4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3.

Σχετικά έγγραφα
3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Solution to Review Problems for Midterm III

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Areas and Lengths in Polar Coordinates

Chapter 6 BLM Answers

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION

Section 7.6 Double and Half Angle Formulas

Section 9.2 Polar Equations and Graphs

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 3 Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Trigonometric Formula Sheet

PARTIAL NOTES for 6.1 Trigonometric Identities

Principles of Mathematics 12 Answer Key, Contents 185

CRASH COURSE IN PRECALCULUS

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Matrices and Determinants

ST5224: Advanced Statistical Theory II

Second Order RLC Filters

Chapter 7 Analytic Trigonometry

Finite Field Problems: Solutions

EE512: Error Control Coding

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Differentiation exercise show differential equation

Example Sheet 3 Solutions

Section 8.2 Graphs of Polar Equations

If we restrict the domain of y = sin x to [ π 2, π 2

C.S. 430 Assignment 6, Sample Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Quadratic Expressions

2 Composition. Invertible Mappings

Solutions to Exercise Sheet 5

Math221: HW# 1 solutions

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

F19MC2 Solutions 9 Complex Analysis

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 26: Circular domains

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Approximation of distance between locations on earth given by latitude and longitude

Trigonometry 1.TRIGONOMETRIC RATIOS

Homework 8 Model Solution Section

Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Differential equations

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

w o = R 1 p. (1) R = p =. = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

MathCity.org Merging man and maths

Reminders: linear functions

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

D Alembert s Solution to the Wave Equation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Review Exercises for Chapter 7

EE101: Resonance in RLC circuits

Uniform Convergence of Fourier Series Michael Taylor

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 7 Transformations of Stress and Strain

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

( ) 2 and compare to M.

Strain gauge and rosettes

10.7 Performance of Second-Order System (Unit Step Response)

Solution Series 9. i=1 x i and i=1 x i.

SEN TRONIC AG A AB 93 :, C,! D 0 7 % : 3 A 5 93 :

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Spherical Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Srednicki Chapter 55

Introduction to Time Series Analysis. Lecture 16.

Probability and Random Processes (Part II)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Transcript:

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9.. 8 Use the guidelines of this section to sketch the curve. ln ln. 5. 6 8 7. ln tan. e.. 9. ln. e 5. 6. 5. 6. e e 7. 8. 5 7. e 8. ln 9.. 9 9 Produce graphs of f that reveal all the important aspects. of the curve. In particular, ou should use graphs of f and f to. s s estimate the intervals of increase and decrease, etreme values, intervals of concavit, and inflection points.. s 5. s 9 9. f 7 6 5. s 6.. f 8 5 5 8 9 7. s s 8.. f sin, 7 7 s. f sin sin 9. cos sin. cot, Produce graphs of f that show all the important aspects of the curve. Estimate the local maimum and minimum values. cos sin. sin cos and then use calculus to find these values eactl. Use a graph of. sin s cos. sin sin f to estimate the inflection points.. f e 5. e 6. e. f e cos 7. ln cos 8. ln Copright, Cengage Learning. All rights reserved.

SECTION. CURVE SKETCHING. ANSWERS E Click here for eercises. S Click here for solutions.. A. R B. -int. C. None D. None E. Inc. on, ; dec. on,,, F. Loc. min. f =,loc. 7 ma. f = G. CU on, 5,CDon 5,,IP 5, 7 5. A. {, } B. -int. f = C. None D. HA =;VA =, = E. Inc. on,,, ;dec.on,,, F. Loc. ma. f = G. CD on, ; CUon,, 9,. A. R B. -int. 7 C. None D. None E. Inc. on,,, ; dec.on, F. Loc. ma. f = 7,loc.min.f = 7 G. CU on,, CD on,. IP, 5 6. A. {, } B. None C. None D. HA =; VA =, = E. Inc. on, ; dec.on,,,,, F. Loc. min. f = G. CU on,,, ; CDon,. A. R B. -int.; -int., C. None D. None E. Inc. on,,dec.on, F. Loc. ma. f = 7 G. CU on, ; CDon,,,. IP,,, 6 7. A. { ±} B.-int. C.About -ais D. HA =,VA = ± E. Inc. on,,, ; dec.on,,, F. Loc. min. f = G. CU on, ;CDon,,,. A.R B.-int., -int. C.None D.None E. Dec. on R F. None G. CU on,,cdon,. IP, 8. A. { 5} B. -int. C. None D. HA =,VA 5 =5 E. Inc. on, 5, dec. on 5, F. None G. CU on, 5, 5, Copright, Cengage Learning. All rights reserved. =5

