒτ Ψ τ øζτù + Υ Ù ΓσΣ ι λ ΚÙΠΤÙ 45 o ϕ 30 o χœ ΤÙflλ ΣÙ 10 ƒκ χ [ Φ±ο χ ΚÙ ςιƒτ Υςλ ( γο ο) 1. 10( 3+ 1) 2. 10( 3-1) 3. 5( 3-1) 4. 5( 3+ 1)
57. Given positive integers a and b there exists unique pair of integers α and γ satisfying a = bα + γ then γ lie between a = bα + γ Φ ρζξùfl+ Κÿ χκρ a Τσflλ b ΦτΣ Ξ α Τσflλ γ Φτ[ Θ±ιΘ Ù ÿ χκ Ζ ΚÙη ρζ Φ±ο γ τ Τƒκ ΒΞσ σ Ο Υ ΤŸλ 1. 0 < γ < b 2. 0 < γ b 3. 0 γ < b 4. 0 γ b 58. The least number which must be subtracted from 4215 to make it a perfect square. 4215 Φ λ ΦηΠÙ ÿ ΞνχΚΤÙΚ ΤÙ[ Κ χκ Ξη Υ Κε Υ Φη 1. 117 2. 118 3. 119 4. 120
59. x + x- 1- x = 1 then the value of x is x + x- 1- x = 1Φ±ο x τ Τƒκ 1. 3 5 2. 1 3. 4. 4 5 16 25 60. If log 4 log 2 log 3 (x 2009) = 0 then the value of x is log 4 log 2 log 3 (x 2009) = 0 Φ±ο x τ Τƒκ 1. 2018 2. 2015 3. 2012 4. 2009 61. The value of 58 3 24 3-34 3 58 3 24 3-34 3 τ Τƒκ 1. 141984 2. 149184 3. 141984 4. 149184
62. If the roots of the equation (b c) x 2 + (c a) x + (a b) = 0 are equal then the value of a + c b is (b c) x 2 + (c a) x + (a b) = 0 Φ λ ΜΤτΣÙγ τ ÍΩδΚρ ΜΤλ Φ±ο a + c τ Τƒκ 1. 4 2. 3 3. 2 4. 1 b 63. No. of sub sets of a Set A = {x : xîn and 2 < x < 7} ΚΠλ A = {x : xîn Τσflλ 2 < x < 7}Φ±ο ΚΠλ A τ γκπδκ τ Φη χ Κ 1. 4 2. 8 3. 12 4. 16 64. The number of integers lie between the squares of 63 and 64 is 63 Τσflλ 64 Α ΥΞσ τ ΞνχΚδΚ τ Β Ο ο ΤŸλ ÿ χκ τ Φη χ Κ 1. 128 2. 126 3. 124 4. 120
65. The trisection points of line joining (2, 6), ( 4, 8) is ρ Κρ (2, 6) Τσflλ ( 4, 8) Η Β Πχœλ ΚÙγ ι η Ο ÿεμτχ λ ρ Κρ 1. 2. 3. 4. æ8-4 öæ -10 ö ç, ç 2, è3 3 øè 3 ø æ8 4 öæ-10-10 ö ç, ç, è3 3øè 3 3 ø æ -4 öæ 10 ö ç 0, ç -2, è 3 øè 3 ø æ 4 10 ç 0, öæ ç 2, ö è 3øè 3 ø 66. The quadrilateral which is formed by the points ( 7, 3), (5, 10), (15, 8) and (3, 5) is 1. Parallelogram 2. Square 3. Rectangle 4. Rhombus ( 7, 3), (5, 10), (15, 8) Τσflλ (3, 5) ρ ΚΖÙο ΓσΣ λ ΡÙσΚς Ξ Κ 1. Β ΠΚςλ 2. Μ ςλ 3. ΜπΞΚλ 4. ΜÙµΜ ςλ
67. If 3 2 3 a x + b x + c = 0 then 3 2 3 3 ax + bx+ c is equal to + + = Φ±ο ax 3 2 + bx 3 + c 3 χœ ΜΤΤÙ 3 2 3 a x b x c 0 Τƒκ 1. 27 abc x 2. 1 3 abc x 3. 3abc x 4. 1 27 abc x 68. If a and b are the roots of the equation ax 2 + bx + c = 0 then the value of a 4 b 7 + a 7 b 4 is ax 2 + bx + c = 0 τ ÍΩδΚρ a, b Φ±ο a 4 b 7 + a 7 b 4 Τƒκ τ 3 bc 2 1. 6 ( 3ac- b ) a 4 bc 2 2. 6 ( 6ac- c ) a 4 bc 2 3. 7 ( 3ac- b ) a 4 ab 2 4. 7 ( 5ac- b ) c
69. If (K + 2), (4K 6) and (3K 2) are in Arithmetic progression then the product of 5 th and 10 th term is (K + 2), (4K 6) Τσflλ (3K 2) Α Υ Ξ γ ι ΘÙΟ ο ρζ Φ±ο 5 Ξ Τσflλ 10 Ξ flκ Κ τ Σ χκσσωτ 1. 116 2. 126 3. 136 4. 106 70. If 3A + B = 18x 2 2xy + 2y 2 and A B = 2x 2 6xy + 2y 2 then the expression of A is 3A + B = 18x 2 2xy + 2y 2 ΚÙ Ξ A Α Τσflλ A B = 2x 2 6xy + 2y 2 Φ±ο 1. 5x 2 + 2xy + y 2 2. 5x 2 2xy + y 2 3. 5x 2 2xy + y 2 4. 5x 2 2xy y 2
