Hebbian Learning. Donald Hebb ( )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Hebbian Learning. Donald Hebb ( )"

Transcript

1 Hebbian Learning Donald Hebb ( )

2 Hebbian Learning When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A s efficiency, as one of the cells firing B, is increased. (Donald Hebb, 1949)

3 Hebbian Learning When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A s efficiency, as one of the cells firing B, is increased. (Donald Hebb, 1949) Fire together, wire together

4 Hebbian Learning When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A s efficiency, as one of the cells firing B, is increased. (Donald Hebb, 1949) Fire together, wire together Simple model of Hebbian learning: x 1 x 2 x 3 w 1 y x N w N In the following we will drop µ for convenience. w i = η 1 M µ y µ x µ i (1) = η y µ x µ i µ (2) w = η y µ x µ µ. (3)

5 Linear Model Neuron A linear model neuron is described by: y = N w i x i = w T x. (4) i=1 This corresponds to a projection of the data onto the axis given by w scaled with w. x 2 1 w x 1-1

6 Linear Model Neuron A linear model neuron is described by: y = N w i x i = w T x. (4) i=1 This corresponds to a projection of the data onto the axis given by w scaled with w. x 2 1 w y x

7 Linear Model Neuron A linear model neuron is described by: y = N w i x i = w T x. (4) i=1 This corresponds to a projection of the data onto the axis given by w scaled with w. y

8 Linear Model Neuron A linear model neuron is described by: y = N w i x i = w T x. (4) i=1 This corresponds to a projection of the data onto the axis given by w scaled with w. y

9 Linear Model Neuron A linear model neuron is described by: y = N w i x i = w T x. (4) i=1 This corresponds to a projection of the data onto the axis given by w scaled with w. y

10 Hebbian Learning with a Linear Model Neuron w = (3) η y x (Hebbian learning) y (4) = w T x, (linear neuron)

11 Hebbian Learning with a Linear Model Neuron w = (3) η y x (Hebbian learning) y (4) = w T x, (linear neuron) w = (3) η yx (5) (4) = η (w T x)x (6) = η x(x T w) (7) = η xx T w (8)

12 Hebbian Learning with a Linear Model Neuron w = (3) η y x (Hebbian learning) y (4) = w T x, (linear neuron) w = (3) η yx (5) (4) = η (w T x)x (6) = η x(x T w) (7) = η xx T w (8) = w t+1 = w t + η xx T w t (9) = ( I + η xx T ) w t (10)

13 Hebbian Learning with a Linear Model Neuron w = (3) η y x (Hebbian learning) y (4) = w T x, (linear neuron) w = (3) η yx (5) (4) = η (w T x)x (6) = η x(x T w) (7) = η xx T w (8) = w t+1 = w t + η xx T w t (9) = ( I + η xx T ) w t (10) Hebbian learning with a linear model neuron can be interpreted as an iterated multiplication of the weight vector w with matrix (I + η xx T ).

14 Hebbian Learning with a Linear Model Neuron w = (3) η y x (Hebbian learning) y (4) = w T x, (linear neuron) w = (3) η yx (5) (4) = η (w T x)x (6) = η x(x T w) (7) = η xx T w (8) = w t+1 = w t + η xx T w t (9) = ( I + η xx T ) w t (10) Hebbian learning with a linear model neuron can be interpreted as an iterated multiplication of the weight vector w with matrix (I + η xx T ). The sign of the input vectors x is irrelevant for the learning.

15 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) x w x 1-1 1

16 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) x w x 1-1 1

17 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) x 2 2 w x 1-1

18 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) x 2 2 w x 1-1

19 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) w 3 x x 1-1

20 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) w * x x 1-1

21 Illustration of Hebbian Learning w = (6) η (w T x)x (Hebbian learning for a linear unit) w * x x 1-1 Problem: The weights grow unlimited.

22 Explicit Normalization of the Weight Vectors First apply the learning rule, w t+1 i = w t i + ηf i with, e.g.,f i = yx i. (11) Then normalize the weight vector to length one, We can verify that i ( ) w t+1 2 (12) i = w t+1 i = ( i i ( j j w t+1 w t+1 i w t+1 j w t+1 j ) 2 ) 2. (12) 2 = i ( j ( ) w t+1 2 i w t+1 j ) 2 = 1. (13) Problem: Explicit normalization is expensive and biologically implausible.