SECTION. CURVE SKETCHING 9. A. { } B. -int., -int. C. None D. HA =, VA = E. Inc. on,,, F. None G. CU on,,cdon,. A., 5 5, B. -int. ±5 C. About the -ais D. None E. Inc. on 5,,dec.on, 5 F. None G. CD on, 5, 5, = =_. A. { }, ± B. None C. About the origin D. HA =,VA =, = ± E. Inc. on, ;dec.on,,,, F. Loc. min. f f =,,,,, =, loc. ma.,,, G. CU on,,, ;CDon. A., ] [, B. -int. are ± C. About the origin D. None E. Inc. on,,, F. None G. CU on,, ;CDon,,,,. IP ±, ± 9. A. { } B. -int. C. None D. VA = E. Inc. on,,, ; dec.on, F. Loc. min. f = G. CU on,,, ;CDon,. IP, _ 5. A. R B. -int., -int. C. None D. HA = ± E. Inc. on,, dec.on, F. Loc. ma. f = G. CU on, 7 +, 7, ;CD on 7, + 7 +. IP 7, 7+ 7, 7 7, 7 6 7 + 6 7 Copright, Cengage Learning. All rights reserved.. A. [, B. None C. None D. HA = E. Dec. on, F. None G. CU on, 6. A. R B.-int., 7; -int. C. None D. None E. Inc. on, 8,, ; dec.on 8, F. Loc. ma. f 8 =,loc.min.f = G. CD on,,,

SECTION. CURVE SKETCHING 7. A. [, B. -int. C. None D. None E. Inc. on, F. None G. CD on,. A.R B. -int. C.About the -ais, period D. None E. Inc. on n,n,dec.onn, n +, n an integer F. Loc. ma. f n =,loc.min. f n + =, n an integer G. CU on n +, n +,CDon n, n +.IP n ±, 8. A., B.-int., -int C.About -ais D. VA = ± E. Inc. on,,dec.on, F. Loc. min. f = G. CU on, =_ =. A. R Note: f is periodic with period,so in B G we consider onl [, ] B. -int., 7 ; -int. C. Period D. None E. Inc. on,, 5, ;dec.on, 5 F. Loc. ma. f =, loc. min. f 5 = G. CU on, 7 ;CDon,, 7,.IP,, 7, 9. A. R B. -int. n +, n an integer, -int. C. Period D. None E. Inc. on n +, n + 7,dec.on n, n +, n an integer F. Loc. ma. f n =,loc.min.f n + =, n an integer G. CU on n +, n + 5,CDon n, n +,IP n +,, n an integer ¹ _. A., B.None C.None D.VA =, = E. Inc. on, ;dec.on,,, F. Loc. min. f =+,loc.ma.f = G. CU on,,cdon,.ip,. A. R Note: f is periodic with period,so in B G we consider onl [, ] B. -int., 5 ; -int. C. Period D. None E. Inc. on, 6, 7, ;dec. 6 on, 7 6 6 F. Loc. ma. f 6 =,loc.min. f 7 6 = G. CU on, 5 ;CDon,, 5,.IP,, 5, ¹ _6, ¹ 5¹ Copright, Cengage Learning. All rights reserved., _ 7¹ 6