71. The perimeters of a square and a rectangle are equal. If the side of the square is 25m and the length of the rectangle is 30m, then the ratios of areas of square and rectangle are Ι Μ ςλ Τσflλ ΜπΞΚιƒτ σ[ζ Κρ ΜΤλ Μ ςιƒτ ΣχΚ Ζ 25 Τσflλ ΜπΞΚιƒτ øζ Ζ 30 Φ±ο Μ ςλ Τσflλ ΜπΞΚιƒτ ΣςκΣΖ Κ τ Θλ 1. 24 : 25 2. 34 : 25 3. 25 : 24 4. 35 : 34 72. A toy is in the form of a cone mounted on hemisphere. If the diameter of the base and the height of the cone are 12cm and 8cm respectively then the surface area of the toy is (in cm 2 ) Ι ΖΥÙγ κ ΣÙ ΖÙ + ς ΚÙΖιƒτ λ Ξ Ξλ ρζξùfl Τϕ ρζ χ λ τ γολ Τσflλ Υςλ ÿ [ Υ 12 Μ Τσflλ 8 Μ Φ±ο κ ΣÙ τ ΘΖ ΣςκΣΖ ( Μ 2 - ο ) 1. 418.48 2. 408.84 3. 414.86 4. 521.48
73. If the height of an equilateral triangle is x cm then its area is (in cm 2 ) Ι ΜΤΣχΚ ÿχ ΚÙΠιƒτ Υςλ x Μ Φ±ο Θτ ΣςκΣΖ ( Μ 2 - ο ) 1. 2. 3. 4. x 2 3 2 x 3 3 4 x 4 3 x 2 2 74. The ratios of the radius and height of a cylinder is 3 : 2. If the radius 21cm then its volume is (cm 3 ) Ι Ζ τ Αςλ Τσflλ Υςιƒτ Θλ 3 : 2 Τ λ Θτ Αςλ 21 Μ Φ±ο Θτ Κ Ζ ( Μ 3 - ο ) 1. 18404 2. 19504 3. 19404 4. 18304
75. AB, CD, PQ are perpendicular to BD. AB = x, CD = y and PQ = z then z is equal to AB, CD, PQ ΦτΣ Ξ BD χœ Ξ ςυκσγο Μδœι Κρ Τ λ AB = x, CD = y Τσflλ PQ = z Φ±ο z χœ ΜΤΤÙ 1. 2. 3. 4. x+ y xy xy y- x xy x+ y x- y xy
æ3 ö 76. The angles of a triangle are ç x - 40 2 then sum of two angles is (in degrees) o x - 30 o and è ø, ( ) æ1 ö ç x - 20 è2 ø o Ι ÿχ ΚÙΠιƒτ ΚÙΠδΚρ ç 3 x - 40 è2 ø, ( ) æ ö ç è2 ø Τσflλ 1 x - 20 ΤÙιΘλ ( ο) 1. 110 2. 80 3. 60 4. 120 o Φ±ο Βςη ΚÙΠδΚ τ æ ö o x - 30 o 77. In a trapezium ABCD where AB P DC, diagonals AC, BD are intersect each other at the point O. If AB = 2CD then the ratio of areas of ΔAOB and ΔCOD is Μ ΞΚλ ABCD ο+ AB P DC Τσflλ AC, BD Φ λ Í Ω γοδκρ»oµ ο Ξγ χ ΚÙρ τ[ Τ λ AB = 2CD Φ±ο ΔAOB Τσflλ ΔCOD τ ΣςκΣΖ Κ τ Θλ 1. 1 : 4 2. 4 : 1 3. 2 : 1 4. 1 : 2
78. The hypotenuse of a right angled triangle is 6m more than twice of the shortest side. If the third side is 2m less than the hypotenuse then its perimeter is (in cm) Ι Μδ ΚÙΠ ÿχ ΚÙΠιƒτ ΚνΠΤÙ + λÿχ ΚÙΠιƒτ Κε Υ ΣχΚιƒτ Β ΤΟδ Κ Ο 6 ƒκλ Τ λ Íτ[ÙΞ ΣχΚΤÙ ΚνΠι Θ Ο 2 œ [ Φ±ο Θτ σ[ζ ( Μ - ο ) 1. 75 2. 60 3. 40 4. 85 79. PQR is a triangle right angled at P and M is a point on QR such that PM ^ QR then PM 2 is equal to PQR Φ λ ÿχ ΚÙΠιƒο P Α Μδ ΚÙΠλ Τ λ PM ^ QR Φ ρζξùfl QR τ ρ M ρζ Φ±ο PM 2 χœ ΜΤΤÙ 1. QM PQ 2. PR PQ 3. QM MR 4. QM PM
80. If in ΔABC, DE P BC, AD = x, DB = x 2, AE = x + 2 and EC = x 1 then x is equal to ΔABC ο+ DE P BC, AD = x, DB = x 2, AE = x + 2 Τσflλ EC = x 1 Φ±ο x χœ ΜΤΤÙ 1. 2 2. 4 3. 6 4. 8
81. If f ( x) cos( log x) = then f æ1ö æ1ö ç f x ç y è ø è ø ê ( ) 2 1é æ xöù f xy + f ç ú = ë è yøû ( ) = cos( log ) Φ±ο f x x 1. 0 2. f ( x ) 3. f ( x) + f ( y) 4. f ( x) f ( y) f æ1ö æ1ö ç f x ç y è ø è ø ê ( ) 2 1é æ xöù f xy + f ç ú = ë è yøû 82. The domain of the function ( ) æ 2 2-1 1 + x ö f x = 4 - x + sin ç è 2x ø ( ) æ 2 2-1 1 + x ö f x = 4 - x + sin ç è 2x ø 1. [- 1, 1] Φ λ ΜÙν τ ΚΖλ 2. {- 1, 1} 3. { 0 } 4. {- 2, 2}