23 Implicit Normalization of the Weight Vector Explicit normalization yielded w t+1 i (η) (12) = wi t + ηf i ( ). 2 wj t + ηf j j

24 Implicit Normalization of the Weight Vector Explicit normalization yielded w t+1 i (η) (12) = wi t + ηf i ( ). 2 wj t + ηf j j To optain a simpler/more plausible normalization rule, we compute the Taylor-expansion of w t+1 i in η at η = 0 under the assumption that w t is normalized, i.e. (wj t)2 = 1, j t+1 w t+1 i (η) w t+1 i (η wi (η ) = 0) + η η η =0 (14)

25 Implicit Normalization of the Weight Vector Explicit normalization yielded w t+1 i (η) (12) = wi t + ηf i ( ). 2 wj t + ηf j j To optain a simpler/more plausible normalization rule, we compute the Taylor-expansion of w t+1 i in η at η = 0 under the assumption that w t is normalized, i.e. (wj t)2 = 1, j t+1 w t+1 i (η) w t+1 i (η wi (η ) = 0) + η η = w t+1 i (η = 0) + η f i j η =0 ( ) 2 wj t + η f j (w t i + η f i ) j ( w t j + η f j ) 2 ( ) f j wj t +η f j j ) (w j t 2 +η f j j (14) (15) η =0

26 Implicit Normalization of the Weight Vector Explicit normalization yielded w t+1 i (η) (12) = wi t + ηf i ( ). 2 wj t + ηf j j To optain a simpler/more plausible normalization rule, we compute the Taylor-expansion of w t+1 i in η at η = 0 under the assumption that w t is normalized, i.e. (wj t)2 = 1, j t+1 w t+1 i (η) w t+1 i (η wi (η ) = 0) + η η = w t+1 i (η = 0) + η f i j η =0 ( ) 2 wj t + η f j (w t i + η f i ) j ( w t j + η f j ) 2 ( ) f j wj t +η f j j ) (w j t 2 +η f j j (14) (15) η =0 = wi t + η f i wi t f j wj t. j (16)

27 Implicit Normalization of the Weight Vector Taylor-expansion of the explicit normalization rule resulted in (16) wi t + η f i wi t f j wj t. w t+1 i j

28 Implicit Normalization of the Weight Vector Taylor-expansion of the explicit normalization rule resulted in (16) wi t + η f i wi t f j wj t. w t+1 i For Hebbian learning, i.e. with f i = yx i and y = j x jw j, this becomes (16) w i = η f i w i f j w j (17) j j

29 Implicit Normalization of the Weight Vector Taylor-expansion of the explicit normalization rule resulted in (16) wi t + η f i wi t f j wj t. w t+1 i For Hebbian learning, i.e. with f i = yx i and y = j x jw j, this becomes (16) w i = η f i w i f j w j (17) = η yx i w i y x j w j j }{{} =y j j (18)

30 Implicit Normalization of the Weight Vector Taylor-expansion of the explicit normalization rule resulted in (16) wi t + η f i wi t f j wj t. w t+1 i For Hebbian learning, i.e. with f i = yx i and y = j x jw j, this becomes (16) w i = η f i w i f j w j (17) j j = η yx i w i y x j w j (18) j }{{} =y = η ( yx i y 2 ) w i i (19)

31 Implicit Normalization of the Weight Vector Taylor-expansion of the explicit normalization rule resulted in (16) wi t + η f i wi t f j wj t. w t+1 i For Hebbian learning, i.e. with f i = yx i and y = j x jw j, this becomes (16) w i = η f i w i f j w j (17) j j = η yx i w i y x j w j (18) j }{{} =y = η ( yx i y 2 ) w i i (19) w = η (yx y 2 w). (Oja s rule) (20)

32 Implicit Normalization of the Weight Vector Taylor-expansion of the explicit normalization rule resulted in (16) wi t + η f i wi t f j wj t. w t+1 i For Hebbian learning, i.e. with f i = yx i and y = j x jw j, this becomes (16) w i = η f i w i f j w j (17) j j = η yx i w i y x j w j (18) j }{{} =y = η ( yx i y 2 ) w i i (19) w = η (yx y 2 w). (Oja s rule) (20) This rule is simpler, e.g. w i does not depend on w j anymore.