SECTION. CURVE SKETCHING 5. A. R Note: f is periodic with period,soinb Gwe consider onl [, ] B.-int.,, ; -int. C. Period D. None E. Inc. on,,, ;dec.on, F. Loc. ma. f =, loc. min. f = G. CU on, 6, 5, ;CDon, 5 6 6 6.IP, 5 6, 5, 5 6 5. A. { } B. -int. e C. None D. HA =, VA = E. Inc. on,,, F. None G. CU on,,, ;CDon,.IP, e G. CU on e /,,CDon,e /.IP e /, e / 9. A.,, B. -int. ± 5 C. None D. VA =, = E. Inc. on,,dec.on, F. None G. CD on,,,. A.R B.-int, -int C.About the -ais D. None E. Inc. on,,dec.on, F. Loc. min. f = G. CU on, ; CDon,,,. IP±, ln 6. A.R B.-int, -int C.About the origin D.None E. Inc. on R F. None G. CU on,,cdon,. IP,. A. { n/} Note: f is periodic with period,soin B-G we consider onl << B. -int., 7. A. { n <<n +, n =, ±, ±,...} Note: f is periodic with period, so in B G we consider onl [, ] B.-int., ; -int. C. About the -ais, period D. VA =, E. Inc. on,,dec. on, F. Loc. ma. f = f = G. CD on,,, 8. A., B. -int. C. None D. HA =,VA = E. Inc. on,e,dec.one, F. Loc. ma. f e =/e C. About the -ais, period D. VA =, = ± E. Inc. on,,dec.on, F. None G. CD on,,, ;CUon,,,.IP ±,. A. R B. -int, -int C. None D. HA = E. Inc. on, ; dec.on,,, F. Loc. ma. f = e, loc. min. f = G. CU on,, +, ;CDon, +. IP ±, 6 ± e ± inflection points Copright, Cengage Learning. All rights reserved. _ e@, -Ï +Ï

6 SECTION. CURVE SKETCHING. A., B. -int. C. None D. None E. Inc. on / e,, dec.on, / e F. Loc. min. f / e = /e G. CU on e /,,CDon, e /.IP e /, / e 6. A. { } B. None C. None D. HA =,VA = E. Inc. on,,, ; dec.on, F. Loc. min. f = e G. CU on,,, e@, _. A. { } B.None C.None D.VA = E. Inc. on,,, ; dec.on, F. Loc. min. f = e G. CU on,,cdon, 7. A. { } B. None C. None D. VA = E. Inc. on,,, ; dec.on, F. Loc. min. f = e G. CU on,,,. 5. A.R B.-int, -int. C.About the -ais D. HA = E. Inc. on,,, ; dec.on,,, F. Loc. ma. f ± = /e, loc.min. f = G. CU on, 5+ 7, 5 7, 5 7, CD on 5+ 7, 5 7, 5 7, 5+ 7, ; 5+ 7.IPat = ± 5+ 7, 8. A., B.-int., -int. C. None D. VA = E. Inc. on,,dec.on, F. Loc. min. f = G. CU on, =_ ± 5 7. Copright, Cengage Learning. All rights reserved. _Œ º º Œ

SECTION. CURVE SKETCHING 7 9. 999 Inc. on.,.,.7, ; dec. on,.,.,.7; loc.ma.f. 6.6; loc.min. f.., f.7 6.; CUon,.5,.5, ; CDon.5,.5; IP.5,.,.5, 6.5. Note: Due to periodicit, we consider the function onl on [, ]. Inc. on.,.6,.8,.8,.6,.; dec. on,.,.6,.8,.8,.6,.,; loc.ma. f.6.7, f.8.9, f..9;loc.min. f..9, f.8.9, f.6.7; CUon,.,.,,., ; CDon.,.,,.,.,; IP,,.,.8,.,.8,,,.,.8,.,.8,,. Inc. on,.5,., ; dec. on.5,.; loc. ma. f.5,loc.min.f 6;CUon.,,CDon,.; IP.,. Loc. ma. f = e /9.5, loc. min. f = e /9.7; IP.5,.5,.9,.8. Inc. on 7, 5.,.,., 5., 7 ; dec. on 5.,.,., 5.; loc. ma. f 5.., f..9; loc.min.f..9, f 5..; CUon 7, 6.8,.,.5,,.5,., 6.8; CDon 6.8,.,.5,,.5,., 6.8, 7; IP 6.8,.,.,.,.5,.,,,.5,.,.,., 6.8,.. Loc. ma. f = f =e.7, loc.min. f =/e.7;ip.9,.86, 5.8,.86 Copright, Cengage Learning. All rights reserved.

