Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------



Σχετικά έγγραφα
Section 8.3 Trigonometric Equations

Matrices and Determinants

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometry 1.TRIGONOMETRIC RATIOS

Example Sheet 3 Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Homework 3 Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Solution to Review Problems for Midterm III

Quadratic Expressions

TRIGONOMETRIC FUNCTIONS

Finite Field Problems: Solutions

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Trigonometric Formula Sheet

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 7.6 Double and Half Angle Formulas

CRASH COURSE IN PRECALCULUS

COMPLEX NUMBERS. 1. A number of the form.

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

IIT JEE (2013) (Trigonomtery 1) Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

EE512: Error Control Coding

If we restrict the domain of y = sin x to [ π 2, π 2

MathCity.org Merging man and maths

Differential equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ST5224: Advanced Statistical Theory II

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

C.S. 430 Assignment 6, Sample Solutions

The Simply Typed Lambda Calculus

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Second Order Partial Differential Equations


4.6 Autoregressive Moving Average Model ARMA(1,1)

Second Order RLC Filters

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Approximation of distance between locations on earth given by latitude and longitude

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.3 Forecasting ARMA processes

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6 BLM Answers

Statistical Inference I Locally most powerful tests

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

derivation of the Laplacian from rectangular to spherical coordinates

Differentiation exercise show differential equation

Solution Series 9. i=1 x i and i=1 x i.

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math221: HW# 1 solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Reminders: linear functions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Lecture 26: Circular domains

F-TF Sum and Difference angle

F19MC2 Solutions 9 Complex Analysis

Solutions to Exercise Sheet 5

Every set of first-order formulas is equivalent to an independent set

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Fractional Colorings and Zykov Products of graphs

Section 8.2 Graphs of Polar Equations

Section 9.2 Polar Equations and Graphs

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Srednicki Chapter 55

( ) 2 and compare to M.

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

( y) Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Strain gauge and rosettes

Problem Set 3: Solutions

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

Uniform Convergence of Fourier Series Michael Taylor

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Math 6 SL Probability Distributions Practice Test Mark Scheme

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Transcript:

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin θ = 8/17 then cos θ = 15/17 GE 15/17. c is rejected. b is the answer. OR Let sin = θ then sin θ = Cos θ = 1 sin θ = 1 = 15 +8 = 17 then G E =sin = = = = = 2. The value of Tan ( - ) = a) b) c) d) Ans: b. Solution: Let tan = θ then tan θ = Tan ( - tan ) = Tan ( - θ) = ------------------ ----------------------------- ----- = =. 3. The domain of the function f(x) = is a) 1 x 2 b) -1 x 2 c) 2 x 4 d) 1 x 5 Ans: a. Solution : we know that sin is defined when - 1 x 1-1 1 2 2 2 1 x 4 1 x 2 ------------------ ----------------------------- ------

4. If cos ( 3 ) = tan ( ) then x = a) 0 b) 1 c) -1 d) 0,1, -1 Ans: d. Solution : 1) inspection method GE is satisfied by all values. Hence ans is d. or ii) cos = θ cos θ = x GE. cos3 θ = x 4 cos θ 3 cos θ = x 4x - 3x = x 4( x - x )= 0 x( x - 1) = 0 x = 0,1, -1. - 5. If = + β and - β ) = then + = a) 1 + a b) a + b c) 1 + ab d) 1+ b Ans: c. Solution: α - β ) = 1 b α - β = cos 1 b ) = sin sin (α - β) = b Now sin α + cos β = sin α + 1 sin β 1 + sin α sin β = 1 + sin (α + β) sin (α - β) = 1 + a b. ------------------ ----------------------------- --------------- 6. If + then x satisfies a) 2x + 3x + 1 =0 b) 2x - 3x = 0 c) 2x + x - 1 =0 d) 2x + x + 1 =0 Ans: b Solution: ( x= 0 satisfies GE and b also. Hence ans b) Or sin + cos 1 sin sin + cos 1 - sin cos 1-2 sin = -2 θ (sin θ = x) 1 x = cos (-2 θ ) = cos 2 θ = 1 2 sin 2 θ 1 x = 1 2x x = 2x 2x - x = 0 x = 0 or x = x = 0 is the solution ( x = does not satisfies the equation )