33 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule)

34 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have

35 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have w ηyx, (21)

36 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have which corresponds to Hebb s rule. w ηyx, (21)

37 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have w ηyx, (21) which corresponds to Hebb s rule. For large y we have

38 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have w ηyx, (21) which corresponds to Hebb s rule. For large y we have w ηy 2 w, (22)

39 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have w ηyx, (21) which corresponds to Hebb s rule. For large y we have w ηy 2 w, (22) which results in a shortening of the weight vector.

40 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have which corresponds to Hebb s rule. For large y we have which results in a shortening of the weight vector. w ηyx, (21) w ηy 2 w, (22) The second term only affects the length but not the direction of the weight vector. It therefore limits the length of the weight vector without affecting the qualitative behavior of the learning rule.

41 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have which corresponds to Hebb s rule. For large y we have which results in a shortening of the weight vector. w ηyx, (21) w ηy 2 w, (22) The second term only affects the length but not the direction of the weight vector. It therefore limits the length of the weight vector without affecting the qualitative behavior of the learning rule. Question: What will be the final length of the weight vector?

42 Oja s Rule Implicit normalization yielded w (20) = η (yx y 2 w). (Oja s rule) For small y we have which corresponds to Hebb s rule. For large y we have which results in a shortening of the weight vector. w ηyx, (21) w ηy 2 w, (22) The second term only affects the length but not the direction of the weight vector. It therefore limits the length of the weight vector without affecting the qualitative behavior of the learning rule. Question: What will be the final length of the weight vector? Question: How will the weight vector develop under Oja s rule in general?

43 Linear Stability Analysis y (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule)

44 Linear Stability Analysis y (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) 1. What is the mean dynamics of the weight vectors? 1 η w µ =? 2. What are the stationary weight vectors of the dynamics? 3. Which weight vectors are stable? 0! = w µ w =? w =? stable?

45 What is the mean dynamics of the weight vectors? y (4) = w T x (linear unit) ( w) µ (20) = η(y µ x µ (y µ ) 2 w) (Oja s rule)

46 What is the mean dynamics of the weight vectors? y (4) = w T x (linear unit) ( w) µ (20) = η(y µ x µ (y µ ) 2 w) (Oja s rule) In order to proceed analytically we have to average over all training patterns µ and get ( w) µ µ = 1 M (20) = 1 M M ( w) µ (23) µ=1 M η(y µ x µ (y µ ) 2 w) (24) µ=1 w µ = η yx y 2 w µ (25) For small learning rates η this is a good approximation to the real training procedure (apart from a factor of M).

47 What is the mean dynamics of the weight vectors? y (4) = w T x, (linear unit) (25) w µ = η yx y 2 w µ. (Oja s rule, averaged)

48 What is the mean dynamics of the weight vectors? y (4) = w T x, (linear unit) (25) w µ = η yx y 2 w µ. (Oja s rule, averaged) 1 η w µ (25) = yx y 2 w µ (26) (4) = (w T x)x (w T x)(w T x)w µ (27) = x(x T w) (w T x)(x T w)w µ (28) = (xx T )w (w T (xx T )w)w µ (29) = xx T µ w (w T xx T µ w)w (30) [ C := xx T µ = C T ] (31) (31) = Cw ( w T Cw ) w (32)

49 y Interim Summary (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) 1. What is the mean dynamics of the weight vectors? 1 η w µ (32) = Cw ( w T Cw ) w with C (31) := xx T µ 2. What are the stationary weight vectors of the dynamics? 3. Which weight vectors are stable? 0! = w µ w =? w =? stable?

