Section 8.2 Graphs of Polar Equations

Σχετικά έγγραφα
11.4 Graphing in Polar Coordinates Polar Symmetries

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Section 9.2 Polar Equations and Graphs

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Section 8.3 Trigonometric Equations

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Spherical Coordinates

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Lecture 26: Circular domains

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

If we restrict the domain of y = sin x to [ π 2, π 2

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

Trigonometry 1.TRIGONOMETRIC RATIOS

Reminders: linear functions

Trigonometric Formula Sheet

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Inverse trigonometric functions & General Solution of Trigonometric Equations

CYLINDRICAL & SPHERICAL COORDINATES

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

Answer sheet: Third Midterm for Math 2339

Second Order Partial Differential Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Homework 3 Solutions

Example Sheet 3 Solutions

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MathCity.org Merging man and maths

2 Composition. Invertible Mappings

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

TRIGONOMETRIC FUNCTIONS

Parametrized Surfaces

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Solutions to Exercise Sheet 5

Strain gauge and rosettes

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Matrices and Determinants

Fractional Colorings and Zykov Products of graphs

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

( y) Partial Differential Equations

Finite Field Problems: Solutions

D Alembert s Solution to the Wave Equation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Numerical Analysis FMN011

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Principles of Mathematics 12 Answer Key, Contents 185

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

The Simply Typed Lambda Calculus

C.S. 430 Assignment 6, Sample Solutions

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

( ) 2 and compare to M.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CORDIC Background (2A)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Approximation of distance between locations on earth given by latitude and longitude

ω = radians per sec, t = 3 sec

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Differential equations

Chapter 7 Transformations of Stress and Strain

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Chapter 1 Complex numbers

Math 6 SL Probability Distributions Practice Test Mark Scheme

ECE 468: Digital Image Processing. Lecture 8

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

COMPLEX NUMBERS. 1. A number of the form.

Derivations of Useful Trigonometric Identities

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Forced Pendulum Numerical approach

Chapter 6 BLM Answers

ST5224: Advanced Statistical Theory II

F19MC2 Solutions 9 Complex Analysis

Every set of first-order formulas is equivalent to an independent set

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Transcript:

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation. EXAMPLE: Sketch the polar curve θ =. Solution: This curve consists of all points (r,θ) such that the polar angle θ is radian. It is the straight line that passes through O and makes an angle of radian with the polar axis. Notice that the points (r,) on the line with r > 0 are in the first quadrant, whereas those with r < 0 are in the third quadrant. EXAMPLE: Sketch the following curves: (a) r =, 0 θ π. (b) r = θ, 0 θ 4π. (c) r = cosθ, 0 θ π.

EXAMPLE: Sketch the curve r =, 0 θ π. Solution : Since r =, it follows that r = 4. But r = x +y, therefore x +y = 4 which is a circle of radius with the center at the origin. Solution : We have r, theta Pi 6 r, theta Pi 6 r, theta Pi 6 r, theta 4 Pi 6 r, theta Pi 6 r, theta 6 Pi 6 r, theta 7 Pi 6 r, theta 8 Pi 6 r, theta 9 Pi 6 r, theta 0 Pi 6 r, theta Pi 6 r, theta Pi 6

EXAMPLE: Sketch the curve r = θ, 0 θ 4π. r theta, theta Pi r theta, theta Pi r theta, theta Pi 0 0 0 0 0 0 0 0 0 0 0 0 r theta, theta 4 Pi r theta, theta Pi r theta, theta 6 Pi 0 0 0 0 0 0 0 0 0 0 0 0 r theta, theta 7 Pi r theta, theta 8 Pi r theta, theta 9 Pi 0 0 0 0 0 0 0 0 0 0 0 0 r theta, theta 0 Pi r theta, theta Pi r theta, theta Pi 0 0 0 0 0 0 0 0 0 0 0 0

