3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Σχετικά έγγραφα
4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3.

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Section 8.3 Trigonometric Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Solution to Review Problems for Midterm III

Inverse trigonometric functions & General Solution of Trigonometric Equations

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Chapter 6 BLM Answers

Section 9.2 Polar Equations and Graphs

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Principles of Mathematics 12 Answer Key, Contents 185

Section 8.2 Graphs of Polar Equations

Homework 3 Solutions

Second Order RLC Filters

Section 7.6 Double and Half Angle Formulas

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

If we restrict the domain of y = sin x to [ π 2, π 2

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Chapter 7 Analytic Trigonometry

ST5224: Advanced Statistical Theory II

Finite Field Problems: Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Math 6 SL Probability Distributions Practice Test Mark Scheme

Example Sheet 3 Solutions

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Matrices and Determinants

C.S. 430 Assignment 6, Sample Solutions

CRASH COURSE IN PRECALCULUS

EE512: Error Control Coding

Solutions to Exercise Sheet 5

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Lecture 26: Circular domains

Math221: HW# 1 solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Homework 8 Model Solution Section

4.6 Autoregressive Moving Average Model ARMA(1,1)

F19MC2 Solutions 9 Complex Analysis

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Chapter 7 Transformations of Stress and Strain

Differentiation exercise show differential equation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

w o = R 1 p. (1) R = p =. = 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Quadratic Expressions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Trigonometry 1.TRIGONOMETRIC RATIOS

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

The Pohozaev identity for the fractional Laplacian

2 Composition. Invertible Mappings

Introduction to Time Series Analysis. Lecture 16.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Differential equations

Strain gauge and rosettes

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Local Approximation with Kernels

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Uniform Convergence of Fourier Series Michael Taylor

MathCity.org Merging man and maths

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Reminders: linear functions

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Statistical Inference I Locally most powerful tests

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.003: Signals and Systems. Modulation

derivation of the Laplacian from rectangular to spherical coordinates

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SEN TRONIC AG A AB 93 :, C,! D 0 7 % : 3 A 5 93 :

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

D Alembert s Solution to the Wave Equation

Durbin-Levinson recursive method

6.3 Forecasting ARMA processes

SPECIAL FUNCTIONS and POLYNOMIALS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Transcript:

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin cos 5. 6.. sin s cos. sin sin 7. 8. 9 Produce graphs of f that reveal all the important aspects 5 of the curve. In particular, ou should use graphs of f and f to 9. estimate the intervals of increase and decrease, etreme values, 0. intervals of concavit, and inflection points. 9.. s s. s 5. s 9 5. 6. s 7. s s 8. s 9. 0.. f sin,. f 7 6 f 8 5 5 80 90 00 f sin sin 7 7 Copright 0, Cengage Learning. All rights reserved.

SECTION. CURVE SKETCHING. ANSWERS E Click here for eercises. S Click here for solutions.. A. R B. -int. C. None D. None E. Inc. on, ; dec. on,,, F. Loc. min. f =,loc. 7 ma. f = 0 G. CU on, 5,CDon 5,,IP 5, 7 5. A. {, } B. -int. f 0 = C. None D. HA =0;VA =, = E. Inc. on,,, ;dec.on,,, F. Loc. ma. f = G. CD on, ; CUon,, 9,. A. R B. -int. 7 C. None D. None E. Inc. on,,, ; dec.on, F. Loc. ma. f = 7,loc.min.f = 7 G. CU on,, CD on,. IP, 5 6. A. { 0, } B. None C. None D. HA =0; VA =0, = E. Inc. on, 0; dec.on,,,, 0, F. Loc. min. f = G. CU on, 0, 0, ; CDon,. A. R B. -int.0; -int. 0, C. None D. None E. Inc. on,,dec.on, F. Loc. ma. f = 7 G. CU on 0, ; CDon, 0,,. IP0, 0,, 6 7. A. { ±} B.-int. C.About -ais D. HA =,VA = ± E. Inc. on 0,,, ; dec.on,,, 0 F. Loc. min. f 0 = G. CU on, ;CDon,,,. A.R B.-int., -int. C.None D.None E. Dec. on R F. None G. CU on, 0,CDon0,. IP0, 8. A. { 5} B. -int. C. None D. HA =0,VA 5 =5 E. Inc. on, 5, dec. on 5, F. None G. CU on, 5, 5, Copright 0, Cengage Learning. All rights reserved. 0 =5