7. If sec -1 x = cosec -1 y then sin -1 ( ) + sin-1 ( ) = a) Π b) π / 2 c) - π /2 d) - π Ans: b. Solution: Given sec -1 x = cosec -1 y cos ) = sin ) sin -1 ( ) + sin-1 ( ) = sin-1 ( ) + cos-1 ( ) =. 8. If tan ax tan bx = 0 ( a b) then the values of x form a series in a) AP b) G P c) H P d) AGP. Ans: a. Solution : tan ax = tan bx ax = n π + bx ax bx = n π x ( a b) = n π x =. put n = 1,2, x=, 9. If ( ) + ( ) = ( ) then x = etc. which are in AP. a) 0 b) c) d) π / 2. Ans: C Solution: w.k.t sin x )+ sin ( y ) = sin ( x1 + y 1 ) sin ( ) + sin ( ) = sin ( 1 )+ 1 ) ) = sin ( ( 5 + 4 2 )/ 9 ) ) x =( 5 + 4 2 )/ 9 Ans c 10. The value of 5 + - = a) b) c) d). Ans: c Solution: GE = π + tan ( ) -. cot = π + tan ( ) - cot = π - tan ( ) - cot = π [tan ( ) + cot ] = π - = Ans c -----------

11. Two angles of a triangle are and, then the third angle is a) b) c) d). Ans: b. Solution: A + B + C = Π where A = cot 2 = tan B= cot 3 = tan. A+ B = tan + tan = tan.. ] = tan 1 ] = C = π - ( A + B) = π - = ------ 12. a) :. : cos sin x cos cos 1 x 1 x sin cos x sin sin 1 x 1 x GE sin 1 x cos 1 x cos x sin x π 2. or Put x 0 then GE sin cos 0 cos sin sin 1 cos 1 π 2. sin 2 --- 13. If - = then the values of x are a) 0 or ½ b) 1 or 1/3 c) -1 or -1/3 d) -1,1/2 Ans: a Solution type 1: Inspection method: GE is satisfied by a) type 2: GE = cos x sin x = sin 1 x = sin x - sin x = sin 1 x sin 1 x = 2 sin x ( 1 x ) = sin 2 sin x ) = cos 2 sin x ) = 1 2 sin ( sin x) = 1 2x 1 x = 1 2x 2x x 2x x = 0 x ( 2x 1) = 0 x= 0, ½ ----

14. If + = then x = a) ± 3 b) 1 c) d) 0 Ans: b. Solution. Inspection method: ± 3 is not a solution since cos 3 is not defined. GE is satisfied by x = 1 -------- 15. The value of + + = a) 0 b) cot 26 c) cot 1 d) cot 1 Ans: a. Solution: w.k.t cot a - cot b = cot cot 21 = cot. = cot 5 - cot 4 Similarly cot 13 = cot 4 - cot 3 And cot 8 = cot 3 - cot 5 GE = cot 5 - cot 4 + cot 4 - cot 3 + cot 3 - cot 5 = 0 ------------------ ----------------------------- -------------- 16. If +. = for 0< < then x = a) 1 b) 3) 0 d) Ans: a) Solution: clearly when x = 1 GE = ans: a) Or x = x = = x (2 x x ( 2 + x ) x = 0, 1. But x 0. - ----------- ----------------------------- ----------------- ------------ 17. The value of 2 = a) b) c) d) Ans: b. searching method. put x = 1 then GE = 2tan 2-1] = 2 =. Put x = 1 in choices, Hence cot 1 = tan 1 = b Put x = -1 then GE = 2tan 2 - tan (π ) ] = = 2tan 2 + 1 ] = - 2tan 2-1 ] = -2 ( ) = Hence answer must be either a or

Put x= -1 in a and b Then cot 1 = π = b tan 1 ) =. Hence answer is b ----------- 18. If 2 =, then x is in a) [-1, 1 ] b) [-, 1] c) [- ] d) [ 0, 1]. Ans: c. Solution w.k. t. the range of RHS is [ 2 sin x sin x sin ---- 19. The solution set of the equation = 2 is a) { 1, 2} b) { -1, 2} c) {-1, 1, 0} d) {1, ½, 0} Ans: c) Solution : clearly is not defined. reject a) and b). consider d) = but =. = 2 hence reject d) Only possibility is ans c. or = 2 = x = x( ) = 2x x - = 0 x( 1 x ) = 0 x = 0, ±1 20. If in a triangle ABC, C is 90 0, then + a) b) c) Ans: c) d) = Solution: ABC is a right angled triangle. Put a= 3, b= 4 and c= 5. Then C= 90 Then tan + tan = tan + tan = tan + tan = = tan + tan = where m = 1. Ans: c.