8 SECTION. CURVE SKETCHING. SOLUTIONS E Click here for eercises. Copright, Cengage Learning. All rights reserved.. = f = +5 A. D = R B. -intercept = f = C. No smmetr D. No asmptote E. f = + = > < <<. f < < or >. Sof is increasing on, and decreasing on, and,. F. The critical numbers occur when f = = =,. The local minimum is f = 7 and the local maimum is f =. G. f = 6 > < 5,sof is CU on, 5 and CD on 5,.IP 5, 7. = f = 6 8 +7 A. D = R B. -intercept = f = 7 C. No smmetr D. No asmptote E. f =6 8=6 + > + > < or >. f < <<. Sof is increasing on, and, and decreasing on,. F. The critical numbers are =,. The local maimum is f = 7 and the local minimum is f = 7. G. = > >,sof is CU on, and CD on,. IP, 5. = f = A. D = R B. -intercept = f =, -intercept = = =, C. No smmetr D. No asmptote E. = = > <,sof is increasing on, and decreasing on,. F. Local maimum is f = 7,nolocal minimum. G. = > <<,so f is CU on, and CD on, and,. IP, and, 6. = f = 9 = 8 + 7 + 6 + 5 + + + + + A. D = R B. -intercept: f = ; -intercept: f = =B part E below, f is decreasing on its domain, so it has onl one -intercept. C. No smmetr D. No asmptote E. f = 9 8 = 9 8 + < for all,sof is decreasing on R. F. No maimum or minimum G. f = 7 7 > <,sof is CU on, andcdon,. IPat, 5. = f = + = + A. D = {, } =,,, B. -intercept: f = ; no -intercept C. No smmetr D. ± + / ± +/ / = = so =is a HA. = and =are VA. E. f + + = + + = + > < ; f < >. So f is increasing on, and,,andf is

SECTION. CURVE SKETCHING 9 Copright, Cengage Learning. All rights reserved. decreasing on, and,. F. f = is a 9 local maimum. G. f + [ + ] + + = [ + ] = + [ + + + ] + = ++ + + + = + + + = 6 + + + The numerator is alwas positive, so the sign of f is determined b the denominator, which is negative onl for <<. Thus, f is CD on, andcuon, and,. NoIP. 6. = f = + A. D = {, } =,,, B. No intercept C. No smmetr D. =,so =is a HA. ± + + = and + + =, =,so =and = are VA. + E. f + = > <<; + f < < or >. So f is increasing on, and decreasing on,,,,and,. F. f = is a local minimum. G. f = + + [ + + + ] 6 + = 6 +8 +9 + Since +8 +9> for all, f > >, so f is CU on, and,,andcd on,. NoIP 7. = f = + = + A. D = { ±} B. No -intercept, -intercept = f = C. f =f,sof is even and the curve is smmetric about the -ais. + / D. ± + =,so = ± / is a HA. + + =, + =, + + =, + =. So = and = are VA. E. f = > >, so f increases on, and,, and decreases on, and,. F. f = is a local minimum. G. = = + > < <<, sof is CU on, and CD on, and,. No IP 8. = f =/ 5 A. D = { 5} =, 5 5, B. -intercept = f =,no-intercept C. No 5 smmetr D. =,so =is a ± 5 HA. 5 =, so =5is a VA. 5 E. f = 8/ 5 > <5 and f < > 5. Sof is increasing on, 5 and decreasing on 5,. F. No maimum or minimum G. f =/ 5 > for 5,sof is CU on, 5 and 5,.