EXAMPLE: Sketch the curve r = cosθ, 0 θ π. Solution : Since r = cosθ, it follows that r = rcosθ. But r = x + y and rcosθ = x, therefore x +y = x. This can be rewritten as (x ) +y = which is a circle of radius with the center at (,0). Solution : We have r cos theta, theta Pi r cos theta, theta Pi r cos theta, theta Pi..0..0..0 r cos theta, theta 4 Pi r cos theta, theta Pi r cos theta, theta 6 Pi..0..0..0 r cos theta, theta 7 Pi r cos theta, theta 8 Pi r cos theta, theta 9 Pi..0..0..0 r cos theta, theta 0 Pi r cos theta, theta Pi r cos theta, theta Pi..0..0..0 4

EXAMPLES:

EXAMPLE: Sketch the curve r = +sinθ, 0 θ π (cardioid). r sin theta, theta Pi 6.0 r sin theta, theta Pi 6.0 r sin theta, theta Pi 6.0......... r sin theta, theta 4 Pi 6.0 r sin theta, theta Pi 6.0 r sin theta, theta 6 Pi 6.0......... r sin theta, theta 7 Pi 6.0 r sin theta, theta 8 Pi 6.0 r sin theta, theta 9 Pi 6.0......... r sin theta, theta 0 Pi 6.0 r sin theta, theta Pi 6.0 r sin theta, theta Pi 6.0......... 6

EXAMPLE: Sketch the curve r = cosθ, 0 θ π (cardioid). r cos theta, theta Pi 6. r cos theta, theta Pi 6. r cos theta, theta Pi 6..0..0..0.... r cos theta, theta 4 Pi 6. r cos theta, theta Pi 6. r cos theta, theta 6 Pi 6..0..0..0.... r cos theta, theta 7 Pi 6. r cos theta, theta 8 Pi 6. r cos theta, theta 9 Pi 6..0..0..0.... r cos theta, theta 0 Pi 6. r cos theta, theta Pi 6. r cos theta, theta Pi 6..0..0..0.... 7

EXAMPLE: Sketch the curve r = +4cosθ, 0 θ π. r 4cos theta, theta Pi 6 r 4cos theta, theta Pi 6 r 4cos theta, theta Pi 6 4 6 4 6 4 6 r 4cos theta, theta 4 Pi 6 r 4cos theta, theta Pi 6 r 4cos theta, theta 6 Pi 6 4 6 4 6 4 6 r 4cos theta, theta 7 Pi 6 r 4cos theta, theta 8 Pi 6 r 4cos theta, theta 9 Pi 6 4 6 4 6 4 6 r 4cos theta, theta 0 Pi 6 r 4cos theta, theta Pi 6 r 4cos theta, theta Pi 6 4 6 4 6 4 6 8

EXAMPLE: Sketch the curve r = cos(θ), 0 θ π (four-leaved rose). r cos theta, theta Pi 6 r cos theta, theta Pi 6 r cos theta, theta Pi 6 r cos theta, theta 4 Pi 6 r cos theta, theta Pi 6 r cos theta, theta 6 Pi 6 r cos theta, theta 7 Pi 6 r cos theta, theta 8 Pi 6 r cos theta, theta 9 Pi 6 r cos theta, theta 0 Pi 6 r cos theta, theta Pi 6 r cos theta, theta Pi 6 9

EXAMPLE: Sketch the curve r = sin(θ), 0 θ π (four-leaved rose). r sin theta, theta Pi 6 r sin theta, theta Pi 6 r sin theta, theta Pi 6 r sin theta, theta 4 Pi 6 r sin theta, theta Pi 6 r sin theta, theta 6 Pi 6 r sin theta, theta 7 Pi 6 r sin theta, theta 8 Pi 6 r sin theta, theta 9 Pi 6 r sin theta, theta 0 Pi 6 r sin theta, theta Pi 6 r sin theta, theta Pi 6 0