21. The value of tan[ ) + )] = a) a b) c) b d) Ans: b). Solution Inspection method. Step1. Put a = 1, b= 0 Then GE = tan [tan 1)] = 1. When we put a=1, b= 0 in choices answer is either a or b Step2. a=0, b= 1 Then GE = tan [tan 1)+ tan 1) ] = tan [ ] = When we put a=0, b= 1 in choices Ans b) ( 1/a = 1/0 = ). ---- -------------- ----------------------------- ----------------- ------------ 22. If,,...a n is an AP with common difference d, then tan { + +...+ } = a) b) c) Ans : b ) Solution: Given,,...a n are in AP - a 1 = a 3 a 2 =... a n - a n-1 = d d) Consider tan + tan +...+ tan = + tan +...+ tan = tan a - tan a + tan a - tan a +... + tan a - tan a = tan a - tan a = tan = = tan =tan GE: tan tan ) = Hence answer is b.

23. If + = then x = a) 0 b) 1 c) 2-1 d) 1 Ans: d). Solution: Inspection method: Clearly x = o is not a solution since tan 0 =0 And cot 0 = LHS = When x= 1 LHS of GE = X = I is not a solution When x= 2-1, LHS of GE = + 2-1 is not a solution. x = -1 is only a solution - 24. If + + =, then X 1 x = a xyz b) 2xyz c) 2( x+ y + z) d) x y z Ans b Solution: It is a standard result. Or Inspection method. Step 1. put x= y = 1 and z = 0. Then sin x = π and choice b) and d) matches with this value. Step 2. Put x = and z = 1. Then sin x = π and choice b) matches with this value b is the answer. ------------------ ----------------------------- --------- 25. If tan( x + y ) = 33 and x = then y = a) b) tan 30 c) tan d) Ans: d) tan Solution: x + y = tan 33 y =tan 33 - tan 3 = tan. =tan tan answer d). ------------- ----------------------------- ----------

26. 2 with x = a) sin 2x b) cos 2x c) cos x d) tan 1 x Ans: c Solution : put x = 1 then GE : When x = 1, a) and b) are not defined due to & c) = 0 and d) =. Hence Ans is c. 27. The general solution of sin5x = k where k is a real root of 2 - +2x - 1 = 0 is given by a) x = + 1 b x = + 1 (c) x = + 1 (d) x = n π + 1 Ans (a). Solution: Consider 2x - x +2x - 1 = 0 x (2x -1) +1 ( 2x 1) = 0 x +1 ) ( 2x 1) = 0 Since x is real x = ½. sin 5x = k = ½ = sin ( ) α = 5x = n π + 1 α = n 1 x = + 1 Ans (a) 28. If 5cos 2 θ + 2 + 1 = 0, θε (- π, π ),then θ = a) ( b), cos c) cos (d), π - cos Ans: (d ). Solution: GE = 5cos 2 θ + 2 cos + 1 = 0 5( 2 cos θ -1) + ( 1 + cos θ ) + 1 =0 10 x + x - 3 =0 where x = cos θ 10 x + 6x - 5x - 3 =0 2x ( 5x + 3 ) -1 ( 5x + 3 ) =0 x =, cos θ = ½ = cos, and cos θ = = cos( π - cos -1 (3/5)) Solution is, π - cos-1 (3/5)).

29. If The general solution of = 3 is given by θ = a) 2n π ± (b) n π ± (c). 2n π ± (b) n π ± Ans: (d) Solution: GE = = 3 tan θ = 3 tan θ =± 3 = tan( ± ) θ = n π ± ------------------ ----------------------------- 30. If Sec x cos5x + 1 =0 where 0<x < 2 π, then x is equal to : a), b) c) d) none of these Ans: c Solution: GE : +1 = 0 cos5x + cosx = 0 2 cos 3x cos 2x =0 Cos 3x = 0 or cos2x =0 3x = or 2x = or X= or or or x = or inspection method. 31. The solution of the equation 2x = 1+ x is a) x = ( 2n + 1 ), n Є Z (b) x = n π, n Є Z.(C) x= ( 2n + 1 ), n Є Z (d) no solution. Ans: d Solution:GE: sin 2x = 1+ cos x Here cos x 0 The max value of LHS is 1 and minimum Vaue of RHS is 1. This is possible only when cos x = 0 and sin 2x = 1 x = and 2x = X =.This is not possible. Hence solution does not exists.