SECTION. CURVE SKETCHING 9. A. { } B. -int., -int. C. None D. HA =, VA = E. Inc. on,,, F. None G. CU on,,cdon,. A., 5 5, B. -int. ±5 C. About the -ais D. None E. Inc. on 5,,dec.on, 5 F. None G. CD on, 5, 5, = =_ 0 0. A. { } 0, ± B. None C. About the origin D. HA =0,VA =0, = ± E. Inc. on 0, ;dec.on,,,, F. Loc. min. f f =,, 0,,, =, loc. ma.,, 0, G. CU on, 0,, ;CDon. A., ] [, B. -int. are ± C. About the origin D. None E. Inc. on,,, F. None G. CU on,, ;CDon,,,,. IP ±, ± 9 0. A. { 0} B. -int. C. None D. VA =0 E. Inc. on, 0, 0, ; dec.on, F. Loc. min. f = G. CU on, 0,, ;CDon0,. IP, 0 _ 5. A. R B. -int., -int. C. None D. HA = ± E. Inc. on,, dec.on, F. Loc. ma. f = G. CU on, 7 +, 7, ;CD on 7, + 7 +. IP 7, 7+ 7, 7 7, 7 6 7 + 6 7 Copright 0, Cengage Learning. All rights reserved.. A. [, B. None C. None D. HA =0 E. Dec. on, F. None G. CU on, 6. A. R B.-int. 0, 7; -int. 0 C. None D. None E. Inc. on, 8, 0, ; dec.on 8, 0 F. Loc. ma. f 8 =,loc.min.f 0 = 0 G. CD on, 0, 0,

SECTION. CURVE SKETCHING 7. A. [, B. -int. C. None D. None E. Inc. on, F. None G. CD on,. A.R B. -int. C.About the -ais, period D. None E. Inc. on n,n,dec.onn, n +, n an integer F. Loc. ma. f n =,loc.min. f n + =, n an integer G. CU on n +, n +,CDon n, n +.IP n ±, 0 0 8. A., B.-int.0, -int 0 C.About -ais D. VA = ± E. Inc. on 0,,dec.on, 0 F. Loc. min. f 0 = 0 G. CU on, =_ 0 =. A. R Note: f is periodic with period,so in B G we consider onl [0, ] B. -int., 7 ; -int. C. Period D. None E. Inc. on 0,, 5, ;dec.on, 5 F. Loc. ma. f =, loc. min. f 5 = G. CU on, 7 ;CDon 0,, 7,.IP, 0, 7, 0 9. A. R B. -int. n +, n an integer, -int. C. Period D. None E. Inc. on n +, n + 7,dec.on n, n +, n an integer F. Loc. ma. f n =,loc.min.f n + =, n an integer G. CU on n +, n + 5,CDon n, n +,IP n +, 0, n an integer 0 ¹ _ 0. A. 0, B.None C.None D.VA =0, = E. Inc. on, ;dec.on 0,,, F. Loc. min. f =+,loc.ma.f = G. CU on 0,,CDon,.IP,. A. R Note: f is periodic with period,so in B G we consider onl [0, ] B. -int., 5 ; -int. C. Period D. None E. Inc. on 0, 6, 7, ;dec. 6 on, 7 6 6 F. Loc. ma. f 6 =,loc.min. f 7 6 = G. CU on, 5 ;CDon 0,, 5,.IP, 0, 5, 0 ¹ _6, 0 ¹ 5¹ Copright 0, Cengage Learning. All rights reserved., _ 7¹ 6