EXAMPLE: Sketch the curve r = sin(θ), 0 θ π (three-leaved rose). r sin theta, theta Pi r sin theta, theta Pi r sin theta, theta Pi r sin theta, theta 4 Pi r sin theta, theta Pi r sin theta, theta 6 Pi r sin theta, theta 7 Pi r sin theta, theta 8 Pi r sin theta, theta 9 Pi r sin theta, theta 0 Pi r sin theta, theta Pi r sin theta, theta Pi

EXAMPLE: Sketch the curve r = sin(4θ), 0 θ π (eight-leaved rose). r sin 4theta, theta Pi 6 r sin 4theta, theta Pi 6 r sin 4theta, theta Pi 6 r sin 4theta, theta 4 Pi 6 r sin 4theta, theta Pi 6 r sin 4theta, theta 6 Pi 6 r sin 4theta, theta 7 Pi 6 r sin 4theta, theta 8 Pi 6 r sin 4theta, theta 9 Pi 6 r sin 4theta, theta 0 Pi 6 r sin 4theta, theta Pi 6 r sin 4theta, theta Pi 6

EXAMPLE: Sketch the curve r = sin(θ), 0 θ π (five-leaved rose). r sin theta, theta Pi 6 r sin theta, theta Pi 6 r sin theta, theta Pi 6 r sin theta, theta 4 Pi 6 r sin theta, theta Pi 6 r sin theta, theta 6 Pi 6 r sin theta, theta 7 Pi 6 r sin theta, theta 8 Pi 6 r sin theta, theta 9 Pi 6 r sin theta, theta 0 Pi 6 r sin theta, theta Pi 6 r sin theta, theta Pi 6

EXAMPLE: Sketch the curve r = sin(6θ), 0 θ π (twelve-leaved rose). r sin 6theta, theta Pi 6 r sin 6theta, theta Pi 6 r sin 6theta, theta Pi 6 r sin 6theta, theta 4 Pi 6 r sin 6theta, theta Pi 6 r sin 6theta, theta 6 Pi 6 r sin 6theta, theta 7 Pi 6 r sin 6theta, theta 8 Pi 6 r sin 6theta, theta 9 Pi 6 r sin 6theta, theta 0 Pi 6 r sin 6theta, theta Pi 6 r sin 6theta, theta Pi 6 4

EXAMPLE: Sketch the curve r = sin(7θ), 0 θ π (seven-leaved rose). r sin 7theta, theta Pi 6 r sin 7theta, theta Pi 6 r sin 7theta, theta Pi 6 r sin 7theta, theta 4 Pi 6 r sin 7theta, theta Pi 6 r sin 7theta, theta 6 Pi 6 r sin 7theta, theta 7 Pi 6 r sin 7theta, theta 8 Pi 6 r sin 7theta, theta 9 Pi 6 r sin 7theta, theta 0 Pi 6 r sin 7theta, theta Pi 6 r sin 7theta, theta Pi 6

EXAMPLE: Sketch the curve r = + sin(0θ), 0 θ π. 0 r sin 0theta 0, theta Pi 6 r sin 0theta 0, theta Pi 6 r sin 0theta 0, theta Pi 6 r sin 0theta 0, theta 4 Pi 6 r sin 0theta 0, theta Pi 6 r sin 0theta 0, theta 6 Pi 6 r sin 0theta 0, theta 7 Pi 6 r sin 0theta 0, theta 8 Pi 6 r sin 0theta 0, theta 9 Pi 6 r sin 0theta 0, theta 0 Pi 6 r sin 0theta 0, theta Pi 6 r sin 0theta 0, theta Pi 6 6

EXAMPLE: Match the polar equations with the graphs labeled I-VI: (a) r = sin(θ/) (c) r = sinθ+sin (θ/) (e) r = +4cos(θ) (b) r = sin(θ/4) (d) r = θsinθ (f) r = / θ 7