SECTION. CURVE SKETCHING Copright, Cengage Learning. All rights reserved. =5 9. = f = / + A. D = { } =,, B. -intercept is, -intercept = f = C. No smmetr D. ± + / ± +/ =, so =is a HA. + = and =,so = is a VA. + + E. f = + + = 6 + f > sof is increasing on, and,. F. No maimum or minimum G. f = > <,sof is CU on +, and CD on,. NoIP =_ =. = f =/ [ 9 ] A. D = {, ± B. No intercept C. f = f, so the curve is smmetric about the origin. D. ± 9 =, so =is a HA. + 9 =, 9 =, / 9 =, / + 9 =, / + 9 =, and / 9 =,so =and = ± are VA. E. f = 9 9 > < < << and f < > or <,sof is increasing on, and,,, and decreasing on,,and,. F. f,,, = is a local } minimum, f G. f = is a local maimum. = 9 + 9 9 9 = 6 6 +7 9 Since 6 +7> for all, f > << or >,sof is CU on, and, and CD on, and,.. = f = = A. D = { } B. -intercept, no-intercept C. No smmetr D. =,sonoha. = ± + and =, so =is a VA. E. f = + = + > +> >, so f is increasing on, _,. and, and decreasing on F. f = is a local minimum. G. f = = f > > or <,sof is CU on, and, and CD on,. IPis,.. = f = A. D = { and } = { } =[, B. No intercept C. No smmetr D. = + + = + =,so = is a HA.

SECTION. CURVE SKETCHING Copright, Cengage Learning. All rights reserved. E. f = < for all >,since < <,sof is decreasing on,. F. No local maimum or minimum G. f = [ / / for >,sof is CU on,.. = f = 5 A. D = { 5 } =, 5] [5, ] f > B. -intercepts are ±5,no-intercept C. f =f, so the curve is smmetric about the -ais. D. 5 =, no asmptote ± E. f = 5 / = 5 > / if >5,sof is increasing on 5, and decreasing on, 5. F. No local maimum or minimum G. = 5 / 5 / 5 / = +5 5 7/ < so f is CD on, 5 and 5,. No IP. = f = 9 A. D = { 9 } =, ] [, B. -intercepts are ±, no-intercept. C. f = f, so the curve is smmetric about the origin. D. 9=, no asmptote E. f = 9+ 9=, 9 > for D, sof is increasing on, and,. F. No maimum or minimum G. f = 9 + 9 / 9 9 = 7 > and > 9 / or <<,sof is CU on, andcdon, and,,. IP ±, ± 9 5. = f = + + A. D = R B. -intercept, -intercept C. No smmetr D. + + =, + and =, so horizontal asmptotes are + = ±. + E. f + = + + = > <, / + so f is increasing on,, and decreasing on,. F. f = is a local maimum. G. f = + / + / + = + 5/ f = = = ± 9 = ± 7. f is CU on, 7 + and 7, andcdon 7, + 7 +. IP 7, 7+ 7 + 6, 7 7 7, 7 6 7 6. = f = + / A. D = R B. = + / = / / + =if =or 7 -intercepts, -intercept = f = C. No smmetr D. + / = + / =, =, / / + no asmptote E. f =+ / = / + / / > > or < 8,sof increases on, 8,, and

SECTION. CURVE SKETCHING decreases on 8,. F. Local maimum f 8 =, local minimum f = G. f = / < sof is CD on, and,. No IP G. f / / = = + > for all,sof is CU on,. 5/ 7. = f = A. D = { } = { } = { } =[, B. -intercept is. C. No smmetr D. =, no asmptote E. f = / / > for all >,sof is increasing on,. F. No local maimum or minimum. G. f = / / + / / = +6 6 < / since +6 < negative discriminant as a quadratic in. So f is CD on,. =_ = 9. = f =cos sin A. D = R B. = cos =sin = n +, n an integer -intercepts, -intercept = f =. C. Periodic with period D. No asmptote E. f = sin cos = cos = sin =n + or n + 7. f > cos < sin n + <<n + 7,sof is increasing on n +, n + 7 and decreasing on n, n +. F. Local maima f n =, local minima f n + =. G. f = cos +sin> sin >cos n +, n + 5,sof is CU on these intervals and CD on n, n +. IP n +, Copright, Cengage Learning. All rights reserved. 8. = f = / A. D = { < } =, B. -intercept ==-intercept C. f =f,sof is even. The curve is smmetric about the -ais. D. =,so = ± + are VA. E. f = / = / Since > and / >, f > if << and f < if <<,sof is increasing on, and decreasing on,. F. Local minimum f =. = f = +cot, << A. D =,. B. No -intercept C. No smmetr D. +cot =, +cot =,so + =and = are VA. E. f = csc > when csc < sin > <<,so f is increasing on, and decreasing on, and,. F. f =+ is a local minimum, f = is a local maimum. G. f = csc csc cot =csc cot > cot > <<,sof is CU on,,cdon,. IP,

SECTION. CURVE SKETCHING. = f =cos +sin A. D = R B. -intercept = f = C. f =f, sothe curve is smmetric about the -ais. Periodic with period D. No asmptote E. f = sin +sin cos =sin cos > sin < n <<n, so f is increasing on n, n and decreasing on n, n +. F. f n =is a local maimum. f n + = is a local minimum. G. f = cos +cos = cos cos =cos +cos > cos < n +, n +,sof is CU on these intervals and CD on n, n +. IP n ±,. = f =sin +cos A. D = R Note: f is periodic with period, so in B G we consider onl [, ]. B. -intercept = f =, -intercepts occur where sin = cos tan = =, 7. C. f + =f,sof is periodic with period. D. No asmptote E. f =cos sin > when cos >sin << or 5 <<, f < << 5,sof is increasing on, and 5, and decreasing on, 5. F. f = is a local maimum, f 5 = is a local minimum. G. f = sin cos > << 7,so f is CU on, 7 and CD on, and 7,.IP,, 7,.. = f =sin + cos A. D = R Note: f is periodic with period, so in B G we consider onl [, ]. B. -intercept =, -intercepts occur where sin = cos tan = =, 5. C. No smmetr other than periodicit. D. No asmptote E. f =cos sin =when cos = tan = = 6 or 7 6. f > << 6 or 7 6 <<, f < 6 << 7 6.Sof is increasing on, 6 and 7, and decreasing on, 7 6 6 6. F. f 6 =is a local maimum, f 7 6 = is a local minimum. G. f = sin cos =when tan = = or 5. f > << 5,sof is CU on, 5 and CD on, and 5,.IP,, 5,. ¹ _6, ¹ 5¹, _. = f =sin +sin A. D = R Note: f is periodic with period, soinb Gwe consider onl [, ]. B. -intercept =, -intercepts occur where sin +sin = sin = =,,. C. No smmetr other than periodicit D. No asmptote E. f =cos+ sin cos =cos + sin > cos > << or <<,sof is increasing on, and, and decreasing on,. F. f =is a local maimum, f = is a local minimum. G. f = sin +cos sin = sin + sin =+sin sin > sin> sin < < 6 or 5 <. Sof is CU on, 6 6, 5,,andCDon 6, 5 6 6.IP, 5 6 and 5, 5 6 7¹ 6 Copright, Cengage Learning. All rights reserved. ¹ _

SECTION. CURVE SKETCHING 5. = f =e /+ A. D = { } =,, B. No -intercept; -intercept = f = e C. No smmetr D. ± e /+ =since / +,so = is a HA. e /+ =since / +, + e /+ = since / +,so = is a VA. E. f =e /+ / + f > for all ecept,sof is increasing on, and,. F. No maimum or minimum G. f = e /+ + + e /+ + = e /+ + + f > +< <,sof is CU on, and,,andcdon,. f has an IP at, e. 6. = f =e A. D = R B. Both intercepts are. C. f = f, so the curve is smmetric about the origin. D. e =, e =, no asmptote E. f =e + e =e + >,sof is increasing on R. F. No maimum or minimum G. f =e + + e = e + > >,sof is CU on, and CD on,. f has an inflection point at,. about the -ais. f + =f. f has period, so in D G we consider onl <<. D. ln cos = and / ln cos =,so = and = are VA. / + No HA. E. f =/ cos sin = tan > <<,sof is increasing on, and decreasing on,. F. f = is a local maimum. G. f = sec < f is CD on,. No IP. 8. f =ln / A. D =, B. -intercept = ln H / C. No smmetr D. =,so ln =is a horizontal asmptote. Also + = since ln and +,so =is a vertical asmptote. E. f = ln =when ln = = e. f > ln > ln < <<e. f < >e. So f is increasing on,e and decreasing on e,. F. Thus, fe =/e is a local and absolute maimum. G. f = / ln = ln, so f > ln > ln > >e /. f < <<e /. So f is CU on e /, and CD on,e /. Inflection point: e /, e / Copright, Cengage Learning. All rights reserved. 7. = f = ln cos A. D = { cos >} =,, 5 = { n <<n +, n =, ±, ±,...} B. -intercepts occur when ln cos = cos = =n, -intercept = f =. C. f =f, so the curve is smmetric 9. = f =ln A. D = { > } = { < or >} =,, B. -intercepts occur when = = = ± 5. No -intercept C. No smmetr D. ln =,noha. ln =, ln =,so + =and =are VA. E. f = >

SECTION. CURVE SKETCHING 5 when > and f < when <,so f is increasing on, and decreasing on,. F. No maimum or minimum G. f = = + f < for all since + has a negative discriminant. So f is CD on, and,. No IP.. = f =ln + A. D = R B. Both intercepts are. C. f =f, so the curve is smmetric about the -ais. D. ln + =, no asmptote ± E. f = > >, sof is + increasing on, and decreasing on,. F. f = is a local and absolute minimum. G. f = + = + + > <,sof is CU on,,cdon, and,. IP, ln and, ln., and,.ipare ±,.. = f = e A. D = R B. Intercepts are C. No smmetr D. e H H e e e =, so =is a HA. Also e =. E. f =e e = e > when <<,sof is increasing on, and decreasing on, and,. F. f = is a local minimum, f = e is a local maimum. G. f = e e = + e =when += =±. f > < or >+,sof is CU on, and +, and CD on, +.IP ±, 6 ± e ± inflection points _ e@, Copright, Cengage Learning. All rights reserved.. =ln tan A. D = { n/} B. -intercepts n +,no-intercept. C. f =f, so the curve is smmetric about the -ais. Also f + =f,sof is periodic with period, and we consider D-G onl for <<. D. ln tan = and ln tan =, / ln tan =,so =, = ± are VA. / + E. f = tan sec = sec tan tan > tan > <<,sof is increasing on, and decreasing on,. F. No maimum or minimum G. f = sin cos = sin f = 8cos sin < cos > <<,sof is CD on, and, and CU on -Ï +Ï. = f = ln A. D =, B. -intercept when ln = =,no-intercept C. No smmetr D. ln =, ln + + + ln H / / + / =, no asmptote E. f = ln + = ln +> ln > >e /,sof is increasing on / e, and decreasing on, / e. F. f / e = /e is an absolute minimum. G. f =ln +> ln > >e /,sof is CU on e /, and CD on

6 SECTION. CURVE SKETCHING, e /.IPis e /, / e possibilities. Let α = 5+ 7 and β = 5 7. Then f > >αor <β,sof is CU on, α, β, β and α, andcdon α, β and β,α. IPat = ±α, ±β.. = f =e / A. D = { } B. No intercept C. No smmetr D. e/ =, e/ =,noha. e / e / + + / + e/ =, H + e / / / so =is a VA. Also e/ = since e/. E. f =e / + e / = e / > < < or >,sof is increasing on, and, and decreasing on,. F. f = e is a local minimum. G. f =e / / /+e / / = e / / > >, so f is CU on, and CD on,. NoIP _Œ º º Œ 6. = f =e / A. D = { } B. No intercept C. No smmetr e D. H e H e =, e so =is a HA. =,so =is a VA. e =, E. f = e e e = > < or >,sof is increasing on, and, and decreasing on,. F. f = e is a local minimum. G. f = e e 6 = e +6 > for all since +6has positive discriminant, so f is CU on, and,. e@, _ Copright, Cengage Learning. All rights reserved. 5. = f = e A. D = R B. Intercepts are C. f =f, so the graph is smmetric about the -ais. D. ± e = H ± e ± e =, so =is a HA. ± e E. f =e e = e > << or <,sof is increasing on, and, and decreasing on, and,. F. f = is a local minimum, f ± = /e are maima. G. f =e 5 + =where = 5 ± 7 = ± 5 ± 7 all four 7. = f = e / A. D = { } B. No intercept C. No smmetr D. ± e / =, + e / =, e / e / H e / / / / e / / H e / / / e / =,so =is a VA. E. f =e / + e / / = e / +> >,sof is increasing on, and, and