83. If 2 0 0 0 0 0 A = é ù, B = é ù, C = é ù ê 3 0 ú ê 1 2 ú ê 3 4 ú ë û ë û ë û then 2 0 0 0 0 0 A = é ù, B =, C = ê 3 0 ú ê 1 2 ú ê 3 4 ú ë û ë û ë û 1. AB = AC = 0 2. AB = 0, AC 0 3. AB 0, AC 0 4. AB 0, AC = 0 84. 1 1 1 a b c 2 2 2 a -bc b -ca c -ab = 1. 0 2. 1 3. abc 4. (a b) (b c) (c a) 85. 1 1 1 + - 1+ 2w 2+ w 1+ w = 1. w 2. w 2 3. a 2 + b 2 4. 0
86. If x = cis α, y = cis β then xy 3 4 x = cis α, y = cis β Φ±ο xy 3 4 3 4 1. 2i cos (3α + 4β) 2. 2i cos (3α 4β) 3. 2i sin (3α + 4β) 4. 2i sin (3α 4β) 1 - = 3 4 xy 1 - = xy 87. The solution of x+ 20+ x+ 4 = 4 x- 1 is x+ 20+ x+ 4 = 4 x- 1Φ λ ΜΤτΣÙγ τ æν 1. { 2 } 2. { 3 } 3. { 4 } 4. { 5 }
88. If α, β, γ are roots of + + + = 0 then å æ 1 ö ç 2 èa ø = 3 2 x px qx r α, β, γ ΦτΣ Ξ x 3 + px 2 + qx + r = 0τ ÍΩδΚρ Φ±ο æ 1 ö èa ø å ç 2 = 1. 2. 3. 4. q 2-2 pr 2 r q - 3pq+ 3r 3 2 2 p - 2q 2 r pq r -3 89. If 2 nc3: nc 2 = 44 : 3 then n = 2 nc : nc = 44 : 3 Φ±ο n = 3 2 1. 8 2. 2 3. 4 4. 6
n 90. If the coefficients of x 7 and x 8 æ x ö in ç 2 + are equal then n = è 3 ø n æ x ö ç 2 + è 3 τ ο ø x7, x 8 τ œπκδκρ ΜΤλ Φ±ο n τ Τƒκ 1. 45 2. 55 3. 35 4. 27 C1 C2 C3 Cn 91. C 0 + + + +... + = 2 3 n 2 2 2 2 1. 2. 3. 4. æ3 ö ç è2 ø æ2 ö ç è3 ø æ5ö ç è3ø n n n n æ3ö ç è5ø
92. If the lines ax + hy + g = 0, hx + by + f = 0, gx+ fy+ c= 0 to be concurrent is ax + hy + g = 0, hx + by + f = 0, gx fy c 0 ρ Ξ χ ΚÙ Κρ Φ±ο 1. a + b + c = 0, f + g + h = 0 2. a 2 + b 2 + c 2 = 0, f 2 + g 2 + h 2 = 0 3. abc + 2fgh af 2 bg 2 ch 2 = 0, 4. af + bg + ch = 0 + + = ΦτΣ Ξ Ι 93. The reflection of the point ( 1, 3) in the line 5x y 18 = 0 is 5x y 18= 0 Φ λ ΚÙγ ο ( 1, 3) Φ λ ρ τ Φƒ ςù κ 1. (2, 1) 2. (0, 0) 3. (9, 1) 4. ( 2, 3)
94. The equation to the pair of bisectors of angles between the pair of lines 2x 2 3xy + y 2 = 0 is 2x 2 3xy + y 2 = 0 Φ λ Ù ΚÙ Κ τ ΚÙΠ Ù Β ΜΤ Ξγ Κ τ ΜΤτΣÙ 1. 3x 2 + 2xy 3y 2 = 0 2. 3x 2 2xy + 3y 2 = 0 3. 3x 2 + 2xy + 3y 2 = 0 4. 3x 2 2xy 3y 2 = 0 95. The equation of the circle passing through (0, 0), (0, a), (a, 0) is (0, 0), (0, a), (a, 0) Φτ[ ρ Κ τ Ξ Υ Μο λ ΞγΟιƒτ ΜΤτΣÙ 1. x 2 + y 2 + ax + ay = 0 2. x 2 + y 2 ax ay = 0 3. x 2 + y 2 + 2ax + 2ay = 0 4. x 2 + y 2 = a 2 + b 2 96. The pole of the line 2x 3y + 25 = 0 w.r. to x 2 + y 2 = 25 is 2x 3y + 25 = 0 Φ λ ΚÙγ σœ x 2 + y 2 = 25 Φτ[ ΞγΟι Θ ΣÙ ι Β Μκ ρ ÿ ( 1. (0, 3) 2. (1, 3) 3. ( 2, 3) 4. (2, 3)
97. The number of common tangents to the two circles x 2 + y 2 = 1 and x 2 + y 2 2x 6y + 6 = 0 is x 2 + y 2 = 1 Τσflλ x 2 + y 2 2x 6y + 6 = 0 Φ λ ΞγΟδΚ τ ΣÙ ΘÙ ΚÙ Κ τ Φη χ Κ 1. 3 2. 1 3. 2 4. 4 98. The length of the latus rectum of the parabola y 2 + 8x 4y 4 = 0 is y 2 + 8x 4y 4 = 0 Φ λ ΣςΞ ΖΞΥιƒτ œ ΥΚΩιƒτ (latus rectum) øζλ 1. 2 2. 1 3. 8 4. 3
