18 9 2006 9 PROGRESS IN CHEMISTRY Vol. 18 No. 9 Sep. 2006 3 3 3 ( 030006) A A A A A : Q26 : A : 10052281X(2006) 0921194206 Ion Channel Hypothesis for Molecular Mechanism of Alzheimer s Disease Zhang Chaofeng Du Huizhi Yang Pin 3 3 ( Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education Institute of Molecular Science Shanxi University Taiyuan 030006 China) Abstract Although many evidences point to Apeptides as playing a key role in pathogenesis of Alzheimer s disease (AD) no toxic mechanism has yet been demonstrated. The channel hypothesis of AD proposes that the A peptides which accumulate in plaques in the brain actually damage or kill neurons by forming ion channels. The ability of Apeptides to form these Achannels and the disruption of calcium homeostasis due to their formation could be the molecular mechanism of the neurotoxicity of A. The evidence for the channel hypothesis of Aneurotoxicity are reviewed and the emphasis is on the center role of Cu 2 + and Zn 2 + in AD. Key words Alzheimer s disease ; Apeptides ; ion channels ; calcium homeostasis ; Cu 2 + ; Zn 2 + (Alzheimer s disease AD) A AD ( senile dementia) Alosis Alzheimer 1907 AD A (senile plaque SP) [6 ] A ( neurofibrillary tangle NFT) 65 74 3 % 75 84 18. 7 % 85 1 A 47. 2 % [1 ] A (amyloid precursor ( protein APP) APP amyloid protein A ) AD 3 [2 5 ] A SP APP : A : 2005 10 : 2005 12 3 (No. 30470408) 3 3 e2mail :yangpin @sxu. edu. cn
9 1195 687Lys 688Leu APP ; A 670Met 671Asp APP 670 A C AC 710 712 A (1) A [7 ] 1 (APP) (A ) [7 ] Fig. 1 amyloid precursor protein and the formation of A [7 ] Fig. 2 2amyloid protein channel hypothesis [8 ] 2 molπl) [17 ] Cu 2 + A A APP A (1 40) A(1 42) 10-10 molπl (2a) [8 ] 10-16 molπl [20 ] NMR Raman EPRCD Zn 2 + Cu 2 + A Raman ph A N Arg 5 Lys 16 Lys 28 Zn 2 + Cu 2 + His(N )2metal2His(N ) [21 A 2 ] (3a) A Zn 2 + A ph Cu 2 + A A ph ph (518 616) [9 ] A Cu 2 + His ( N) ; ph AD (714) Cu 2 + N His A Al 3 + (N ) (3b) Zn 2 + Cu 2 + Fe 3 + [10 12 ] Zn Cu Fe ph Zn 2 + Cu 2 + A AD [21 ] Zn Cu AD [13 14 AD ] [12 ] 1990 Zn Cu [15 18 ] A [22 ] Zn Cu [19 ] mol Zn 2 + [15 A 18 ] Zn 2 + A AD Zn Cu (1 40) ( K D = 107 nmolπl ) ( K D = 512 Zn 2 + Cu 2 + A (2b) [8 ] 2 A
1196 18 3 A : (a) Zn 2 + Cu 2 + A ; (b) Cu 2 + [31 A ] hnt [32 ] [21 ] Fig. 3 Metal binding model of A: ( a ) A model for the insoluble aggregates of Zn 2 + 2and Cu 2 + 2A; (B) A model for the soluble Cu 2 + 2Acomplex at neutral ph [21 ] [6 ] 1 Table 1 Properties of channels formed by amyloid peptides [6 ] A (2c) 3 A [23 Arispe ] A(1 40) Ca 2 + [24 25 AD ] A(1 40) Al 3 + [23 ] Zn 2 + [26 ] Zn 2 + (2) Zn AD [12 ] : Zn 2 + ( mmolπl) A [27 28 ] ; (molπl) Zn 2 + [29 30 A ] A [25 ] [33 ] A(1 40) A(1 42) Ca 2 + A [34 35 ] A voltage2dependence single channel conductance ion selectivity blockade inhibition (ps) (permeability ratio) by zinc by Congo red A25 35 dependent 10 400 cation( P K ΠP Cl = 1. 6) + + A 1 40 independent 10 2 000 cation( P K ΠP Cl = 1. 8) + N. D. A1 40 independent 50 4 000 cation( P K ΠP Cl = 11. 