The Jordan Form of Complex Tridiagonal Matrices

Σχετικά έγγραφα
Jordan Form of a Square Matrix

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

w o = R 1 p. (1) R = p =. = 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Numerical Analysis FMN011

Tridiagonal matrices. Gérard MEURANT. October, 2008

EE512: Error Control Coding

MATRIX INVERSE EIGENVALUE PROBLEM

( ) 2 and compare to M.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007


g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

x j (t) = e λ jt v j, 1 j n

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example Sheet 3 Solutions

The ε-pseudospectrum of a Matrix

Partial Differential Equations in Biology The boundary element method. March 26, 2013

MATRICES

Congruence Classes of Invertible Matrices of Order 3 over F 2

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

CRASH COURSE IN PRECALCULUS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Θεωρία Πληροφορίας και Κωδίκων

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Reminders: linear functions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 21: Properties and robustness of LSE

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

SPECIAL FUNCTIONS and POLYNOMIALS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Parametrized Surfaces

Matrices and Determinants

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

3+1 Splitting of the Generalized Harmonic Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Space-Time Symmetries

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Homework 8 Model Solution Section

TMA4115 Matematikk 3

Higher Derivative Gravity Theories

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2008

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

On Numerical Radius of Some Matrices

Finite Field Problems: Solutions

Abstract Storage Devices

Properties of Some Generalizations of Kac-Murdock-Szegö Matrices

Homework 3 Solutions

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΣΤΑΤΙΣΤΙΚΗ ΓΝΩΣΗΣ. Φαζμαηικη Αναλςζη Σςνδιαζποπαρ. Principal Components Analysis Singular Value Decomposition Iωαννηρ Ανηωνιος Φαπαλαμπορ Μππαηζαρ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( y) Partial Differential Equations

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

arxiv: v1 [math.ra] 19 Dec 2017

Ανάκτηση Πληροφορίας

D Alembert s Solution to the Wave Equation

MATH1030 Linear Algebra Assignment 5 Solution

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Section 8.3 Trigonometric Equations

Structure Groups and Linear Transformations

Srednicki Chapter 55

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.

On the Galois Group of Linear Difference-Differential Equations

Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications

Solutions to Exercise Sheet 5

If we restrict the domain of y = sin x to [ π 2, π 2

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Empirical best prediction under area-level Poisson mixed models

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Hebbian Learning. Donald Hebb ( )

Second Order RLC Filters

Fundamentals of Wireless Communication

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Spiral of Theodorus, Numerical Analysis, and Special Functions

2 Composition. Invertible Mappings

Notes on the Open Economy

Differentiation exercise show differential equation

Spherical Coordinates

Lecture 34 Bootstrap confidence intervals

Φασματικη Αναλυση Συνδιασπορας

Chapter 2. Stress, Principal Stresses, Strain Energy

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Mellin transforms and asymptotics: Harmonic sums

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EXAMENSARBETEN I MATEMATIK

6. MAXIMUM LIKELIHOOD ESTIMATION

The Hartree-Fock Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Lecture 15 - Root System Axiomatics

Lecture 2. Soundness and completeness of propositional logic

Module 5. February 14, h 0min

Transcript:

The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1

Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T = XJX 1 Express X in terms of α j, β j and γ j ILAS p.2

Overview Idea: Eigenvectors = columns of adjoint Principal vectors = derivatives of eigenvectors Talk: Adjoints (adjugates) Eigenvectors from adjoints Principal vectors as derivatives Tridiagonal Matrices ILAS p.3

Adjoints (Adjugates) n n complex matrix A adj(a) A = A adj(a) = det(a)i n rank(a) = n: rank (adj(a)) = n rank(a) = n 1: rank (adj(a)) = 1 rank(a) n 2: adj(a) = 0 Element (i, j) of adj(a) : ( 1) i+j det(a ji ) ILAS p.4

Examples A = 1 2 3 adj(a) = 2 3 1 3 1 2 A = λ 1 λ 1 adj(a) = λ λ 2 λ 1 λ 2 λ λ 2 ILAS p.5

Eigenvectors from Adjoints Complex square matrix A, complex scalar ξ (A ξi) adj(a ξi) = det(a ξi)i ith column: (A ξi) adj(a ξi)e i }{{} x(ξ) = det(a ξi)e i λ eigenvalue of A: (A λi) x(λ) = det(a λi) }{{} =0 e i ILAS p.6

When is x(λ) an Eigenvector? λ eigenvalue of A, x(λ) adj(a λi)e i (A λi) x(λ) = 0 x(λ) eigenvector if x(λ) 0 if adj(a λi) 0 if rank (adj(a λi)) = 1 if λ has geometric multiplicity 1 ILAS p.7

Eigenvectors from Adjoints Given: complex matrix A with eigenvalue λ If λ has geometric multiplicity 1 then adj(a λi) 0 Non-zero columns of adj(a λi) are eigenvectors of A adj(a λi)e i }{{} x(λ) 0 for some i (A λi)x(λ) = 0 [Gantmacher 1959] ILAS p.8

Principal Vectors from Adjoints (A ξi) adj(a ξi)e i }{{} x(ξ) = det(a ξi)e i Differentiate x(ξ) + (A ξi) x (ξ) = d dξ det(a ξi)e i λ multiple eigenvalue: x(λ) + (A λi)x (λ)= d dξ det(a ξi) ξ=λ }{{} =0 e i ILAS p.9

When is x (λ) Principal Vector? Given: complex matrix with eigenvalue λ If λ has geometric multiplicity 1 and algebraic multiplicity 2 then x(λ) adj(a λi)e i 0 for some i x (λ) d dξ x(ξ) ξ=λ (A λi) x (λ) = x(λ) Principal vectors are derivatives of columns of adj(a λi) ILAS p.10

Higher Order Derivatives x 1 (ξ) adj(a ξi)e i (A ξi)x 1 (ξ) = det(a ξi)e i Differentiate j times (A ξi)x j+1 (ξ) = x j (ξ) 1 j! d j dξ j det(a ξi)e i where x j+1 (ξ) 1 j x j (ξ) ILAS p.11

Higher Order Principal Vectors Given: complex matrix A with eigenvalue λ If λ has geometric multiplicity 1 and algebraic multiplicity k 2 then x 1 (ξ) adj(a ξi)e i x j+1 (λ) 1 j x j (λ), 1 j k 1 (A λi) x j+1 (λ) = x j (λ) Principal vectors of order j are jth derivatives of columns of adj(a λi) ILAS p.12

Jordan Block A = 0 1 0 1 adj(a ξi) = 0 x 1 (ξ) ξ 2 ξ 1 0 ξ 2 ξ 0 0 ξ 2 1 0 ξ x 2 (ξ) = x ξ 2 1 (ξ) = 1 2ξ x 3 (ξ) = 1 0 2 x 2 (ξ) = 0 1 ILAS p.13

Adjoints & Eigen/Principal Vectors Given: complex matrix A (A ξi) adj(a ξi) = det(a ξi)i If eigenvalue λ of A has geometric multiplicity 1 Eigenvectors are non-zero columns of adj(a λi) Principal vectors are derivatives of columns of adj(a λi) ILAS p.14

Complex Tridiagonal Matrices T = α 1 β 1. γ 1 α 2........ β n 1 γ n 1 α n Unreduced: β j 0, γ j 0 All eigenvalues have geometric multiplicity 1 ILAS p.15

Characteristic Polynomials Leading principal submatrix of order j α 1 β 1. γ T j = 1 α 2........ β j 1 γ j 1 α j Characteristic polynomial φ j (ξ) det(t j ξi) Recurrence: φ j (ξ) = (α j ξ) φ j 1 (ξ) β j 1 γ j 1 φ j 2 (ξ) ILAS p.16