99. The eccentricity of the ellipse 9x 2 + 5y 2 30y = 0 is 9x 2 + 5y 2 30y = 0 Φ λ øρξγοιƒτ ΤΥχ ΚÙγΟλ (eccentricity) 1. 2. 3. 4. 1 3 2 3 3 4 1 2 100. If the vertices of a triangle are (2, 3, 5), ( 1, 3, 2), (3, 5, 2) then the angles are (2, 3, 5), ( 1, 3, 2), (3, 5, 2) Φ λ ρ Κ Ζ ε ΚΖÙΚ ΟΥ ÿχ ΚÙΠιƒτ ΚÙΠδΚρ 1. 30 o, 30 o, 120 o 2. cos -, 90 o, 5 1 1 1 5 cos - 3 3. 30 o, 60 o, 90 o 4. cos -, 90 o, 3 1 1 1 2 cos - 3
101. The equation of the plane through the points (1, 2, 2) ( 3, 1, 2) and perpendicular to the plane x + 2y 3z = 5 is (1, 2, 2) ( 3, 1, 2) Φ λ ρ Κρ Ξ ΥÙΚ Μο λ+ x + 2y 3z = 5 Φ λ ΘΖιƒσœ ΜδœιΘÙ ΤÙ ΘΖιƒτ ΜΤτΣÙ 1. x + 16y + 11z + 9 = 0 2. x + 16y 11z + 37 = 0 3. x + y + z 2 = 0 4. x 5y 3z = 0 102. If A + B + C = 90 o then cos 2A + cos 2B + cos 2C = A + B + C = 90 o Φ±ο cos 2A + cos 2B + cos 2C = 1. 1 + 4 sin A sin B sin C 2. 1 2 sin A sin B sin C 3. 2 + 2 sin A sin B sin C 4. 4 sin A sin B sin C
103. If Tan æ x- 1ö æ x+ 2ö p ç + cot ç = è x- 2ø è x+ 1ø 4-1 -1 then x = Tan æ x- 1ö æ x+ 2ö p ç + cot ç = è x- 2ø è x+ 1ø 4-1 -1 Φ±ο x τ Τƒκ 1. 1 2 2. 3. ± ± 1 2 1 3 4. 1 3 104. In a ΔABC, if a : b : c = 7 : 8 : 9 then cos A : cos B : cos C = ÿχ ΚÙΠλ ABC ο+ a : b : c = 7 : 8 : 9 Φ±ο cos A : cos B : cos C = 1. 7 : 9 : 11 2. 14 : 11 : 6 3. 7 : 19 : 25 4. 8 : 6 : 5
r1-r r2 -r r3 -r 105. In ΔABC, + + = a b c ÿχ ΚÙΠλ ABC ο+ 3 r1+ r2 + r3 1. 3 r + r + r 2s 2. 1 2 3 r + r + r 4s 3. 1 2 3 r + r + r s 4. 1 2 3 r1-r r2 -r r -r + + = a b c uuur uuur 106. If D is the mid point of the side BC of ΔABC then AB + AC = ÿχ ΚÙΠλ ABC ο+ D ΦτΣ BC ΣχΚιƒτ ΤΥκ ρ Φ±ο AB 1. uuur AD 2. 2AD 3. 3AD 4. 4AD uuur uuur + AC =
107. If a = 3, b = 4 and a+ b = 1 then a- b = a = 3, b = 4 Τσflλ a 1. 5 2. 6 3. 7 4. 8 + b = 1 Φ±ο a- b = 108. If x a = 0, x b = c b then x = x a = 0, x b = c bφ±ο x = 1. 2. 3. 4. c a c- b a c a c- cb c a a- cb c a b- cb b a b b
109. ( a b) ( c d) = 1. 2. 3. a c a d b c b d a c b d ad bc a c b d b c a d 4. 0 110. Lt x 0 2 ( ) xcos x- log 1+ x x = 1. 1 2 2. 0 3. 1 4. e 2
111. If the function f ( x) x = 0 then f ( o ) = f ( + ax) - ( -bx) log 1 log 1 = is continuous at x log( 1+ ax) -log( 1-bx) ( x) = Φ λ ΜÙνΣÙ x = 0 x ΒΟιƒο ΘÙΟν [ Φ±ο f ( o ) = 1. a b 2. a + b 3. log a + log b 4. log a log b 112. d æ 1+ sin x ö ç dxè 1- sin x ø = 1. 2. 3. 4. 1 1+ sin x 1 1- sin x 1 1+ cos x 1 1- cos x
1 1 113. If f ( a ) = 2, f ( a ) = 1, g( a ) = 1, g ( ) Lt x a ( ) ( ) - ( ) ( ) g x f a g a f x x- a = a = +2 then 1 1 f ( a ) = 2, f ( a ) = 1, g( a ) = 1, g ( a ) = +2 Φ±ο g( x) f ( a) - g( a) f ( x) Lt x a 1. 5 x- a = 2. 1 5 3. 5 4. -1 5 114. In a cube the percentage of increase in the side is 1. The percentage increase in volume is Ι Κ Μ ςιƒτ ΣχΚΤÙ Ι ΜΘ Θλ Υ λ ΣÙ Θτ Κ Ζ ο Υ λ ΜΘ Θλ 1. 2 2. 3. 1 2 1 3 4. 3
115. The equation of tangent to the curve y(x 2) (x 3) x+7 = 0 where the curve cuts x-axis is y(x 2) (x 3) x+7 = 0 Φ λ Ξ ΖΞ ςυù x- ε Μ Ξγ [ Φ±ο π Ξ ΖΞ ς τ ΘÙ ΚÙγ ΜΤτΣÙ 1. 20x + y 140 = 0 2. x 20y = 7 3. 20x y + 140 = 0 4. x + 20y + 7 = 0 116. ò 1 3 sin x cos x dx = 1. -2 tan x + c 2. 2 3. Tan x + c 2 c Tanx + 4. - 2 Tan x + c