50 What are the stationary weight vectors? 1 η w µ C (31) = xx T µ = C T, (symmetric matrix C) (32) = Cw ( w T Cw ) w. (weight dynamics)

51 What are the stationary weight vectors? 1 η w µ C (31) = xx T µ = C T, (symmetric matrix C) (32) = Cw ( w T Cw ) w. (weight dynamics) For stationary weight vectors we have: 0! = w µ (33) (32) Cw = ( w T Cw ) w (34) [ ( λ := w T Cw )] (35) (35) Cw = λw (36)

52 What are the stationary weight vectors? 1 η w µ C (31) = xx T µ = C T, (symmetric matrix C) (32) = Cw ( w T Cw ) w. (weight dynamics) For stationary weight vectors we have: 0! = w µ (33) (32) Cw = ( w T Cw ) w (34) [ ( λ := w T Cw )] (35) (35) Cw = λw (36) Stationary weight vectors w are eigenvectors of matrix C.

53 What are the stationary weight vectors? 1 η w µ C (31) = xx T µ = C T, (symmetric matrix C) (32) = Cw ( w T Cw ) w. (weight dynamics) For stationary weight vectors we have: 0! = w µ (33) (32) Cw = ( w T Cw ) w (34) [ ( λ := w T Cw )] (35) (35) Cw = λw (36) Stationary weight vectors w are eigenvectors of matrix C. λ (35) = w T Cw (36) = w T λw = λw T w = λ w 2 (37) 1 = w 2 (38) Stationary weight vectors w are normalized to 1.

54 y Interim Summary (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) 1. What is the mean dynamics of the weight vectors? 1 η w µ (32) = Cw ( w T Cw ) w with C (31) := xx T µ 2. What are the stationary weight vectors of the dynamics? 0! = w µ w = c α 3. Which weight vectors are stable? with Cc α (36) = λ α c α (eigenvectors of C) 1 (38) = c α 2 (with norm 1) w =? stable?

55 Reminder: Eigenvalues and Eigenvectors Aa = λa (eigenvalue equation) (39) Solutions of the eigenvalue equation for a given quadratic N N-matrix A are called eigenvectors a and eigenvalues λ. For symmetric A, i.e. A T = A, eigenvalues λ are real, and eigenvectors to different eigenvalues are orthogonal, i.e. λ α λ β a α a β. A symmetric matrix A always has a complete set of orthonormal eigenvectors a α, α = 1,..., N (orthonormal basis), i.e. Aa α = λ αa α, (right-eigenvectors) (40) a αt A = (Aa α ) T = a αt λ α, (left-eigenvectors) (41) a α = a αt a α = 1, (with norm 1) (42) a αt a β = 0 α β. (orthogonal) (43) N v v = v αa α mit v α = a αt v (complete) (44) = v v = α=1 N a α a αt v 1 = α=1 v 2 = i v 2 i (42, 43, 44) = α v α 2 N a α a αt (45) α=1 (46)

56 Reminder: Eigenvalues and Eigenvectors A T = A, (symmetric) (47) Aa α = λ α a α, (eigenvectors) (48) a αt a β = δ αβ α, β. (orthonormal) (49) x 2 a β β λ β a Ax x a α α λ α a x 1

57 Which weight vectors are stable? 1 η w (32) µ = Cw ( w T Cw ) w (50)

58 Which weight vectors are stable? 1 η w (32) µ = Cw ( w T Cw ) w (50) Ansatz: w := c α + ɛ (with small ɛ) (51) c β w < ε>? ε c α How does ɛ develop under the dynamics?

59 Which weight vectors are stable? 1 η w µ (32) = Cw ( w T Cw ) w w := (51) c α + ɛ (with small ɛ) 1 η ɛ µ (51) = 1 w µ (52) η (32) = Cw (51) = C(c α + ɛ) ( ) w T Cw w (53) ( ) (c α + ɛ) T C(c α + ɛ) (c α + ɛ) (54) Cc α + Cɛ (c αt Cc α )c α (c αt Cɛ)c α (ɛ T Cc α )c α (c αt Cc α )ɛ (55) (36,41) = λ α c α + Cɛ (c αt λ α c α )c α (c αt λ α ɛ)c α (ɛ T λ α c α )c α (c αt λ α c α )ɛ (56) (38) = λ α c α + Cɛ λ α c α λ α (c αt ɛ)c α λ α (ɛ T c α )c α λ α ɛ (57) = Cɛ 2λ α (c αt ɛ)c α λ α ɛ. (58)