SECTION. CURVE SKETCHING 5. A. R Note: f is periodic with period,soinb Gwe consider onl [0, ] B.-int. 0,, ; -int.0 C. Period D. None E. Inc. on 0,,, ;dec.on, F. Loc. ma. f =, loc. min. f = G. CU on 0, 6, 5, ;CDon, 5 6 6 6.IP, 5 6, 5, 5 6 7. Inc. on 7, 5.,.,., 5., 7 ; dec. on 5.,.,., 5.; loc. ma. f 5.., f..9; loc.min.f..9, f 5..; CUon 7, 6.8,.0,.5, 0,.5,.0, 6.8; CDon 6.8,.0,.5, 0,.5,.0, 6.8, 7; IP 6.8,.,.0,.0,.5,., 0, 0,.5,.,.0,.0, 6.8,. 5. Inc. on., 0., 0.7, ; dec. on,., 0., 0.7; loc.ma.f 0. 6.6; loc.min. f..0, f 0.7 6.; CUon, 0.5, 0.5, ; CDon 0.5, 0.5; IP 0.5,., 0.5, 6.5 6. Inc. on,.5,.0, ; dec. on.5,.0; loc. ma. f.5,loc.min.f 6;CUon.,,CDon,.; IP., 8. Note: Due to periodicit, we consider the function onl on [, ]. Inc. on.,.6, 0.8, 0.8,.6,.; dec. on,.,.6, 0.8, 0.8,.6,.,; loc.ma. f.6 0.7, f 0.8 0.9, f. 0.9;loc.min. f. 0.9, f 0.8 0.9, f.6 0.7; CUon,.0,., 0,., ; CDon.0,., 0,.,.0,; IP, 0,.0, 0.8,., 0.8, 0, 0,., 0.8,.0, 0.8,, 0 Copright 0, Cengage Learning. All rights reserved.

6 SECTION. CURVE SKETCHING. SOLUTIONS E Click here for eercises. Copright 0, Cengage Learning. All rights reserved.. = f = +5 A. D = R B. -intercept = f 0 = C. No smmetr D. No asmptote E. f = +0 = > 0 < 0 <<. f < 0 < or >. Sof is increasing on, and decreasing on, and,. F. The critical numbers occur when f = = 0 =,. The local minimum is f = 7 and the local maimum is f = 0. G. f =0 6 >0 < 5,sof is CU on, 5 and CD on 5,.IP 5, 7. = f = 6 8 +7 A. D = R B. -intercept = f 0 = 7 C. No smmetr D. No asmptote E. f =6 8=6 + > 0 + > 0 < or >. f < 0 <<. Sof is increasing on, and, and decreasing on,. F. The critical numbers are =,. The local maimum is f = 7 and the local minimum is f = 7. G. = > 0 >,sof is CU on, and CD on,. IP, 5. = f = A. D = R B. -intercept = f 0 = 0, -intercept =0 =0 =0, C. No smmetr D. No asmptote E. = = > 0 <,sof is increasing on, and decreasing on,. F. Local maimum is f = 7,nolocal minimum. G. = > 0 0 <<,so f is CU on 0, and CD on, 0 and,. IP0, 0 and, 6. = f = 9 = 8 + 7 + 6 + 5 + + + + + A. D = R B. -intercept: f 0 = ; -intercept: f =0 =B part E below, f is decreasing on its domain, so it has onl one -intercept. C. No smmetr D. No asmptote E. f = 9 8 = 9 8 + < 0 for all,sof is decreasing on R. F. No maimum or minimum G. f = 7 7 > 0 <0,sof is CU on, 0 andcdon0,. IPat0, 5. = f = + = + A. D = {, } =,,, B. -intercept: f 0 = ; no -intercept C. No smmetr D. ± + = / ± +/ / = 0 =0 so =0is a HA. = and =are VA. E. f + 0 + = + + = + > 0 < ; f < 0 >. So f is increasing on, and,,andf is