117. ò 1 dx 2 2 4cos x+ 9sin x = 1. 2. 3. 4. 1 3 ç 6 è2 ø Tan -1 æ Tan x ö + c 1 3 ç 3 è2 ø Tan -1 æ Tan x ö + c 1 3 ç 6 è5 ø Tan -1 æ Tan x ö + c 1 3 ç 6 è5 ø Sin -1 æ Sin x ö + c 118. 3 ò 2 5 x - x + dx = x 1. 2. 3. 1 2 3 2 5 2 4. 0
a ò a -x dx = 2 2 119. ( ) 5 2 0 1. 2. 3. 4. 2pa 32 5pa 32 5pa 16 6 6 6 3pa 35 6 120. The solution of x 2 x ( ) x 2 3 e cos y dx + 1- e cot y dy = 0 is x ( ) 3 e cos y dx + 1 e cot y dy x 1. Tan y = ( ) 3 - = 0 τ æν ce - 1 ce + 1 x 2. Tan y = ( ) 3 ce - 1 x 3. Tan y = ( ) 2 ce - 1 x 4. Cos y = ( ) 3
TET Cum TRT-2018 SA Maths Maths Methodology(TAMIL MEDIUM) (121 to 160) 121. Asking the students to verify the solution after solving the equation, inculcates one of these values 1. Utilitarian 2. Disciplinary 3. Cultural 4. Social ΤÙΠÙχΚνΚρ Ι ΜΤτΣÙγ σœ æν ΚηΟ [œ ιæν Ξ Μ ΣÙνχœλΣ flθο ÍΩλ ΞΖνχΚκΣ λ Τƒκ 1. ΣΥτΣÙγ Τƒκ 2. Ι χκ Τƒκ 3. ΚÙΩÙεΜÙς Τƒκ 4. ΜÍΚ Τƒκ
122. Mathematics is a way to settle in the mind a habit of reasoning, was defined by 1. Locke 2. Bertrand Russel 3. Aristotle 4. Bacon!!ΚÙςΠλ flθο Φτ λ Τ Τκ Σ ΣflΞΘσΚÙ Ξ Κ Θλ&& Φ Ξ ςυflιθξν 1. ΩÙχ Κ 2. Σνγςηγ ς]ο 3. υοù ο 4. ΣΚτ 123. The method that is economical in terms of time 1. Inductive 2. Synthetic 3. Analytic 4. Heuristic Ρςι Θ Μ χκ Θ λ ÿ [ 1. ƒξ ÿ [ 2. ΘÙœιΘ ÿ [ 3. ΣœιΘ ÿ [ 4. ΚηΟ ÿ [
124. The correct order of sequence (concrete to abstract) of learning experiences in Edgar Dale s cone of experience is 1. Pictorial, Direct, Abstract 2. Direct, Abstract, Pictorial 3. Abstract, Pictorial, Direct 4. Direct, Pictorial, Abstract ΦγΚγ Οο ΣΞχ λ Ξ ΜκΣ Σ κ ΣÙ ρ Ω ϕ Κ ιƒυο Ωχœ( Κσ[ο Ξ Μ 1. ΣΟ ΖχΚλ+ Ρς + Κ ιƒυο Ω 2. Ρς + Κ ιƒυο Ω+ ΣΟ ΖχΚλ 3. Κ ιƒυο Ω+ ΣΟ ΖχΚλ+ Ρς 4. Ρς + ΣΟ ΖχΚλ+ Κ ιƒυο Ω 125. Unit approach of lesson plan was designed by 1. Morrison 2. Herbart 3. Bloom 4. Gloverian ΣÙΟιƒγΟλ ΘΥÙ κ ο Ωœ œÿ [ Υ ÿκκσ ιƒυξν 1. ΤÙ Μτ 2. νσνγ 3. λ 4. œ ΖÙ Ξ Υτ
126. One of the following cannot be used in stating the objectives 1. should be clear 2. should be valid 3. should combine two specifications 4. should be attainable θχκηο ΞΚ ο Ιτfl œ χ ΚÙρΚ Ζ ΞÙχœΞƒο ΣΥτΣ ιθκσ Ξƒο Ω 1. Θ ΞÙΚ Β χκ Ξη λ 2. Γσ ΟΥΘÙΚ Β χκ Ξη λ 3. Βςη [κσλμδκρ Β χκ Ξη λ 4. ΜÙƒχΚ ΥΘÙΚ Β χκ Ξη λ 127. Siddantha Shiromani was written by this Mathematician 1. Aryabhatta 2. Bhaskaracharya-II 3. Euclid 4. Ramanujan!! ιθùϕθ ςùτ && Φ λ ιθκι Θ Φ ƒυ Κ Θ ΥΩ Νν 1. ΑνΥΣγΟÙ 2. ΣÙυΚςÙεΜÙνΥÙ`II 3. Îχ γ 4. ΒςÙΤÙ λ
128. One of the following is not a characteristic feature of topical method 1. gives comprehensive knowledge 2. child centered method 3. improves concentration 4. logical base θχκηοξσ ο Ιτfl Θ Ωκ ΞÙ ÿ [ τ œπùƒμυλ οωùθ 1. ÿ ΤΥÙ Ξ Θ [ 2. œψϕ Θ ΤΥ ÿ [ 3. ΚΞ ι Θ ƒκ χ [ 4. ΘνχΚ ΑΘÙςλ
129. Pythagoras theorem was written in the form of an equation, that is In ΔABC, ÐB = 90 o, AC 2 = AB 2 + BC 2 indicates this nature of mathematics 1. Disciplinary 2. Abstractness 3. Simplicity 4. Originality!!ΔABC ο ÐB = 90 o, AC 2 = AB 2 + BC 2 && Φ λ ΘÙΚςυ Θσ[ι Θ ΜΤτΣÙγ Ξ ο Φ λ ΣÙ Κ Θιƒτ ΒϕΘ Ση Σ fl [ 1. Ι χκλ 2. Κ ιƒυο Ση 3. Φ Τ 4. η Τ Θτ Τ