60 Which weight vectors are stable? 1 η ɛ µ w := (51) c α + ɛ, (58) Cɛ 2λ α (c αt ɛ)c α λ α ɛ.

61 Which weight vectors are stable? 1 η ɛ µ w := (51) c α + ɛ, (58) Cɛ 2λ α (c αt ɛ)c α λ α ɛ. For simplicity consider the change of the perturbation along the eigenvector c β. c β w < ε> ε c β T < ε>? c βt ε c α

62 Which weight vectors are stable? 1 η ɛ µ w := (51) c α + ɛ, (58) Cɛ 2λ α (c αt ɛ)c α λ α ɛ. For simplicity consider the change of the perturbation along the eigenvector c β. 1 η cβ T ɛ µ (58) c β T Cɛ 2λ α(c αt ɛ)(c β T c α ) λ α(c β T ɛ) (59) (36,41) = λ β (c β T ɛ) 2λ α(c αt ɛ)(c β T c α ) λ α(c β T ɛ) (60) (42,43) = λ β (c β T ɛ) 2λ α(c αt ɛ)δ βα λ α(c β T ɛ) (61) = λ β (c β T ɛ) 2λ α(c β T ɛ)δ βα λ α(c β T ɛ) (62) = β 2λ αδ βα λ α) (c β T ɛ) (λ { (63) = ( 2λ β )(c β T ɛ) if β = α (λ β λ α)(c β T ɛ) if β α (64)

63 Which weight vectors are stable? 1 η cβt ɛ µ w (51) := c α + ɛ, { (64) ( 2λ β )(c βt ɛ) if β = α (λ β λ α )(c βt ɛ) if β α.

64 Which weight vectors are stable? 1 η cβt ɛ µ w (51) := c α + ɛ, { (64) ( 2λ β )(c βt ɛ) if β = α (λ β λ α )(c βt ɛ) if β α. With c βt ɛ µ = c βt ɛ µ (65) = c βt (ɛ n+1 ɛ n ) µ (66) = (c βt ɛ) n+1 (c βt ɛ) n µ (67) = (c βt ɛ) µ (68)

65 Which weight vectors are stable? 1 η cβt ɛ µ w (51) := c α + ɛ, { (64) ( 2λ β )(c βt ɛ) if β = α (λ β λ α )(c βt ɛ) if β α. With c βt ɛ µ = c βt ɛ µ (65) = c βt (ɛ n+1 ɛ n ) µ (66) = (c βt ɛ) n+1 (c βt ɛ) n µ (67) = (c βt ɛ) µ (68) s β := c βt ɛ (perturbation along c β ) (69)

66 Which weight vectors are stable? 1 η cβt ɛ µ w (51) := c α + ɛ, { (64) ( 2λ β )(c βt ɛ) if β = α (λ β λ α )(c βt ɛ) if β α. With c βt ɛ µ = c βt ɛ µ (65) = c βt (ɛ n+1 ɛ n ) µ (66) = (c βt ɛ) n+1 (c βt ɛ) n µ (67) = (c βt ɛ) µ (68) s β := c βt ɛ (perturbation along c β ) (69) { η( 2λ κ αβ := β ) if β = α (70) η(λ β λ α ) if β α

67 Which weight vectors are stable? 1 η cβt ɛ µ w (51) := c α + ɛ, { (64) ( 2λ β )(c βt ɛ) if β = α (λ β λ α )(c βt ɛ) if β α. With c βt ɛ µ = c βt ɛ µ (65) = c βt (ɛ n+1 ɛ n ) µ (66) = (c βt ɛ) n+1 (c βt ɛ) n µ (67) = (c βt ɛ) µ (68) s β := c βt ɛ (perturbation along c β ) (69) { η( 2λ κ αβ := β ) if β = α (70) η(λ β λ α ) if β α we get (64) (68, 69, 70) s β µ κ αβ s β. (71)

68 Which weight vectors are stable? (51) w := c α + ɛ, { (71) (70) η( 2λ s β µ κ αβ s β with κ αβ := β ) if β = α η(λ β λ α ) if β α.