32. The most general value of θ satisfying the equation + tan θ - 1) 2 = 0 are given by a) n π ± b) n π + ( -1) n c). 2n π + (d) 2n π + Ans: c. Solution: a b = 0 a = 0 and b =0 1 2 sin θ = 0 and 3 tan θ - 1 = 0 sin θ = - ½ and tan θ = G.S. is θ = m π + ( -1) m and θ = mπ + only when m is odd m = 2n + 1 G.S. is θ = ( 2n + 1)π = 2n π + 33. The most general solution of θ satisfying Tan θ + tan( + θ ) = 2 is / are a) n π ±, n Є Z. b) 2n π +, n Є Z.c) 2n π ±, n Є Z d) ) 2n π +( -1) n, n Є Z. Both holds good Ans: a Solution: GE: Tan θ + tan( + θ ) = 2 Tan θ + tan 135 θ = 2 Tan θ + = 2 Tan θ + tan θ - 1 + tan θ = 2 + 2 tan θ tan θ = 3 tan θ = ± 3 θ = n π ±, n Є I ------------------ ----------------------------- 34. The general solution of x for which cos2x,, and sin 2x are in Ap, are given by a) n π, n π + b) n π, n π + c) n π +, d) none of these. Ans: b. Solution: a,b,c are in AP a + c = 2b Cos2x + sin 2x = 1 Sin2x = 1 cos2x = 2 sin 2 x 2 sinx cos x - 2 sin 2 x = 0 2 sinx( cos x sinx) =0 sinx = o or cosx = sinx

sinx = 0 or tanx = 1 X = n π or x = n π +, n Є Z. 35. If sec θ + tan θ =1 then the general solution of θ= a) n π + b) 2n π + c) 2n π - d) 2n π ± Ans : c. GE : + = 1 cos θ sin θ = 2 cos( θ + ) = cos( 0 ) G.S. is θ + = 2 n π θ = 2 n π -. 36. The equation sin cos has a) one solution b) two solutions c) infinite solutions d) no solution. Ans: d GE: sin3x = -2 < - 1. Hence solution does not exists. ------------------ ----------------------------- 37. The general solution of ( + ) = 2 is a) x = n π b) x = ( 4n + 1) c) x = ( 4n + 1) d) n π +. Ans: b. Solution clearly x = satisfies the GE. ------------------ ----------------------------- 38. If π x Π, π y Π and cos x + cosy = 2 then general solution is x = a) 2 n π + y b) 2 n π - y c) n π + y d) n π + ( -1) n y. Ans a. Solution : the Max. value of cosx is 1. Hence cos x + cosy = 2 cosx = 1 and cosy =1 x = 0 and y = 0 hence x y = 0 Hence cos( x y) = cos 0 X y = 2 n π x = 2 n π + y

39. The equation 3 x + 10cosx 6 =0 is satisfied if a) x = n π ± cos b) x = 2n π ± cos c) x = n π ± cos b) x = 2n π ± cos Ans: b. Solution GE.: 3( 1 - cos x ) + 10cosx 6 =0 3 3t + 10 t - 6 =0 where t = cosx 3t - 10 t +3 =0 3t - 9t - t +3 =0 3t( t 3 ) -1 ( t 3) =0 ( 3t -1) (t-3)=0 cosx = t = 3 > 1 No solution, Cosx = 1/3 = cos α where α = cos X = 2n π ± cos i.e. b). 40. If tan2x = tan, then the value of x = a) b) c) d) None of these Ans: a) Solution: GE: tan2x = tan 2x = n π + 2x - nπ x 2 = 0 X = 41. If the equation cos3x x + sin3x x= 0., then x = a) ( 2n+1) b) ( 2n - 1) c) d) n π,. Ans: a:) Solution: put n = 0 in answers a,b,c and d, Substitute x=0, x=, x=. GE is not satisfied when x =0 Hence c and d are not correct answers. GE is not satisfied when x = answer. Hence a is the answer. Or. Hence b is not the correct