130. Pupil classifies the given geometrical figures this relates to this objective 1. Knowledge 2. Understanding 3. Application 4. Skill!!ΤÙΠΞτ Ξ Υο ΣΟδΚ Ζ Ξ ΚΣ ι [Ùτ ΦτΣ Βχœ χ ΚÙfiΟτ ΘÙΟν ΟΥ 1. 2. ϕ ΚÙρfiΘο 3. ΣΥτΣ ι Θο 4. ƒ[τ 131. In Hunter s score card of evaluating the textbook more weightage has been given to this dimension 1. Psychological soundness 2. Subject matter 3. Literary style 4. Learning exercise ΣÙΟκ ιθκι Θ Τƒκ ΜµŸλ! ηον Τƒκ Ση γ Ο&,ο ƒκ ÿχ Υι Ξλ ΞΨδΚκΣγΟ 1. Ζ Υο flƒιθτ Τ 2. ΣÙΟκ ΣÙ ρ 3. ΤÙ Ρ Ο 4. Κσ[ο Σ σ Κρ
132. One of the following is not an aim of Formative Evaluation 1. Testing pupils learning 2. Comparing the students 3. Improving learning atmosphere 4. Self evaluation by the teacher θχκηοξσ ο Ιτfl ΞΖν Ω Τƒκ γ τ ΡÙχΚλ οω 1. ΤÙΠÙχΚνΚ τ Κσ[ Ω ΜÙƒιΘ Θο 2. ΤÙΠÙχΚνΚ Ζ Ικ Οο 3. Κσ[ο θ Ω Υ ΤλΣ ι Θο 4. Α Υ τ Υ Τƒκ 133. The strategy that cannot be suggested for gifted children 1. enrichment of content 2. repetition of topic that were already taught 3. assigning project work 4. to solve challenging problems θχκηοξσ ο+ ιƒ[τ ΟΥ ΤÙΠΞνΚfiχœ ΣÙ ϕθùθ ιƒ 1. ΣÙΟκ ΣÙ Ζ ƒκκσ ι Θο 2. Κσ ιθ ΣÙΟκ ΣÙ Ζ η λ Κσ ιθο 3. ΜΥο ƒγοδκ Ζ ΞΨδœΘο 4. Κ ΚΠχœΚfiχœ æν ΚÙΠε ΜµΘο
134. In the context of development of Mathematics curriculum, the unuseful content in the syllabus, the topics depending on old concepts have to be deleted, was stated by 1. Secondary Education Commission (1952-53) 2. Cambridge Report 1963 3. Kothari Commission (1964-66) 4. National Policy of Education 1986 Κ Θχ Κ ΩƒγΟ Ξ Ξ Τκ Σ ΤλΣ ι Θ ο!!σùοκ ΣÙ ο Σ ΥÙΚΤσ[ Κ ι Κ Ζ+ Σ ΨΥ Κ ι Κ Ζ øχκ Ξη λ&& Φ χ Υ 1. Β Ο Ωχ Κο χœ (1952`53) 2. Κλ γϖ χ Κ (1963) 3. ΚÙιΘÙ Κο χœ (1964`66) 4. Θ Υ Κο χ ΚÙρ Κ (1986) 135. One of the following provides least concrete learning experience in Mathematics 1. Exhibits 2. Still pictures 3. Audio recording 4. Model Κ Θκ ΣÙΟιƒο+ Κχ œ [ϕθ ΚÙγ Ω Κσ[ο ΣΞι Θ κσ 1. ΚηΚÙγ 2. ΨσΣΟδΚρ 3. Ι κσƒ Κρ 4. ΤÙƒ Κρ
136. The lesson plan based on interrelationship among objectives, learning experiences and evaluation was proposed by 1. Bloom 2. Herbart 3. Morrison 4. Gloverian œ χ ΚÙρΚρ+ Κσ[ο ΣΞδΚρ Τσflλ Τƒκ Α ΥΞσ τ ΜΚι ΘÙΟν Σ ρζοχ ΥΞÙfl ΣÙΟιƒγΟι Θ ÿκκσ ιƒυξν 1. λ 2. νσνγ 3. ΤÙ ]τ 4. œ Ζ Ξ Υτ 137. The evaluation suitable to find the causes of learning difficulties 1. Formative 2. Summative 3. Diagnostic 4. Prognostic ΤÙΠÙχΚνΚ τ Κσ[ο Κ κσù Κfiχœ (learning difficulties) ΚÙςΠδΚ Ζ ΚÙΠ ΘœϕΘ Τƒκ 1. ΞΖν Ω 2. ΘÙœ Ω 3. œ [Υ 4. ÿτ