Adjoints and Tridiagonals n n complex tridiagonal T (T ξi) x(ξ) = φ n (ξ) e n where φ n (ξ) = det(t ξi) β 1 β n 1 β 2 β n 1 φ 1 (ξ) x(ξ) = adj(t ξi)e n =. β n 1 φ n 2 (ξ) φ n 1 (ξ) ILAS p.17

Eigenvector (T λi) x(λ) = 0 x(λ) = β 1 β n 1 β 2 β n 1 φ 1 (λ). β n 1 φ n 2 (λ) φ n 1 (λ) Super-diagonal elements β 1,..., β n 1 [Wilkinson 1965: Hermitian tridiagonals] ILAS p.18

Principal Vectors n n unreduced complex tridiagonal T Super-diagonal elements β 1,..., β n 1 Eigenvalue λ of multiplicity > 1 Eigenvector x 1 (λ): (T λi) x 1 (λ) = 0 First principal vector x 2 (λ): (T λi) x 2 (λ) = x 1 (λ) Second principal vector x 3 (λ): (T λi) x 3 (λ) = x 2 (λ) ILAS p.19

Eigenvector (T λi) x 1 (λ) = 0 x 1 (λ) = β 1 β n 1 β 2 β n 1 φ 1 (λ). β n 1 φ n 2 (λ) φ n 1 (λ) Determinants φ 1 (λ),..., φ n 1 (λ) ILAS p.20

First Principal Vector (T λi) x 2 (λ) = x 1 (λ) x 2 (λ) = 0 β 2 β n 1 β 3 β n 1 φ 2 (λ). β n 1 φ n 2 (λ) φ n 1 (λ) First derivatives φ 2 (λ),..., φ n 1 (λ) ILAS p.21

Second Principal Vector (T λi) x 3 (λ) = x 2 (λ) x 3 (λ) = 1 2 0 0 β 3 β n 1 β 4 β n 1 φ 3 (λ). β n 1 φ n 2 (λ) φ n 1 (λ) Second derivatives φ 3 (λ),..., φ n 1 (λ) ILAS p.22

jth Principal Vector (T λi) x j+1 (λ) = x j (λ) x j+1 (λ) = 1 j! 0 j β j+1 β n 1 β j+2 β n 1 φ (j). β n 1 φ (j) n 2 (λ) φ (j) n 1 (λ) j+1 (λ) jth derivatives φ (j) j+1 (λ),..., φ(j) n 1 (λ) ILAS p.23

All Principal Vectors Unreduced complex tridiagonal T Eigenvalue λ of multiplicity k > 1 T X = X J k (λ) X =................ ILAS p.24

Complex Symmetric Tridiagonals T X = XJ k (λ) X =................ X T X =....... Certain principal vectors are orthogonal ILAS p.25

Complex Symmetric Tridiagonals Eigenvector x(λ): (T λi)x(λ) = 0 Characteristic polynomial: φ n (ξ) = det(t ξi) x(λ) T x(λ) = φ n (λ)φ n 1(λ) λ has algebraic multiplicity > 1: φ n (λ) = 0 x(λ) T x(λ) = 0 Eigenvector x(λ) isotropic (asymptotic) [Glidman 1965, Craven 1969, Scott 1993] ILAS p.26

Example T = T = XJ 3 (0)X 1 0 1 0 1 0 ı 0 ı 0 ı = 1 X = ı 0 0 0 ı 0 X T X = 1 0 1 0 0 1 0 1 0 1 0 1 ILAS p.27

Summary Complex square matrices A Eigenvalues λ of geometric multiplicity 1 Adjoint of A λi non-zero Eigenvectors: columns of adjoint Principal vectors: derivatives of eigenvectors Analogous: left eigen/principal vectors ILAS p.28

Summary, ctd Unreduced complex tridiagonals All eigenvalues have geometric multiplicity 1 Explicit expressions for eigenvectors and principal vectors Symmetric tridiagonals with eigenvalues of multiplicity > 1 Eigenvectors isotropic Certain principal vectors are orthogonal ILAS p.29