MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Σχετικά έγγραφα
Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Quadratic Expressions

COMPLEX NUMBERS. 1. A number of the form.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

EE512: Error Control Coding

Reminders: linear functions

CRASH COURSE IN PRECALCULUS

MATRICES

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Trigonometric Formula Sheet

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometry 1.TRIGONOMETRIC RATIOS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.

Second Order Partial Differential Equations

Differentiation exercise show differential equation

If we restrict the domain of y = sin x to [ π 2, π 2

2 Composition. Invertible Mappings

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

Differential equations

TMA4115 Matematikk 3

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Areas and Lengths in Polar Coordinates

Numerical Analysis FMN011

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Concrete Mathematics Exercises from 30 September 2016

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

PARTIAL NOTES for 6.1 Trigonometric Identities

TRIGONOMETRIC FUNCTIONS

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =


Jordan Form of a Square Matrix

Congruence Classes of Invertible Matrices of Order 3 over F 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

( ) 2 and compare to M.

C.S. 430 Assignment 6, Sample Solutions

Solutions to Exercise Sheet 5

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

The Simply Typed Lambda Calculus

Tridiagonal matrices. Gérard MEURANT. October, 2008

Section 9.2 Polar Equations and Graphs

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

IIT JEE (2013) (Trigonomtery 1) Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

w o = R 1 p. (1) R = p =. = 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order RLC Filters

6.3 Forecasting ARMA processes

Srednicki Chapter 55

Chapter 1 Complex numbers

14 ح ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية. a b x a x b c. a b c

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Strain gauge and rosettes

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

The ε-pseudospectrum of a Matrix

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Presentation of complex number in Cartesian and polar coordinate system

x j (t) = e λ jt v j, 1 j n

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

ST5224: Advanced Statistical Theory II

MATH1030 Linear Algebra Assignment 5 Solution

Spherical Coordinates

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

On Numerical Radius of Some Matrices

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

( y) Partial Differential Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ιστορία νεότερων Μαθηματικών

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Section 8.2 Graphs of Polar Equations

dim(u) = n 1 and {v j } j i

Transcript:

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3

2. If A= 2 1 0 0 2 1 then adj A = 1)9 2) 1/9 3) 81 4) 0 1 0 2

A =2 4 0 1 0 1 +0 = 8 + 1 = 9 If A is square matrix of order n, then adja = 1 adja = 3 1 = 2 = 9 2 =81 3

3. The sum of 2-3 and its multiplicative inverse is, 5-7 4-6 0 0 0-2 1) 2) 3) 4) -5 0 10 14 0 0-2 0 0-5

4. 1 1 1 1 1 = & 2 = 1 h 2 2 2 1 1 1 + 2 =0 2 1 = 2 3 1 +2 2 =0 4

1 2 = 1 = 1 1 2 2 2 1 2 1 2 = 2 1 2 1 = 1 1 1 2 1 2 1 1 1 = 1 = 1 2 2 2 1

5. b 2 c 2 bc b+c c 2 a 2 ca c+a = a 2 b 2 bc a+b 1) a+b+c 2) 0 3) ab + bc+ ca 4) 1/abc.(ab + bc+ca)

Multiply and divide 1 by a, 2 by b, 3 by c 1 2 2 + 2 2 + 2 2 + = 2 1 1 + 1 1 + =0 1 1 + 2

100 50 200 300 6. If A = B = Then AB = 50 100 100 200 1) 175x10 4 2) 175x10 6 3) 175x10 3 4) 0

=50 50 2 1 =2500 7=17500 1 4 =100 100 2 3 =10000 1=10000 1 2 h = =17500 10000=175 10 6 2

7. In a ABC, 1 Sin A Sin 2 A 1 SinB Sin 2 B = 0 1 SinC Sin 2 C 1) Right angled 2)Right angled isosceles 3) Isosceles 4) Equilateral

1 2 1 2 =0 1 2 2 1 3 1 1 2 0 2 2 =0 0 2 2 =0 = = = = 3

8. If α = 1 x yz and β = 1 x x 2 1 y zx 1 y y 2 Then 1 z xy 1 z z 2 1) α β 2) α=β 3) α=2β 4) α=-β

= 1 2 2 2 2 1 = 2 1 h 2 2 1 1 2 = 1 2 = 1 2 2

9. 1/a a 2 bc 1/b b 2 ca 1) 0 2) 1 3) -1 4) abc 1/c c 2 ab

1 2 3 1 1 3 1 3 1 3 1 3 1 1 3 1 =0 1 3 1 1

10. Let 6i -3i 1 4 3i -1 = x + iy then (x, y) = 20 3 i 1) (0, 1) 2) (0, 0) 3) (1, 0) 4) (1, 1)

6 1 1 3 4 1 1 =0 h 3 20 x+iy = 0+i0 then (x,y) = (0,0) 2

4 2 11. If A = then (A-2I)(A-3I) = -1 1 1) A 2) I 3) 0 4) 5I

12. Let W = - ½ + i 3/2 Then = 1 1 1 1-1-w 2 w 2 = 1 w 2 w 4 1) 3w 2) 3w (w-1) 3) 3w 2 4) 3w (1-w)

1 1 1 1 2 = 1( 2 - ) 1( 2 + 1( 2 1 2 = 2 + 2 + 2 = 3 2 3 =3 1 2

13. If a a 2 1+a 3 b b 2 1+b 3 = 0 and a,b,c are c c 2 1+c 3 distinct, then product abc = 1) 2 2) -1 3) 1 4) 0

2 1 2 3 2 1 + 2 3 = 0 2 1 2 3 (1+abc)[(a-b)(b-c)(c-a)] = 0 = 1 h,, 2

14. If A = a 0 0 0 a 0 then adja = 0 0 a 1) a 3 2) a 6 a 9 4) a 27

= 1 = 3 = 3 1 = 2 = 3 2 = 6 2

15. 0 c b 2 b 2 +c 2 ab ac c 0 a = ab c 2 +a 2 bc b a 0 ac bc a 2 +b 2 1) 4abc 2) 4a 2 b 2 c 2 3) a 2 b 2 c 2 4) 0

2 2 2 2 2

16. 4Sin 2 θ Cos 2θ -Cos2θ Cos 2 θ = 1) -1 2) 0 3) 1 4) Cos4θ

2 2 2 2 2 2 2

17. The roots of the equation 2+x 3-4 2 3+x -4 = 0 2 3-4+x 1) 0, 1 2) -2 3) 0, -1 4) -20

We know that + + = 2 + + + + Then 2+ 3 4 2 +3 4 =0 2 3 4 2 +2+3 4 =0 =0, = 1 3

18. 8579 8589 = 8581 8591 1) 2 2) -2 3) 20 4) -20

2 1

19.If 1 2 3 4 a b then a + b + x + y = + = x 3 y 1 2 2 1 1) 5 2) 20 3) -10 4) 0

1+3 2+4 3 = +1 +2 2 1 3 +1=2 +2=1 3 =1=> =1 = 1 a = 4 b = 6 Then a+b+x+y = 10 4

20. 1 1+i+w 2 w 2 1-i -1 w 2-1 = w 1, w 3 =1 is -i -i+w-1-1 1) 1 2) -1 3) 6 4) None

1 + 2 2 1 1 + 3 = 1 1 2 1 + 1 1 1 1 2 1 = 1 1 2 1 + 1 1 =0 h 2 4

420 429 430 21. Cofactor of 200 in is 421 430 800 900 100 200 1) 9 2) -9 3) 6 4) -6

420 429 200 + 421 430 => 2 1 420 429 =420 429= 9 1 1 2

2 0 1 22. A = and adj A = then (x, y, z ) = 1 1 0 1 2-1 x y z 2 1 1-1 -2 2 1) (-1, 0-1) 2) (-1, 0, 1) 3) (0, 1, -1) 4) (-1, -1, 1)

2 0 1 1 2 1 = 1 1 0 2 1 1 1 2 2 h., = 1,0,1 = 1 0 = 1 =+ 2 2 = 0 = 0 1 = 1 2

λ -3 4 23. If the matrix is invertible then λ = -3 0 1-1 3 2 1) -15 2) -16 3) -17 4) 17

3 4 3 0 1 =0 1 3 2 0 3 +3 6+1 +4 9 0 = 0 3 =51. = 17 3

24. If the matrix AB = 4 11 and A = 3 2 4 5 1 2 Then B = 1) -6 2) -11 3) -7/2 4) 4

h = 4 11 2 = 3 4 5 1 2 20 44 = 6 2 24=4 = 6 1

25. If the three linear equations x+4ay+az=0, x+3by+bz=0 and x+2cy+cz=0 have a non-trivial solutions, then a,b,c are in 1) A.P. 2) G.P. 3) H.P 4) none

By Property 1 4 1 3 =0 1 2 1(3bc-2bc)-4a(c-b)+a(2c-3b) = 0 bc-4ca-4ab+2ac-3ab=0 There fore b = 2 + hence a,b,c are in HP 3

26. The Value of λ for which the following system of equations does not have a solution x + y + z = 6, 4x + λy + λz = 0 3x + 2y 4z = -8 1) 3 2) -3 3) 0 4) 4

By properties 1 1 1 4 3 2 4 MATHEMATICS =0 1(-4-2 ) -1(-16-3 ) + 1(8-3 ) = 0-6 =-24. =4 4

27. If a 1, a 2. Form a G.P. a i > 0, i 1 loga m loga m+1 loga m+2 Then loga m+3 loga m+4 loga m+5 loga m+6 loga m+7 loga m+8 1) 2 2) 1 3) 0 4) -2

a,b,c are in GP. Then 2 = ac similarly, 2 +1 = +2 Log on both sides 2Log +1 = + +2 2Log +4 = +3 + +5 2Log +7 = +6 + +8 + +2 +2 ½ +3 +3 + +5 +5 +6 +6 + +8 +8 = ½ (0) = 0 3

28. The Value of 1 log x y log x z log y x 1 log y z log z x log z y 1 1) 1 2) xyz 3) log xyz 4) 0

= = 1]

29. If 1 1+x 2+x 8 2+x 4+x is a singular matrix then x is 27 3+x 6+x 1) 2 2) -1 3) 1 4) 0

1 1+ 1 3 = 3 2 8 2+ 2 =0 27 3+ 3 1 1 h 5 8 2 =0 27 3 x[1(3-2)-1(24-14)+1(8-7)] = 0 x = 0 4

30. If = logx logy logz log2x log2y log2z log3x log3y log3z 1) 0 2) log (xyz) 3) log (6xyz) 4)6 log (xyz)

= 2+ 2+ 2+ 3+ 3+ 3+ log log => 1 2 log 2 3 log 2+ log log 3+ = 0 1

1. If A = 4-3 then eigen value of A -1 = 2-1 1) 1,2 2) 1, ½ 3) -1,-2 4) -1, -1/2

A 1 = Adj A A MATHEMATICS = 1 2 1 3 2 4 Eigen Values = 1 2 A λi = 1 2 1 λ 3 2 4 λ =0 1 λ λ 2 λ2 3λ +2 =0 λ =1,2 Answer is (1)

32. If 1+a 1 1 1 1+b 1 = 0 and abc 0, then a -1 +b -1 +c -1 = 1 1 1+c 1) 0 2) 1 3) -1 4) abc

abc+bc+ca+ab=0 abc 1+ 1 + 1 + 1 = 0 then abc 0 then 1+ 1 + 1 + 1 =0 1 + b 1 + c 1 = 1 Answer is 3

33. A root of 0 x-a x-b x+a 0 x-c = 0, then x is x+b x+c 0 1) a 2) b 3) c 4) 0

put x=0 then determinent=0 0 0 =0 0 0 + a[0 +bc]-b[ac-0] = 0 abc-abc = 0 h 4

34. If A is matrix of order 3 such that A. adj A = 10 I Then adj A = 1) 10 2) 100 3) 1000 4) none

n 1 = 3 1 2 2

35. If A= Cosπ/4 Sinπ/12 Then A -1 = Sinπ/4 Cosπ/12 1) 8 2) 4 3) 2 4) -2

A = Cos π 4.Cos π 12 Sinπ 4.Sin π 12 = Cos + 4 12 =Cosπ = 1 3 2 A 1 = A 1 1 = A = 1 1 2 =2 3

36. If x+3 x x+2 x x+1 x-1 = ax 3 +bx 2 +cx+d then the value of d = x+2 2x 3x+1 1) 1 2) 0 3)-1 4)2

3 0 2 put x=0 then d= 0 1 1 2 0 1 = 3[1-0] 0 + 2[0-2] = 3 4 = -1 3

36. Which of the following is not invertible? 1) 1-1 2) 2-2 3) -1-1 4 ) 2 2 2-2 1 1-1 2 1-1

38. The sum of the products of the elements of any row (or col) of A with the corresponding co-factors of the same row ( or col ) is always equal to 1)0 2) A 3) A 4) None

11 12 13 If A = 21 22 23 31 32 33 11 21 31 adja = 12 22 32 13 23 33 By property A = a 11 A 11 + a 12 A 12 +a 13 A 13 and so on 3

39. The sum of the products of the elements of any row (or column) of A with the corresponding cofactors of any other row ( or column) is always equal to 1) 0 2) A 3) A 4) None

11 12 13 If A = 21 22 23 31 32 33 11 21 31 adja = 12 22 32 13 23 33 13 23 33 By property a 11 A 21 + a 12 A 22 +a 13 A 23 =0 and so on 3

40. x 4 4 4 x 3 = 0 then x is 3 3 x 1) 3,4,7 2) 3, 4,-7 3) -3,4,7 4) 0

We know that = + + 4 4 4 3 =0 3 3 4 3 +4+3 = 0 X=4,3,-7 2