138. This method is based on psychological laws of learning (readiness, exercise, effect) 1. Project 2. Analytic 3. Synthetic 4. Deductive θχκηοξσ ο+ Ζ Υο Κσ[ο ƒκ τσ ΤϕΘ Κσ ιθο ÿ [ 1. ΜΥοƒγΟ ÿ [ 2. ΣœιΘ ÿ [ 3. ΘÙœιΘ ÿ [ 4. ƒ ΖχΚ ÿ [ 139. Pupil records the probable findings while tossing a coin number of times in a tabular form. The academic standard achieved here is 1. Problem solving 2. Connection 3. Reasoning and proof 4. Visualisation and representation ΤÙΠΞτ!!Ι ΡÙΠΥι Θ ΣΩÿ [ η γ Οχœλ Ζ Κ Ζ Σγ Υο Ξ ο Σƒ [Ùτ&&, Βδœ Ξτ Σσ[ Κο ιθςλ 1. ςε æνιθο 2. ΘÙΟν Κρ 3. ΚÙςΠλ flθο, Ï ιθο 4. ΚÙγ Σ ι Θο Τσflλ ΟΥÙΖλ ΚÙΠο
140. One among the following is a limitation of objective test 1. Diagnostic value 2. Broad content coverage 3. Reliability of scoring 4. Testing higher order mental abilities θχκηοξσ ο Ιτfl [ΞΥ Ù Θν τ Ξςλ ( œ [ΣÙ 1. œ [Υ Τƒκ 2. ƒκτù ΣÙΟκ ΣÙ Ζ Σσ κσ 3. Τƒκ Ση ΡλΣΚιΘτ Τ 4. Υν Ω Τ ι ƒ[τκ Ζ ΜÙƒιΘο 141. The laws of exponents are generalized with examples in this method 1. Inductive 2. Deductive 3. Analytic 4. Synthetic Βχ Κσ ιθο ÿ [ ο+ ΘÙςΠδΚ τ ÍΩλ χœ œ Κ τ ƒκ Ζ ΣÙ ΤΣ ιθ ÿ Ÿλ 1. ƒξ ÿ [ 2. ƒ ΖχΚÿ [ 3. ΣœιΘ ÿ [ 4. ΘÙœιΘ ÿ [
142. Some parts of curriculum topics related to geometry are introduced in the same class with a gap of 3-4 months, the method of curriculum organisation here is 1. Topical 2. Concentric 3. Spiral 4. Logical Ι ς Ξœκ ο+ 3`4 ΤÙΘ ΚÙΩ Β Ο Ξ ο Ξ Υ ο Ω ΣœƒΚ Ζ ÿκκσ ι λ Κ ΩιƒγΟ Ξ Ξ Τκ Βλÿ [ŸΟτ ΘÙΟν ΟΥ 1. Θ Ωκ ÿ [ 2. ΣÙ ΤΥ ÿ [ 3. ρ ÿ [ 4. ΘνχΚ ÿ [
143. To enable the pupil to become proficient in the four fundamental operations (+,,, ). The connected aim here is 1. Practical 2. Social 3. Disciplinary 4. Cultural ΤÙΠΞ + ΡÙτœ κσ Ο ΜΥοÿ [Κ ο (+,,, ) ƒ[ ΤλΣ ι Θο ΦτΣ Βϕ ΡÙχΚι Θ κσ ΟΥÙΚ ΚÙηΟ 1. Ρ Οÿ [ 2. ΜÍΚλ 3. Ι χκλ 4. ΚΩÙεΜÙςλ
144. The best suitable strategy to slow learners among the following 1. Responsibility of Maths club 2. Opportunity for independent learning 3. Enriched syllabus 4. Instruction is in the form of learning by using multiple senses θχκηοξσ ο+ ΤοΩ Κσ ΣÙ χκù (slow learners) ΘœϕΘ Ξ ÿ [ 1. Κ Θχ ΚΨΚ ΣÙflκ 2. ΥΤÙΚ Κσ[ χœ Ξ ΜµΘο 3. ƒκτù ΣÙΟκ ΣÙ ρ 4. Κσ ιθ ο Σο Ξfl ÈνΞΤÙ Ξ Κ Ζ ΣΥτΣ ι Θο 145. One of the topic does not belong to Applied Mathematics 1. Linear Programming 2. Statistics 3. Probability 4. Number theory θχκηοξσ ο ΣΥτΣÙγ Κ Θι Οτ ΘÙΟν οωùθ Ι Θ Ωκ 1. Ρ Υο ςωùχκλ 2. ρ Υο 3. ΚθΘΚ 4. Φη ΚÙγΣÙ
146. The four basic principles of problem solving were introduced by 1. Polya 2. Thales 3. Ptolemy 4. Euclid ςε æνιθ ο ΡÙτœ κσ Ο Θι ΞδΚ Ζ ÿκκσ ιƒυξν 1. ΣÙοΥÙ 2. Θου 3. ΟÙΩ 4. Îχ γ 147. One of the following learning experience is an example of contrived experience 1. Model 2. Still picture 3. Drama 4. Exhibits θχκù λ Κσ[ο ΣΞδΚ ο+ ΞÙχΚκΣγΟ ΓσΣ ιθκσγο( ΣΞιƒσœ ΘÙςΠλ 1. ΤÙƒ 2. Ψο ΣΟλ 3. ΡÙΟΚλ 4. ΚηΚÙγ Κρ
148. The Mathematical technique that is useful in orderly presentation of ideas and steps is 1. Oral work 2. Written work 3. Drill work 4. Supervised study ϕθ Κρ+ Σ ΩΚ Ζ Ξ Μ ÿ [ ο ΜΥοΣ ι ΞΘσœ ΣΥτΣ λ Κ Θ Ξ ÿ [ 1. ΞÙµ ΤÙ Σ 2. Φ ι κσ 3. Σ σ Σ 4. ΤσΣÙν Ξ Κσ[ο 149. Heuristic method was introduced by 1. Francis Bacon 2. Pestalozi 3. Aristotle 4. Armstrong ΚηΟ ÿ [ Υ ÿκκσ ιƒυξν 1. ςùτ υ ΣΚτ 2. ΣυΟÙΩ 3. υοù ο 4. ΑνλυγςÙδ
150. To honour the contributions of Sri Srinivasa Ramanujan to Mathematics, Government of India has declared this as the Year of Mathematics. ƒ ±ΞÙΜ ΒςÙΤÙ λ ΞνΚρ Κ Θιƒσœ Ασ Υ [κσù Μ ΞΚ τ ΞÙΚ ΒϕƒΥ ςμùδκλ ΒϕΘ Αη Ο!!Κ Θ Αη && Φ ιθ 1. 1887 2. 1937 3. 1987 4. 2012 151. To solve problems in Arithmetic, The method of false position was used by this mathematician 1. Aryabhatta 2. Bhaskaracharya-II 3. Pythagoras 4. Ramanujan Φη Κ Θ ςεμ æνιθ ο The method of false position Η ΣΥτΣ ιƒυξν 1. ΑνΥΣγΟÙ 2. ΣÙυΚςÙεΜÙνΥÙ-II 3. ΘÙΚςυ 4. ΒςÙΤÙ λ
152. Continuous Comprehensive Evaluation emphasizes one of these aspects with respect to pupil 1. Only scholastic areas 2. Only non scholastic areas 3. Rote memorization 4. Overall development ΘÙΟν Τσflλ ÿ ΤΥÙ Τƒκ γ τ ÿχ ΥΤÙ Ιτfl 1. ΣÙΟκ ΣÙ ρκρ Τγ Τ 2. ΣÙΟκ ΣÙ Ζ Θ ς Τσ[ Ξ Τγ Τ 3. Τ κσùολ ΜµΘο 4. ÿ ΤΥÙ ΞΖνε 153. Pupil does oral calculation with speed and accuracy, this specification relates to the objective 1. knowledge 2. understanding 3. application 4. skill ΤÙΠΞτ ΞÙµ ΤÙ ΚΠχœΚ Ζ ΞΚΤÙΚ λ ο ΥΤÙΚ λ Μµ [Ùτ Φτ[ [κσλμλ ΒΘ Οτ ΘÙΟν ΟΥ 1. 2. ϕ χ ΚÙρfiΘο 3. ΣΥτΣ ι Θο 4. ƒ[τ
154. One of the following is not the use of Mathematics club 1. Proper use of leisure time 2. Substitution of class room learning 3. Opportunity to work in group 4. Inculcates the habit of self study θχκηοξσ ο Ιτfl Κ Θ ΚΨΚιƒτ ΣΥτ οω 1. ϑµ Ρςι Θ Μ ΥÙΚ ΣΥτΣ ιƒχ ΚÙρfiΘο 2. ΞœκΣ [ Κσ[ χœ ΤÙσflχΚσ[ο 3. œ ΞÙΚ Ξ Ω ΜµΥ ΞÙµκ 4. ΥΤÙΚ Σ χœλ ΣΨχΚι Θ ΤλΣ ι Θο 155. The test that measures attainment after a period of learning is called 1. Achievement test 2. Personality test 3. Projective test 4. Intelligence test ΚÙΩλ Κσ[ο Ρ Ο Σσ[ [œ Κσ[ο Ω Υ ΜÙΘ ΜµΥ Θ λ Θν 1. Ο ι Θν 2. Αfi Τι Θν 3. Κ ι ΞÙχΚ Θν 4. ηπ ι Θν
156. In the affective domain the highest level of objective is 1. Responding 2. Valuing 3. Organisation 4. Characterisation θχκηοξσ ο Πνε ΜÙν ΚΖιƒτ ƒκσγμ œ χ ΚÙΖÙ 1. ΩδœΘο 2. Τƒκ Θο 3. Ι δκ ΤιΘο 4. Ση ΞÙχΚο 157. Children learn to enjoy mathematics rather than fear it is a vision of 1. Kothari Commission (1964-66) 2. NPE 1986 3. NCF 2005 4. APSCF 2011!!œΨϕ ΘΚρ Κ Θι Θ ΣΥ οωùτο Μϕ ΘÙ_ΤÙΚ ΚσΚ Ξη λ&&, Φ λ ΣÙν Ξ ΚÙηΟ 1. ΚÙιΘÙ Κο œ (1964-66) 2. NPE 1986 3. NCF 2005 4. APSCF 2011
158. Explaining Mathematical logic, relates to this academic standard 1. Problem solving 2. Reasoning and proof 3. Communication 4. Connection!!Κ Θ ΘνχΚδΚ Ζ Ξ ιθο&&, ΦτΣ ΒχΚο Θςι Οτ ΘÙΟν ΟΥ 1. ςε æνιθο 2. ΚÙςΠλ flθο Τσflλ Ï ιθο 3. ΘΚΞο flθο 4. ΘÙΟν Κρ 159. Appreciate the works of Mathematicians, relates to this value 1. Practical value 2. Cultural value 3. Social value 4. Aesthetic value!!κ Θ ΝνΚ τ Μ ΞΚ Ζ ΣÙσflΘο&&, ΦτΣ ΒλΤƒκ Σε ΜÙνϕΘ 1. Ρ Οÿ [ Τƒκ 2. ΚΩÙεΜÙς Τƒκ 3. ΜÍΚ Τƒκ 4. ΨœΠν Τƒκ
160. The number system was called as Arithmetica by 1. Greeks 2. Sumerians 3. Egyptians 4. Chinese Φη Τκ Σ!! ι Τ ΚÙ&& Φ ΨιΘΞνΚρ 1. ςχκνκρ 2. Τ ΥτΚρ 3. Φ κƒυνκρ 4. νκρ