1) + N. D. A1 42 independent 10 2 000 cation( P K ΠP Cl = 1. 8) + + islet amyloid polypeptide dependent 7. 5 cation( P K ΠP Cl = 1. 9) + + Prp 106 126 independent 10 400 cation( P K ΠP Cl = 2. 5) + + Prp 106 126 independent various cation(variable) N. D. N. D. serum amyloid independent 10 100 cation( P K ΠP Cl = 2. 9) + + CT105 independent 120 cation + + C-type peptide independent cation( P K ΠP Cl = 4. 6) + + 2-micro-globulin independent non- selective + + transthyretin independent cation( P K ΠP Cl = 1. 6) + + Kawahara [36 ] A 50 500pS Zn 2 + (250molΠL) (1 40) GT127 A(1 40) GT127 A(1 40) (417molΠL) 3 30 min A(1 40) (1) [6 ]
9 1197 Zn 2 + Ca 2 + 4 Kim [37 ] AMBER Zn 2 + His14 N A(1 28) (4a) (4b) 4 A : (a) A(1 28) ; ( b) A (1 28) ; (c) A(25 35) 2 14 [37 ] Fig. 4 The energy2minimized Apeptide pore : (a) A(1 28) tetrameric aggregate ; ( b ) A( 1 28 ) pentameric aggregate ; (c) A(25 35) 2sheet aggregate [37 ] Zn 2 + A Zn 2 + 2 4 ; Zn 2 + A ; Zn 2 + His13 (N )2Zn 2 + 2His14 (N ) A Zn 2 + A AD 5 (1) A [39 ] A (2) ; Ca 2 + Ca 2 + A [ Ca 2 + ] i [ Ca 2 + ] i [40 41 ] Fura22 AM A (1 40) [ Ca 2 + ] i [ Ca 2 + ] i A [ Ca 2 + ] i N 38! A [ Ca 2 + ] 4! ( ) 8! ( ) i A 5! 52 ps ( ) 311 ps ( A [ Ca 2 + ] i [ Ca 2 + ] i ) His6 Tyr9 A [42 ] [ Ca 2 + ] i 6 Ca 2 + A ATP (25 35) 14 (4c) [37 ] 34! [ Ca 2 + ] i 4 5! 131 ps APP APP A [43 2 ] A (3) A [38 ] (Fe 3 + Cu 2 + ) Fenton H 2 O 2 Zn 2 + A(10 21) OH (ROS) [20 ] APP 1 2 4 12 A APP ; Cu 2 + Cu 2 + Fenton
1198 18 [44 ] ROS O g- 2 H 2 O 2 OH NO : A Soto DNA [50 ] iab11 iab5 ; ; A A Cu 2 + Zn 2 + A (4) A AD [7 ] 6 N N N 2tetrakis ( 22pyridylmethyl) ethylenediamine ] [45 ] p K a Cu ( ) 2012 Zn Ca 2 + ( ) 1514 Ca ( ) 3 Mg 2 + ; BC [46 A ] (bathocuproine) p K a Zn ( ) 411 Cu ( ) [11 47 ] A 611 Mg 2 + Ca 2 + EGTA Fe 3 + Cu 2 + Fenton Zn 2 + Cu 2 + Zn 2 + Zn 2 + Mg 2 + Ca 2 + Al 3 + DFO A (desferrioxamine) Cu 2 + A A Fe 3 + Cu 2 + Zn 2 + [30 ROS ] Zn Cu [52 ] AD CQ(clioquinol) Zn 2 + 7 A A [53 ] AD (3) A ( tacrine A A donepezilrivastigmine galantamine ) [7 ] ( vitamin Eselegiline ) AD ( risperidone olanzapine quetiapinziprasidone AD haloperidol) [48 ] A AD A A (1) A APP AD A A AD A AD Notch [49 ] 1311 1315 (2) A Cu 2 + Zn 2 + Mg 2 + Ca 2 + AD A Cherny [51 ] Cu 2 + Zn 2 + : TPEN [ N [ 1 ] Holscher C. Neurobiol. Dis. 1998 5 : 129 141 [ 2 ] Chen Q S Kagan B L Hirakura Y et al. J. Neurosci. Res. 2000 60 : 65 72 [ 3 ] Cotman C W. Ann. N. Y. Acad. Sci. 1997 814 : 1 16 [ 4 ] Cummings B J Pike C J Shankle R et al. Neurobiol. Aging 1996 17 : 921 933 [ 5 ] Mattson M P. Physiol. Rev. 1997 77 : 1081 1132 [ 6 ] Kagan B L Hirakura Y Azimov R et al. Peptides 2002 23 :