cos3xcos x + sin3x sin x= 0. cos3x [ ( cos3x + 3 cosx )] + sin3x[ ( 3sinx - sin3x)] =0 ( cos 3x - sin 3x ) +3 ( cos3x cosx + sin3x sinx )} =0 {cos6x + 3 cos2x} =0 2x = A {cos3a + 3 cosa} =0 cos A0 cos 2x 0 cos2x = 0 2x = ( 2n + 1) x = ( 2n + 1) 42. If x and = 1, then all solutions of x are given by a) 2n π + b) ( 2n + 1) π - c) 2n π + 1 d) None of these. Ans : d. Solution: Since x, cos x 0,1,-1. Hence only possibility is sin x 3 sinx 2 = 0 sin x 2 sinx sinx 2 0 ( sinx - 1 ) ( sinx 2) =0 Sin x = 1 or 2 which is not possible as x and 2 > 1 Hence d is the answer. 43. If 1 + sin x + x + x +... = 4 + 2 with 0<x < π and x, then x = a) b) c) Ans d. or d) Solution : put sinx = r then GE: 1 + r + r +... = 4 + 2 3 ( in GP.) or With < 1 since 0<x < π and x. S = = 4 + 2 3 = 4 + 2 3 1 sinx = 1 sinx = x =

sinx = 1 - = = x = 60 or 120 Ans: d. ------- 44. The general solution of of = cos2x 1 is a) 2n π b) c) n π d) (2n + 1) π Ans: c Solution: when n=1 a) π c) 2 π d is 3 π b) Among these GE is not satisfied by b) b is not the correct answer. Since GE is satisfied for π, 2π, 3 π also. General solution is θ = n π. Or tan x = cos2x 1 = - ( 1 cos2x) = - 2sin x sin x = - 2sin x cos x sin x ( 1 + 2cos x ) = 0 sin x = 0 sinx = 0 x= n π where n Є Z ------------------ ------------------------------------------------- 45. Cot θ =sin2 θ ( θ n π ),if θ = a), b), c) only d) only Ans b) Solution : when θ =, in GE LHS = RHS = 1. GE is satisfied by θ = also. and solution θ =,. Or GE = 2 sin θ cos θ cos θ = 2 sin θ cos θ cos θ ( 1-2 sin θ ) = 0 is not a Cos θ =0 θ = sin θ = ½ sin θ = ± θ = ± ------------------ ------------

46. If sin( cotθ ) =cos( tanθ) then the value of θ = a)n π + b ) 2n π ± c) n π - d) 2n π ± Ans: a) Solution: we know that sin = cos π cotθ = π tanθ cotθ = tanθ tan θ = 1 θ = n π +. 47. If tan θ + 3 cot θ = 5 sec θ then θ = a) n π + ( -1) n, nє Z. b) n π + ( -1) n, nє Z c) n π + ( -1) n+ 1, nє Z or n π + ( -1) n, nє Z d) n π + ( -1) n, nє Z or n π + ( -1) n, nє Z Ans: b). Solution. GE: +3 sin θ + 3 cos θ = 5 sin θ 1 + 2 cos θ = 5sin θ which is satisfied for x = only. answer is b). -- 48. If tanx + tan4x + tan7x = tanx tan4x tan7x then x = a) n π / 3 b) n π / 4 c) n π / 6 d) n π / 12 Ans d). Solution : w. k.t if tan x + tany + tanz = tanx tany tanz then ] tan( x + y + z ) = 0. tan12x = 0 12x = n π x = n π /12. 49. The general solution of sinx + sin7x = sin4x in ( 0, ) are a), b), c), d), Ans d) Solution: GE : sin7x + sin x sin4x =0 2 sin4x cos 3x sin 4x =0 sin4x( 2 cos3x - 1) =0 sin4x =0 4x = n π or x = n π / 4 = π / 4 in ( 0, ) cos 3x = = cos ( ) in ( 0, ) 3x = x = x =, Ans d