69 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α β = / α λ β < λα c β -Richtung c β s β ε c α

70 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α κ αβ = η(λ β λ α ) < 0, β = / α λ β < λα κ < 0 αβ c β -Richtung c β s β ε c α

71 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α κ αβ = η(λ β λ α ) < 0, The perturbation along c β decays. β = / α λ β < λα κ < 0 αβ c β -Richtung c β < s > β s β ε c α

72 Which weight vectors are stable? (51) w := c α + ɛ, { (71) (70) η( 2λ s β µ κ αβ s β with κ αβ := β ) if β = α η(λ β λ α ) if β α.

73 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 2: β α, λ β = λ α β = / α λβ = λ α c β -Richtung c β s β ε c α

74 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 2: β α, λ β = λ α κ αβ = η(λ β λ α ) = 0, β = / α λβ = λα κ αβ = 0 c β -Richtung c β s β ε c α

75 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 2: β α, λ β = λ α κ αβ = η(λ β λ α ) = 0, The perturbation along c β persists. c β β = / α λβ = λ κ αβ = 0 α < s > β c β -Richtung s β ε c α

76 Which weight vectors are stable? (51) w := c α + ɛ, { (71) (70) η( 2λ s β µ κ αβ s β with κ αβ := β ) if β = α η(λ β λ α ) if β α.

77 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 3: β α, λ β > λ α β = / α λβ > λ α c β -Richtung c β s β ε c α

78 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 3: β α, λ β > λ α κ αβ = η(λ β λ α ) > 0, β = / α λβ > λα κ > 0 αβ c β -Richtung c β s β ε c α

79 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 3: β α, λ β > λ α κ αβ = η(λ β λ α ) > 0, The perturbation along c β grows. c β β = / α λβ > λα c β -Richtung κ αβ> 0 < s β> ε s β c α

80 Which weight vectors are stable? (51) w := c α + ɛ, { (71) (70) η( 2λ s β µ κ αβ s β with κ αβ := β ) if β = α η(λ β λ α ) if β α.

81 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 4: β = α c β β = α ε c α -Richtung c α s α

82 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 4: β = α κ αβ = η( 2λ β ) < 0. c β β = α κ < 0 αβ ε c α -Richtung c α s α

83 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 4: β = α κ αβ = η( 2λ β ) < 0. The perturbation along c α always decays (if λ β > 0). c β β = α κ < 0 αβ ε c α s α c α -Richtung < > s α

84 Which weight vectors are stable? (51) w := c α + ɛ, { (71) (70) η( 2λ s β µ κ αβ s β with κ αβ := β ) if β = α η(λ β λ α ) if β α.

85 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Cases 3 and 4 combined. The weight vectors turns away c α into the c β -direction. c β β = α λ > λ β α < s > c β Richtung < ε > β s β c α ε s α c α Richtung < > s α

86 Which weight vectors are stable? (51) w := c α + ɛ, { (71) (70) η( 2λ s β µ κ αβ s β with κ αβ := β ) if β = α η(λ β λ α ) if β α.

87 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α, The perturbation along c β decays. Case 2: β α, λ β = λ α, The perturbation along c β persists. Case 3: β α, λ β > λ α, The perturbation along c β grows. Case 4: β = α, The perturbation along c α always decays.

88 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α, The perturbation along c β decays. Case 2: β α, λ β = λ α, The perturbation along c β persists. Case 3: β α, λ β > λ α, The perturbation along c β grows. Case 4: β = α, The perturbation along c α always decays. The weight vector w = c α is stable only if perturbations in all directions decay,

89 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α, The perturbation along c β decays. Case 2: β α, λ β = λ α, The perturbation along c β persists. Case 3: β α, λ β > λ α, The perturbation along c β grows. Case 4: β = α, The perturbation along c α always decays. The weight vector w = c α is stable only if perturbations in all directions decay, i.e. w = c α stable λ β < λ α β α. (72)

90 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α, The perturbation along c β decays. Case 2: β α, λ β = λ α, The perturbation along c β persists. Case 3: β α, λ β > λ α, The perturbation along c β grows. Case 4: β = α, The perturbation along c α always decays. The weight vector w = c α is stable only if perturbations in all directions decay, i.e. w = c α stable λ β < λ α β α. (72) Only the eigenvector c 1 with largest eigenvalue λ 1 is a stable weight vector under Oja s rule.