9 1199 [ 7 ] (Tang K) (Jing N H). (Chemistry of Life) 2001 21(3) : 195 198 [ 8 ] Kawahara M Kuroda Y. Brain Res. Bull. 2000 53 : 389 397 [ 9 ] Curtain C C Ali F Volitakis I et al. J. Biol. Chem. 2001 276 : 20466 20473 [10] Atwood C S Mori R D Huang X D et al. J. Biol. Chem. 1998 273 : 12817 12826 [11] Huang X Atwood C S Hartshorn M A et al. Biochemistry 1999 38 : 7609 7616 [12] Cuajungco M P Faget K Y. Brain Res. 2003 41 : 44 56 [13] Hyman B T van Hoesen G W Kroner L J et al. Ann. Neurol. 1986 20 : 472 481 [14] Price D L Davis P B Morris J C et al. Neurobiol. Aging 1991 12 : 295 312 [15] Browm A M Tummolo D M Thodes KJ et al. J. Neurochem. 1997 69 : 1204 1212 [16] Bush A I Moir R D Rosenkranz K M et al. Science 1995 268 : 1921 1923 [17] Bush A I Pettingell W H Multhaup G et al. Science 1994 265 : 1464 1467 [18] Huang X Atwood C S Hartshorn M A et al. J. Biol. Chem. 1997 272 : 26464 26470 [19] Mantyh P W Ghilardi J R Rogers S et al. J. Neurochem. 1993 61 : 1171 1174 [20] Lynch T Cherny R A Bush A I. Exp. Gerontol. 2000 35 : 445 451 [21] Miura T Suzuki K Kohata N et al. Biochemistry 2000 39 : 7024 7031 [22] Milne D B Davis C D Nielsen F H. Nutrition 2001 17 : 701 708 [23] Arispe N Rojas E Pollard H B. Proc. Natl. Acad. Sci. USA 1993 90 : 567 571 [24] Arispe N Pollard H B Rojas E. Mol. Cell. Biochem. 1994 140 : 129 135 [25] Arispe N Pollard H B Rojas E. Ann. N. Y. Acad. Sci. 1994 747 : 256 266 [26] Arispe N Pollard H B Rojas E. Proc. Natl. Sci. USA 1996 93 : 1710 1715 [27] Moreira P Pereira C Santos M S et al. Antioxid. Redox. Signal. 2000 2 : 317 325 [28] Lovell M A Xie C S Markesbery W R. Brain Res. 1999 823 : 88 95 [29] Cardoso S M Rego A C Oliveira C R. Soc. Neurosci. Abstr. 2001 322 : 8 [30] Cuajungco M P Goldstein L E Nunomura A et al. J. Biol. Chem. 2000 275 : 19439 19442 [31] Furukawa K Abe Y Akaike N. Neuroreport 1994 5 : 2016 2018 [32] Sanderson KL Butler L Ingram V M. Brain Res. 1997 744 : 7 14 [33] Sellman B R Kagan B L Tweten R K. Mol. Microbiol. 1997 23 : 551 558 [34] Lin H Zhu Y S Lal R. Biochemistry 1999 38 : 11189 11196 [35] Zhu YJ Lin M Lal R. FASEB J. 2000 14 : 1244 1254 [36] Kawahara M Arispe N Kuroda Y et al. Biophys. J. 1997 73 : 67 75 [37] Kim S T Weaver D F. J. Mole. Stru. 2000 527 : 127 138 [38] ( Han D X) ( Yang P). B ( Sci. China Ser. B) 2004 48 : 126 133 [39] Eackert A Forstl H Zerfass R et al. Life. Sci. 1996 59 : 499 510 [40] Luo Y Q Hirashima N Li Y H et al. Brain Res. 1995 681 : 65 74 [41] McManus A Ramsden M Murray M et al. J. Biol. Chem. 2000 275 : 4713 4718 [42] Sennvik K Benedikz E Fastbom E et al. J. Neurosci. Res. 2001 63 : 429 437 [43] Kawahara M Kuroda Y Arispe N et al. J. Biol. Chem. 2000 275 : 14077 14083 [44] Strausak D Mercer J F B Dieter H H et al. Brain Res. Bull. 2001 55 : 175 185 [45] Holristian C. Neurobiol. Dis. 1998 5 : 129 141 [46] Bulterfield D A Hensley K Harris M et al. Biochem. Biophys. Res. Commun. 1994 200 : 710 715 [47] Dikalov S I Vitek M P Maples K R et al. J. Biol. Chem. 1999 274 : 9392 9399 [48] Cummings J L. Clin. Cornerstone Dementia 1999 3 : 27 39 [49] Francis R McGrath G Zhang J H et al. Dev. Cell 2002 3 : 85 97 [50] Soto C Kindy M S Baumann M et al. Biochem. Biophys. Res. Commun. 1996 226 : 672 680 [51] Cherny R A Legg J T McLean C A et al. J. Biol. Chem. 1999 274 : 23223 23228 [52] Bush A I. Neunobiol. Aging 2002 23 : 1031 1038 [53] Bush A I Tanzi R E. Proc. Natl. Acad. Sci. USA 2002 99 : 7317 7319