SECTION. CURVE SKETCHING 7 Copright 0, Cengage Learning. All rights reserved. decreasing on, and,. F. f = is a 9 local maimum. G. f + [ + ] + + = [ + ] = + [ + + + ] + = ++ + + + = + + + = 6 + + + The numerator is alwas positive, so the sign of f is determined b the denominator, which is negative onl for <<. Thus, f is CD on, andcuon, and,. NoIP. 6. = f = + A. D = { 0, } =,, 0 0, B. No intercept C. No smmetr D. =0,so =0is a HA. ± + 0 + = and + + =, =,so =0and = are VA. + E. f + = > 0 <<0; + f < 0 < or >0. So f is increasing on, 0 and decreasing on,,,,and 0,. F. f = is a local minimum. G. f = + + [ + + + ] 6 + = 6 +8 +9 + Since +8 +9> 0 for all, f > 0 > 0, so f is CU on, 0 and 0,,andCD on,. NoIP 7. = f = + = + A. D = { ±} B. No -intercept, -intercept = f 0 = C. f =f,sof is even and the curve is smmetric about the -ais. + / D. ± = + =,so = ± / is a HA. + + =, + =, + + =, =. So = + and = are VA. E. f = > 0 >0, so f increases on 0, and,, and decreases on, and, 0. F. f 0 = is a local minimum. G. = = + > 0 < <<, sof is CU on, and CD on, and,. No IP 8. = f =/ 5 A. D = { 5} =, 5 5, B. -intercept = f 0 =,no-intercept C. No 5 smmetr D. =0,so =0is a ± 5 HA. 5 =, so =5is a VA. 5 E. f = 8/ 5 > 0 <5 and f < 0 > 5. Sof is increasing on, 5 and decreasing on 5,. F. No maimum or minimum G. f =/ 5 > 0 for 5,sof is CU on, 5 and 5,.

8 SECTION. CURVE SKETCHING Copright 0, Cengage Learning. All rights reserved. 0 =5 9. = f = / + A. D = { } =,, B. -intercept is, -intercept = f 0 = C. No smmetr D. ± + = / ± +/ =, so =is a HA. + = and =,so = is a VA. + + E. f = + + = 6 + f > 0 sof is increasing on, and,. F. No maimum or minimum G. f = > 0 <,sof is CU on +, and CD on,. NoIP =_ 0 = 0. = f =/ [ 9 ] A. D = { 0, ± B. No intercept C. f = f, so the curve is smmetric about the origin. D. ± 9 =0, so =0is a HA. 0 + 9 =, 0 9 =, / 9 =, / + 9 =, / + 9 =, and / 9 =,so =0and = ± are VA. E. f = 9 9 > 0 < < << and f < 0 > or <,sof is increasing on, 0 and 0,,, and decreasing on,,and,. F. f,,, = is a local } minimum, f G. f = is a local maimum. = 9 + 9 9 9 = 6 6 +7 9 Since 6 +7> 0 for all, f > 0 <<0 or >,sof is CU on, 0 and, and CD on, and 0,. 0. = f = = A. D = { 0} B. -intercept, no-intercept C. No smmetr D. =,sonoha. = ± 0 + and =, so =0is a VA. 0 E. f = + = + > 0 +> 0 > 0, so f is increasing on, 0 _,. and 0, and decreasing on F. f = is a local minimum. G. f = = f > 0 > or <0,sof is CU on, 0 and, and CD on 0,. IPis, 0.. = f = A. D = { 0 and } = { } =[, B. No intercept C. No smmetr D. = + + = + =0,so =0 is a HA.