SECTION. CURVE SKETCHING 7 decreasing on,. F. f = e is a local minimum. G. f =e / / ++e / = e / + + / > for all since + +has positive discriminant, so f is CU on, and,. on.,. and.7, and decreasing on,. and.,.7,withalocalmaimumoff. 6.6 and minima of f.. and f.7 6.. Weestimate from the graph of f that f is CU on,.5 and.5, and CD on.5,.5,andthatf has inflection points at about.5,. and.5, 6.5..999 f =8 5 +5 +8 +9 + f = +8 + + 8 + f =6 + 5 +8 + 8 8. = f = ln + A. D = { > } =, B. Intercepts are. C. No smmetr D. [ ln + ] =,so = is a VA. + [ [ ln + ] ln + ] =, ln + H / + since =. E. f = + = > > since + +>. Sof is increasing on, and decreasing on,. F. f = is a local and absolute minimum. G. f =/ + >,sof is CU on,. After finding suitable viewing rectangles, we estimate from the graph of f that f is increasing on,.5 and., and decreasing on.5,.. Maimum: f.5. Minimum: f 6. We estimate from the graph of f that f is CU on., and CD on,., and has an IP at.,..999 f = sin f = sin + cos f =sin + cos sin =_ 999 9. 999 f = 7 + +6 f =6 + f =8 Copright, Cengage Learning. All rights reserved. After finding suitable viewing rectangles b ensuring that we have located all of the -values where either f =or f =weestimatefromthegraphoff that f is increasing We estimate from the graph of f that f is increasing on 7, 5.,.,.,and5., 7 and decreasing on 5.,., and., 5.. Local maima: f 5.., f..9. Local minima: f..9, f 5... From the graph of f, we estimate that f is CU on 7, 6.8,.,.5,,.5,and., 6.8,andCDon 6.8,.,.5,,.5,.,and6.8, 7. f has IP at 6.8,.,.,.,.5,.,,,.5,.,.,. and 6.8,..

8 SECTION. CURVE SKETCHING.999 f =sin + sin f =cos +cos f = sin sin From the graph, it appears that f changessignandthus f has inflection points at.5 and.9. From the graph of f, we see that these -values correspond to inflection points at about.5,.5 and.9,.8..999 Note that f is periodic with period,soweconsideriton the interval [, ].Fromthegraphoff,weestimatethatf is increasing on.,.6,.8,.8,and.6,. and decreasing on,.,.6,.8,.8,.6 and.,. Maima: f.6.7, f.8.9, f..9. Minima: f..9, f.8.9, f.6.7.weestimatefromthe graph of f that f is CD on.,.,,. and., and CU on,.,., and.,. f has IP at,,.,.8,.,.8,,,.,.8,.,.8,and,..999 The function f =e cos is periodic with period,sowe consider it onl on the interval [, ]. We see that it has local maima of about f.7 and f.7,and a local minimum of about f..7. To find the eact values, we calculate f = sin e cos.thisis when sin = =, or since we are onl considering [, ]. Also f > sin < <<. Sof = f =e both maima and f =e cos =/e minimum. To find the inflection points, we calculate and graph f = d d sin ecos = cos e cos sin e cos sin = e cos sin cos Copright, Cengage Learning. All rights reserved. f =e as,andf as. From the graph, it appears that f has a local minimum of about f.58 =.68, and a local maimum of about f.58 =.7. To find the eact values, we calculate f = e,whichis when = = ±.The negative root corresponds to the local maimum f = e / / = e /9, and the positive root corresponds to the local minimum f = e / / = e /9. To estimate the inflection points, we calculate and graph f = d [ ] e d = e + e 6 = e 9 6 +6 + From the graph of f,weseethatf has inflection points at.9 and at 5.8. These-coordinates correspond to inflection points.9,.86 and 5.8,.86.