50. The number of solutions of cosx =, 0x 3 π is a) 3 b) 2 c) 4 d) 5 Ans: a. Solution: clearly 1 0 cosx = 1 + sinx ( = x if x 0 ) cos x sin x = 1 By inspection x = 0, 2π, 3 π /2 are 3 solutions in [0,3π] Ans a ----- 51. The set of values of x for which a) φ b) { n π +, n Є Z } c) Ans a. Solution: Clearly tan x = 1 = tan ( ) = 1 is d) { 2n π +, n Є Z } X = n π +, n Є Z. But for no values of x, sin2x is not defined, so that the equation has no solution. 52. The general solution of cos7 θ cos 5 θ = cos3θ cosθ is a), b), c), d ), Ans c. Solution : GE: cos7 θ cos 5 θ = cos3θ cosθ ( cos12 θ + cos2 θ ) = ( cos 4 θ + cos2 θ ) cos12 θ cos 4 θ = 0-2 sin 8θ sin 4θ =0 8θ = n or 4θ = n θ = Ans c -------------- ----------------------------- ----------------- ------------ 53. If sec 2 x + + cosec 2 x = 4, then the value of x is a) b) c) d) Ans d. Clearly by inspection method d) is the answer. ------,

54. The equation 2 sin θ cos θ = x 2 + has a) one real solution b) no solution c) two real solutions d) θ = n π. ans b) Solution : GE : sin 2 θ = x 2 +. clearly sin 2 θ > 0. If x 1 solution does not exists. If 0<x< 1 then x < 1 but >1 hence x 2 + > 1 Solution does not exists. no solution 55. If A and B are acute angles such that sina = sin 2 B and 2 cos 2 A = 3 cos 2 B then A is d) a) b) c) Solution : Clearly by inspection method A=. Since when A=, B = from sina = sin 2 B. These values satisfies 2 cos 2 A = 3 cos 2 B also. a = is the ans. ------- 56. Let n be a positive integer such that sin + cos =,then a) n = 4 b) n= 1,2,3,4,... c) n = 2 d) n = 6 Ans d. Solution: clearly by inspection n = 6. Or sin + cos squaring 1 + 2 sin cos = sin = - 1 = which is true when n = 6. sin = n =6 only. 57. If sin 40 0 = k and cosx = 1 2 then the value of x in ( 0 0, 360 0 ) are a) 40 o and 140 o b) 80 o and 280 o c) 40 o and 220 o d) 80 o and 260 o Ans: b. Solution : Now cosx = 1 2 sin 2 40 0 = cos80 0. x = 80 0 and 360 0-80 0 = 280 0. x = 80 0, 280 0 in ( 0 0, 360 0 ) =

58. If 3 cos 2 x - 2 cos x sinx - 3 sin 2 x = 0 then x = a) + b) + c) d) n π + Ans: a) Solution : GE: 3 cos2x - 3 sin2x =0 3 cos2x = 3 sin2x = 3 tan2x = 3. + 2x = n π + x =. ------- 59. The most general solution of + =0 a) 2n π +, n ЄZ, b) n π +, n ЄZ c) 2n π -, n ЄZ d) n π -, n ЄZ Ans: b. Solution: GE: log tanx = - log cotx log tanx = - log = log tanx log tanx = log tanx sinx = cosx Tanx = 1 x = n π +, n ЄZ ans :b. ------- 60. The general solution of 3 tan( θ 15 o )= tan ( θ + 15 o ) is a) θ = ± b) n ± c) + ( -1) n d) 2n - Ans: c Solution: 3 tan( θ 15 o )= tan ( θ + 15 o ) 3 = 3 sin θ 15 cos θ 15 = sin θ 15 cos θ 15 2 sin θ 15 cos θ 15 + sin ( -30 0 ) =0 sin2 θ + sin ( -30 0 ) + sin ( -30 0 ) =0 Sin 2 θ = 1 2 θ = n π + ( -1) n θ = ------- + ( -1) n

61. The most general solution of tan θ +1 = 0 & secθ - 2 =0 is a) 2n π - c) n π + ( -1) n Ans b) Solution: Given b) 2n π + d) 2n π + tan θ = quadrant take θ = 2 π = general solution is θ = 2n π + and cos θ = Ans b. θ in IV 62. If cosx + cosy = 1 and cosxcosy = ¼ then the general solutions are a) x = 2n π ±, y = 2k π ± b) 2n π ±, y = 2k π ± c) x = 2n π ±, y = 2k π ± b) n π ±, y = k π ± Ans: b. Solution: clearly by inspection method x =, y= is a solution. Hence ans is b). Or Cosx cosy = cosx cosy 4 cosxcosy = 1 4 =0 Now cosx + cosy = 1 and cosx - cosy = 0 cosx = ½ and cosy = ½ x = 2n π ±, y = 2k π ± ans : b. ------- 63. = a b) - c) d) Ans : c Solution: put x= 0 then GE : In choices only a and c results in Hence answer is either a or c.. Put x = 30 0. then GE: tan = tan 3= In choices a reduces to 15 0 and c reduces to 60 0. Hence c is the answer.

------- 64. Tan[ + cos-1 ( ) ] + Tan[ - cos-1 ( ) ] with x 0 a) 2x b) c) 2x d) 2 1 x Ans: b) Solution : put x = 1 in GE: = 2 reject d. Put x = in GE: tan( 450 + 30 0 ) + tan ( 45 0 30 0 ) = tan ( 750 ) + tan 15 0 = 2 3 + 2-3 = 4 In choices b) gives 4. hence b is the correct answer. ------ 65. If sin -1 ( ) + ) =, then x = a) 4 b) 5 c ) 1 d) 3 Ans: d. Solution: cosec ) = sin-1 ( ) GE : sin -1 ( ) + sin-1 ( ) = sin -1 ( ) = cos-1 ( ) clearly x = 3. sin -1 ( ) = cos-1 ( ) ------- 66. The value of cos( 2 + ) at x = 1/5 is a) b) c) d) 2 6 Ans: b Solution: cos( 2cos x + sin x ) = cos ( + cos x ) = - sin (cos x ) = - sin (sin 1 x ) = - 1 x At x = 1/5 ans is - 1 = - = - --- 67. The general solution of cosecx + cotx = is a) x = 2n π ± b) x = + - c) x = - d) x = 2n π ± - Ans: d. Solution: GE: cosecx + cotx = 3 1 + cosx = 3 sinx cosx + 3 sinx = - 1 cosx + cos( x + ) = cos G.S. is x = 2n π ± - ans :d..

68. If α, β and γ are the roots of the equation x 3 + m x 2 + 3x + m = 0, then the general solution of + + = a) ( 2n + 1) b) n π c) d) depend upon the value of x. Ans: b Solution : consider x 3 + m x 2 + 3x + m = 0 α = -b/a = -m, α = c/a = 3 ; α β γ = -d/a = -m Now =tan tan α + tan β + tan γ = tan = tan -1 (0) =0. G.S. is tan α +tan β +tan γ = n.where n Є Z. Ans b 69. The equation 3 cosx + 4 sinx = 6 has a) finite solution b) infinite solution c) one solution d) no solution. Ans: d Here r = > 1 where a= 3, b= 4 c = 6. Hence no solution. 70. The value of x satisfying the equation sinx + is given by a) 10 0 b) 30 0 c) 45 0 d) 60 0 = Ans: d Solution : Clearly by inspection x = 60 0 satisfies the equation. because sin 60 0 + = + = 71. If log 5 (1 + sinx) + log 5 (1 - sinx) = 0 then x in ( 0, ) is a) b) 0 c) d No value Ans d Solution: Clearly If log 5 [ (1 + sinx)( 1 sinx)] =0 1 sin 2 x = 0 cos 2 x =1 cosx = ± 1 x = 0, 0, ) no value.

72. If y = cosx and y = sin 5x then x = a) b) c) d) Ans: c Solution: clearly sin5x = cosx sin5x = sin ( - x) 5x = - x 6x = x = ans C 73. The value of ) ) + ) ) = a) Ans: d : b) c) = 2. d) 0 cos cos ) ) = cos cos 2π ) ) = sin sin ) = sin sin2π ) = - GE: = 0 Ans: d 74. If θ = )), then one of the possible value of θ is a) b) c) d) Ans: a) Solution: 600 600 + 720 0 = 120 0 θ = sin sin 600 = sin sin 120 = sin sin 180 60 ) = sin sin 60 ) = 60 = 75. The value of sin( 2. = a) 0.96 b) 0.86 c) 0.94 d) 0. 84. Ans a) Solution: 0.8 = sin( 2 sin 0.8 = sin ( 2 θ ) where θ = sin = 2 sin θ cos θ = 2.. = = 0.096. Ans a)