91 Which weight vectors are stable? (51) w := c α + ɛ, { (71) s β µ κ αβ s β with (70) κ αβ := η( 2λ β ) if β = α η(λ β λ α ) if β α. Case 1: β α, λ β < λ α, The perturbation along c β decays. Case 2: β α, λ β = λ α, The perturbation along c β persists. Case 3: β α, λ β > λ α, The perturbation along c β grows. Case 4: β = α, The perturbation along c α always decays. The weight vector w = c α is stable only if perturbations in all directions decay, i.e. w = c α stable λ β < λ α β α. (72) Only the eigenvector c 1 with largest eigenvalue λ 1 is a stable weight vector under Oja s rule. What happens if the two largest eigenvalues are equal?

92 y Summary (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) 1. What is the mean dynamics of the weight vectors? 1 η w µ (32) = Cw ( w T Cw ) w with C (31) := xx T µ 2. What are the stationary weight vectors of the dynamics? 0! = w µ w = c α 3. Which weight vectors are stable? with Cc α (36) = λ α c α (eigenvectors of C) 1 (38) = c α 2 (with norm 1) w = c α stable (72) λ β < λ α β α

93 Reminder: Principal Components c 2 c 1 Principal components are eigenvectors of the covariance matrix and point in the direction of maximal variance within the space orthogonal to the earlier principal components.

94 Learning Several Principal Components x 1 x 2 x 3 y y (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) x N (Rubner & Tavan, 1989, Europhys. Letters 10:693 8; reviewed in Becker & Plumbley, 1996, J. Appl. Intelligence 6: )

95 Learning Several Principal Components x 1 x 2 x 3 y y (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) x N x 1 x 2 x 3 x N y 1 y y 2 3 j 1 y j = wj T x + v jk y k k=1 w j = η(y j x yj 2 w j ) v jk = ɛy j y k Asymmetric inhibitory lateral connections decorrelate later from earlier output units. The units learn the principal components in order of decreasing eigenvalue. (Rubner & Tavan, 1989, Europhys. Letters 10:693 8; reviewed in Becker & Plumbley, 1996, J. Appl. Intelligence 6: )

96 Learning a Principal Subspace x 1 x 2 x 3 y y (4) = w T x (linear unit) w (20) = η(yx y 2 w) (Oja s rule) x N x 1 x 2 x 3 x N y 1 y y 2 3 y j = w T j x + N v jk y k k=1 k j w j = η(y j x yj 2 w j ) v jk = ɛy j y k Symmetric inhibitory lateral connections mutually decorrelate output units. The units learn the principal subspace but not particular principal components. (Földiák, 1989, Proc. IJCNN 89 pp ; reviewed in Becker & Plumbley, 1996, J. Appl. Intelligence 6: )

97 The Principal Components of Natural Images 15 natural images of size pixels. 20,000 random samples of size pixels. For each pixel the mean gray value over the 20,000 samples was removed. The samples were windowed with a Gaussian with std. dev. 10 pixels. Sanger s rule was applied to the samples. (Hancock, Baddeley, & Smith, 1992, Network 3(1):61 70)

98 The Principal Components of Natural Images The first principal components resemble simple-cell receptive fields in the primary visual cortex, the later ones do not. (Hancock, Baddeley, & Smith, 1992, Network 3(1):61 70)

99 The Principal Components of Natural Images The principal components look different if samples are taken from text. (Hancock, Baddeley, & Smith, 1992, Network 3(1):61 70)

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

X = [ 1 2 4 6 12 15 25 45 68 67 65 98 ] X X double[] X = { 1, 2, 4, 6, 12, 15, 25, 45, 68, 67, 65, 98 }; double X.Length double double[] x1 = { 0, 8, 12, 20 }; double[] x2 = { 8, 9, 11, 12 }; double mean1

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα