Spring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena

Σχετικά έγγραφα
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ECE 468: Digital Image Processing. Lecture 8

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2 Composition. Invertible Mappings

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

Second Order Partial Differential Equations

Statistical Inference I Locally most powerful tests

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

5.4 The Poisson Distribution.

TMA4115 Matematikk 3

The Simply Typed Lambda Calculus

Matrices and Determinants

Homework 3 Solutions

Section 9.2 Polar Equations and Graphs

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

derivation of the Laplacian from rectangular to spherical coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Numerical Analysis FMN011

the total number of electrons passing through the lamp.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

4.6 Autoregressive Moving Average Model ARMA(1,1)

EE512: Error Control Coding

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 2. Soundness and completeness of propositional logic

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

w o = R 1 p. (1) R = p =. = 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

Elements of Information Theory

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Srednicki Chapter 55

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

Homework 8 Model Solution Section

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Fractional Colorings and Zykov Products of graphs

Section 7.6 Double and Half Angle Formulas

Partial Trace and Partial Transpose

Detection and Recognition of Traffic Signal Using Machine Learning

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ADVANCES IN DIGITAL AND COMPUTER VISION

Space-Time Symmetries

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Reminders: linear functions

Example Sheet 3 Solutions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Solution to Review Problems for Midterm III

Solutions to Exercise Sheet 5

CE 530 Molecular Simulation

Instruction Execution Times

Second Order RLC Filters

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Digital Image Processing

Assalamu `alaikum wr. wb.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Concrete Mathematics Exercises from 30 September 2016

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

Advanced Subsidiary Unit 1: Understanding and Written Response

Math 6 SL Probability Distributions Practice Test Mark Scheme

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Block Ciphers Modes. Ramki Thurimella

Problem Set 3: Solutions

NMBTC.COM /

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Notes on the Open Economy

CT Correlation (2B) Young Won Lim 8/15/14

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Lecture 34 Bootstrap confidence intervals

C.S. 430 Assignment 6, Sample Solutions

D Alembert s Solution to the Wave Equation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Abstract Storage Devices

EE101: Resonance in RLC circuits

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Sampling Basics (1B) Young Won Lim 9/21/13

Transcript:

CS 4758/6758: Robot Learning Spring 2010: Lecture 3. Slides coutesy: Prof Noah Snavely, Yung-Yu Chung, Frédo Durand, Alexei Efros, William Freeman, Svetlana Lazebnik, Srinivasa Narasimhan, Steve Seitz, Richard Szeliski, and Li Zhang

The environment

Camera as sensor Image and signal processing. Implementation: OpenCV for processing the Image signals. Other libraries for processing 1D signals.

What is an image? Digital Camera We get this as the input data Source: A. Efros

What is an image? A grid of intensity values 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 20 0 255 255 255 255 255 255 255 = 255 255 255 255 75 75 75 255 255 255 255 255 255 255 255 75 95 95 75 255 255 255 255 255 255 255 96 127 145 175 255 255 255 255 255 255 255 255 127 145 175 175 175 255 255 255 255 255 255 255 127 145 200 200 175 175 95 255 255 255 255 255 127 145 200 200 175 175 95 47 255 255 255 255 127 145 145 175 127 127 95 47 255 255 255 255 74 127 127 127 95 95 95 47 255 255 255 255 255 74 74 74 74 74 74 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 (common to use one byte per value: 0 = black, 255 = white)

What is an image? We can think of a (grayscale) image as a function, f, from R 2 to R: f (x,y) gives the intensity at position (x,y) f (x, y) x y snoop 3D view A digital image is a discrete (sampled, quantized) version of this function

Image transformations As with any function, we can apply operators to an image g (x,y) = f (x,y) + 20 g (x,y) = f (-x,y) We ll talk about a special kind of operator, convolution (linear filtering)

1D signal 255 200 178 100 74 67 71 101 120 180 211 240

Question: Noise reduction Given a camera and a still scene, how can you reduce noise? Take lots of images and average them! What s the next best thing? Source: S. Seitz

Image filtering Modify the pixels in an image based on some function of a local neighborhood of each pixel 10 5 3 4 5 1 1 1 7 Local image data Some function 7 Modified image data Source: L. Zhang

Linear filtering One simple version: linear filtering (cross-correlation, convolution) Replace each pixel by a linear combination of its neighbors The prescription for the linear combination is called the kernel (or mask, filter ) 10 4 1 5 3 6 1 1 8 Local image data 0 0 0 0 0. 0 0 51 0.5 kernel 8 Modified image data Source: L. Zhang

Cross-correlation Let be the image, be the kernel (of size 2k+1 x 2k+1), and be the output image This is called a cross-correlation operation:

Convolution Same as cross-correlation, except that the kernel is flipped (horizontally and vertically) This is called a convolution operation: Convolution / cross-correlation are commutative and associative

Convolution Adapted Ashutosh from F. Durand Saxena

Mean filtering * 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 = 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 = 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 20 30 30 30 20 10 0 20 40 60 60 60 40 20 0 30 60 90 90 90 60 30 0 30 50 80 80 90 60 30 30 50 80 80 90 60 30 0 20 30 50 50 60 40 20 10 20 30 30 30 30 20 10 10 10 10 0 0 0 0 0

Mean Filtering: 1-D One can also apply convolution to 1D signals. F = [0,10, 12, 20, 8, 12, 0] H = [.25.5.25] G =?

Linear filters: examples 0 0 0 0 1 0 0 0 0 * = Original Identical image Source: D. Lowe

Linear filters: examples 0 1 0 0 0 0 0 0 0 * = Original Shifted left By 1 pixel Source: D. Lowe

Linear filters: examples 1 1 1 1 1 1 1 1 1 * = Original Blur (with a mean filter) Source: D. Lowe

Linear filters: examples * 0 0 0-0 2 0 0 0 0 1 1 1 1 1 1 1 1 1 = Original Sharpening filter (accentuates edges) Source: D. Lowe

Gaussian Kernel Source: C. Rasmussen

Mean vs. Gaussian filtering

Gaussian noise = 1 pixel = 2 pixels = 5 pixels Smoothing with larger standard deviations suppresses noise, but also blurs the image

Outliers noise Gaussian blur p = 10% = 1 pixel = 2 pixels = 5 pixels What s wrong with the results?

Alternative idea: Median filtering A median filter operates over a window by selecting the median intensity in the window Is median filtering linear? Source: K. Grauman

Median filter What advantage does median filtering have over Gaussian filtering? Source: Ashutosh K. Grauman Saxena

Salt & pepper noise median filtering p = 10% = 1 pixel = 2 pixels = 5 pixels 3x3 window 5x5 window 7x7 window

Questions?

Edge Detection

Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels

Characterizing edges An edge is a place of rapid change in the image intensity function image intensity function (along horizontal scanline) first derivative Source: L. Lazebnik edges correspond to extrema of derivative

Effects of noise Noisy input image Where is the edge? Source: S. Seitz

Solution: smooth first f h f * h To find edges, look for peaks in Source: S. Seitz

Associative property of convolution Differentiation is convolution, and convolution is associative: This saves us one operation: f Source: S. Seitz

2D edge detection filters Gaussian derivative of Gaussian (x)

Derivative of Gaussian filter x-direction y-direction

The Sobel operator Common approximation of derivative of Gaussian -1 0 1 1 2 1-2 0 2 0 0 0-1 0 1-1 -2-1

Sobel operator: example Source: Wikipedia

Questions?

Finding Objects Background subtraction

Feature extraction: Corners and blobs

Desirable properties in the features Distinctiveness: can differentiate a large database of objects Efficiency real-time performance achievable

Example of features A laundry list: Corner / edge detectors SIFT features Output of various filters

Feature Matching

Feature Matching

Metric for similarity? Vector x i and x j. What is the distance between them?

Matching using distance between the features Find features that are invariant to transformations geometric invariance: translation, rotation, scale photometric invariance: brightness, exposure, Feature Descriptors

Object recognition (David Lowe)

Image matching by Diva Sian by swashford

Harder case by Diva Sian by scgbt

Harder still? NASA Mars Rover images

How to match features? Robustness? Machine Learning to the rescue. Supervised Learning: next lecture.

Projects Project proposals due Feb 15. Brief description of the projects on Thursday lecture. Choose a Topic and a Robot. Good time to setup a meeting with the instructor next week.

Questions?