SECTION. CURVE SKETCHING 9 Copright 0, Cengage Learning. All rights reserved. E. f = < 0 for all >,since < <,sof is decreasing on,. F. No local maimum or minimum G. f = [ / / for >,sof is CU on,.. = f = 5 A. D = { 5 } =, 5] [5, ] f > 0 B. -intercepts are ±5,no-intercept C. f =f, so the curve is smmetric about the -ais. D. 5 =, no asmptote ± E. f = 5 / = 5 > 0 / if >5,sof is increasing on 5, and decreasing on, 5. F. No local maimum or minimum G. = 5 / 5 / 5 / = +50 5 7/ < 0 so f is CD on, 5 and 5,. No IP. = f = 9 A. D = { 9 } =, ] [, B. -intercepts are ±, no-intercept. C. f = f, so the curve is smmetric about the origin. D. 9=, no asmptote E. f = 9+ 9=, 9 > 0 for D, sof is increasing on, and,. F. No maimum or minimum G. f = 9 + 9 / 9 9 = 7 > and > 0 9 / or <<0,sof is CU on, andcdon, and,,. IP ±, ± 9 5. = f = + + A. D = R B. -intercept, -intercept C. No smmetr D. + + =, + and =, so horizontal asmptotes are + = ±. + E. f + = + + = > 0 <, / + so f is increasing on,, and decreasing on,. F. f = is a local maimum. G. f = + / + / + = + 5/ f =0 =0 = ± 9 = ± 7. f is CU on, 7 + and 7, andcdon 7, + 7 +. IP 7, 7+ 7 + 6, 7 7 7, 7 6 7 6. = f = + / A. D = R B. = + / = / / + =0if =0or 7 -intercepts, -intercept = f 0 = 0 C. No smmetr D. + / = + / =, =, / / + no asmptote E. f =+ / = / + / / > 0 >0 or < 8,sof increases on, 8, 0, and

0 SECTION. CURVE SKETCHING decreases on 8, 0. F. Local maimum f 8 =, local minimum f 0 = 0 G. f = / < 0 0sof is CD on, 0 and 0,. No IP G. f / / = = + > 0 for all,sof is CU on,. 5/ 7. = f = A. D = { } = { } = { } =[, B. -intercept is. C. No smmetr D. =, no asmptote E. f = / / > 0 for all >,sof is increasing on,. F. No local maimum or minimum. G. f = / / + / / = +6 6 < 0 / since +6 < 0 negative discriminant as a quadratic in. So f is CD on,. =_ 0 = 9. = f =cos sin A. D = R B. =0 cos =sin = n +, n an integer -intercepts, -intercept = f 0 =. C. Periodic with period D. No asmptote E. f = sin cos =0 cos = sin =n + or n + 7. f > 0 cos < sin n + <<n + 7,sof is increasing on n +, n + 7 and decreasing on n, n +. F. Local maima f n =, local minima f n + =. G. f = cos +sin>0 sin >cos n +, n + 5,sof is CU on these intervals and CD on n, n +. IP n +, 0 Copright 0, Cengage Learning. All rights reserved. 0 8. = f = / A. D = { < } =, B. -intercept =0=-intercept C. f =f,sof is even. The curve is smmetric about the -ais. D. = =,so = ± + are VA. E. f = / = / Since > 0 and / > 0, f > 0 if 0 << and f < 0 if <<0,sof is increasing on 0, and decreasing on, 0. F. Local minimum f 0 = 0 0. = f = +cot, 0 << A. D =0,. B. No -intercept C. No smmetr D. +cot =, +cot =,so 0 + =0and = are VA. E. f = csc >0 when csc < sin > <<,so f is increasing on, and decreasing on 0, and,. F. f =+ is a local minimum, f = is a local maimum. G. f = csc csc cot =csc cot >0 cot >0 0 <<,sof is CU on 0,,CDon,. IP,

SECTION. CURVE SKETCHING Copright 0, Cengage Learning. All rights reserved.. = f =cos +sin A. D = R B. -intercept = f 0 = C. f =f, sothe curve is smmetric about the -ais. Periodic with period D. No asmptote E. f = sin +sin cos =sin cos > 0 sin <0 n <<n, so f is increasing on n, n and decreasing on n, n +. F. f n =is a local maimum. f n + = is a local minimum. G. f = cos +cos = cos cos =cos +cos > 0 cos < n +, n +,sof is CU on these intervals and CD on n, n +. IP n ±, 0. = f =sin +cos A. D = R Note: f is periodic with period, so in B G we consider onl [0, ]. B. -intercept = f 0 =, -intercepts occur where sin = cos tan = =, 7. C. f + =f,sof is periodic with period. D. No asmptote E. f =cos sin >0 when cos >sin 0 << or 5 <<, f < 0 << 5,sof is increasing on 0, and 5, and decreasing on, 5. F. f = is a local maimum, f 5 = is a local minimum. G. f = sin cos >0 << 7,so f is CU on, 7 and CD on 0, and 7,.IP, 0, 7, 0. 0 ¹ _. = f =sin + cos A. D = R Note: f is periodic with period, so in B G we consider onl [0, ]. B. -intercept =, -intercepts occur where sin = cos tan = =, 5. C. No smmetr other than periodicit. D. No asmptote E. f =cos sin =0when cos = tan = = 6 or 7 6. f > 0 0 << 6 or 7 6 <<, f < 0 6 << 7 6.Sof is increasing on 0, 6 and 7, and decreasing on, 7 6 6 6. F. f 6 =is a local maimum, f 7 6 = is a local minimum. G. f = sin cos =0when tan = = or 5. f > 0 << 5,sof is CU on, 5 and CD on 0, and 5,.IP, 0, 5, 0. ¹ _6, 0 ¹ 5¹, _. = f =sin +sin A. D = R Note: f is periodic with period, soinb Gwe consider onl [0, ]. B. -intercept =0, -intercepts occur where sin +sin =0 sin =0 =0,,. C. No smmetr other than periodicit D. No asmptote E. f =cos+ sin cos =cos + sin > 0 cos >0 0 << or <<,sof is increasing on 0, and, and decreasing on,. F. f =is a local maimum, f = is a local minimum. G. f = sin +cos sin = sin + sin =+sin sin > 0 sin>0 sin < 0 < 6 or 5 <. Sof is CU on 0, 6 6, 5,,andCDon 6, 5 6 6.IP, 5 6 and 5, 5 6 7¹ 6

SECTION. CURVE SKETCHING 5. f = 7 + +6 f =6 + f =8 7. f = sin f = sin + cos f =sin + cos sin After finding suitable viewing rectangles b ensuring that we have located all of the -values where either f =0or f =0weestimatefromthegraphoff that f is increasing on., 0. and 0.7, and decreasing on,. and 0., 0.7,withalocalmaimumoff 0. 6.6 and minima of f..0 and f 0.7 6.. Weestimate from the graph of f that f is CU on, 0.5 and 0.5, and CD on 0.5, 0.5,andthatf has inflection points at about 0.5,. and 0.5, 6.5. 6. f =8 5 +5 +80 +90 +00 f =0 +80 +0 + 80 +00 f =60 + 50 +80 + 80 We estimate from the graph of f that f is increasing on 7, 5.,.,.,and5., 7 and decreasing on 5.,., and., 5.. Local maima: f 5.., f..9. Local minima: f..9, f 5... From the graph of f, we estimate that f is CU on 7, 6.8,.0,.5, 0,.5,and.0, 6.8,andCDon 6.8,.0,.5, 0,.5,.0,and6.8, 7. f has IP at 6.8,.,.0,.0,.5,., 0, 0,.5,.,.0,.0 and 6.8,.. 8. f =sin + sin f =cos +cos f = sin sin Copright 0, Cengage Learning. All rights reserved. After finding suitable viewing rectangles, we estimate from the graph of f that f is increasing on,.5 and.0, and decreasing on.5,.0. Maimum: f.5. Minimum: f 6. We estimate from the graph of f that f is CU on., and CD on,., and has an IP at.,. Note that f is periodic with period,soweconsideriton the interval [, ].Fromthegraphoff,weestimatethatf is increasing on.,.6, 0.8, 0.8,and.6,. and decreasing on,.,.6, 0.8, 0.8,.6 and.,. Maima: f.6 0.7, f 0.8 0.9, f. 0.9. Minima: f. 0.9, f 0.8 0.9, f.6 0.7.Weestimatefromthe graph of f that f is CD on.0,., 0,. and.0, and CU on,.0,., 0 and.,. f has IP at, 0,.0, 0.8,., 0.8, 0, 0,., 0.8,.0, 0.8,and, 0.