我国股票市场指数及指数证券投资组合 关键词 中图分类号 文献标识码 文章编号 0 引 言

Σχετικά έγγραφα
Bank A ssetgl iab ility Sheet w ith Em bedded Op tion s

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

V o l122, N o13 M ay, 2003 PRO GR ESS IN GEO GRA PH Y : (2003) , : TU 984. , (Eco logy fo r evil) [1 ] (R ich Boyer), 2.

GPS, 0. 5 kg ( In tegrated Fertility Index, IF I) 1. 1 SPSS 10. IF I =

E stab lish ing Syn thesis Evaluation Index

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

Ch inese Journal of M anagem ent

D ecision2m ak ing M odel Inco rpo rating R isk Behavio r under P ro ject R isk M anagem en t

Fo recasting Stock M arket Q uo tation s via Fuzzy N eu ral N etw o rk Based on T 2S M odel

A R, H ilbert2h uang T ran sfo rm and A R M odel

China Academic Journal Electronic Publishing House. All rights reserved. O ct., 2005

26 3 V o l. 26 N o A cta Eco logiae A n im alis Dom astici M ay ,

Con struction and D emon stration of an Index System of Know ledge Amoun t of Po sition

BAY ES IAN INFERENCE FO R CO INTEGRATED SY STEM S

( , ,

Im pact of capac ity a lloca tion on bullwh ip effect in supply cha in

(H ipp op hae rham noid es L. ) , ; SHB 2g , 1. 0, 2. 0, 3. 0, 4. 0, 5. 0 ml mm. : Y = X - 0.

17 1 V o l. 17 N o CH IN ESE JOU RNAL O F COM PU TA T IONAL M ECHAN ICS February 2000 : A

Jou rnal of M athem atical Study

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

A Knowledge M odel for D esign of Population Nutr ien t Index D ynam ics in W heat

,,, 10% ; 10% sina. com : ( )

F ig. 1 Flow chart of comprehen sive design in the research of com patibil ity. E2m ail: ac. cn

6 cm, 1. 2 IAA, NAA, 2. 1

Mean-Variance Analysis

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

U (x, y ) = : K (x i- x k) K (x i- x k, y j- y l), 2. 1

) V o l. 40 N o. 6 : A : Q ,, W ard [ 1 ] (A v icenn ia m a rina) (K and elia cand el)

R &D on Key T echno logies Based on W eb Info rm ation Pub lish ing System

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

(T rip tery g ium w ilf ord ii Hook) ,Beroza [6 ] 4 W ilfo rine W ilfo rdine W ilfo rgine W il2. Euon ine 1. 0% 1980, 1. 1 ; 1. 0%, ; 0.

S ingula r C onfigura tion Ana lys is a nd C oo rd ina te C ontro l of Robo t

D esign and Imp lem en tation of Parallel Genetic A lgo rithm

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

V isualization of the functional or ien tation column s in the cat v isual cortex by in vivo optical imag ing based on in tr in sic signals

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ. Σπουδαστές: Δεληλίγκα Αργυρούλα, ΑΜ:

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

, E, PRO GR ESS IN GEO GRA PH Y. V o l122, N o15 Sep t1, 2003 : (2003) , 263, (0 1m ) P93511; P42616

M athem aticalm odel and A lgo rithm of In telligen t T est Paper

F ingerpr in ts of X in shu Ora l L iquid by HPCE

o l. 26 N o Jou rnal of N an jing In stitu te of M eteo ro logy Feb. 2003

hm 2,, , hm 2, A CTA GEO GRA PH ICA S IN ICA

UMI Number: All rights reserved

Fe, Cu, Zn,M n, Se I 54. 0, 9. 2, 11. 0, 66. 5, 0. 08, m ggkg, 100%, 200%, 300%

Finite Field Problems: Solutions

G IS A CTA GEO GRA PH ICA S IN ICA. V o l. 55, N o. 1 Jan., 2000 : (2000) E2m ail: lreis1ac1cn

1) Formulation of the Problem as a Linear Programming Model

On- l ine com puter detecting system of p ipel ine leak and its algor ithm

Section 8.3 Trigonometric Equations

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

IRBB 4 (Xa24) IRBB 7 (Xa27) IRBB 21 (Xa221) 6

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

1. 2 , N RC (1998) d m g 1

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

, 4, 6, 8 m in; 30%, 50%, 70%, 90% 100% 15, 30, 45, 60, s V c

(TPP)Co 1. 1 ], [ 1, 2 ] V o l. 3 N o. 4 N ov EL ECTROCH EM ISTR Y ) ) ,, Co V V. (T PP) Co (Py) , - 1.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

:,UV IKON 810, 700 nm. DU 27Spectropho to neter 1. 1 U S2KT P

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( ) Jou rnal of Fudan U n iversity (N atu ral Science) , 1964 ],, 56 ( ) [ 5 ] ,,, ( 15

O verlay A lgo rithm of H ierarch ical M ap s

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

6. MAXIMUM LIKELIHOOD ESTIMATION

A CTA GEO GRA PH ICA S IN ICA

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Working Paper Series 06/2007. Regulating financial conglomerates. Freixas, X., Loranth, G. and Morrison, A.D.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Galatia SIL Keyboard Information

,, 1 mm,, : 250 g, 200 g, 120 g, 50 g g T, 80, , ;,, ,,,,, %, 2%, 3% , 15 d, 60 d ( )

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

V ladim irov A CTA GEO GRA PH ICA S IN ICA China Academic Journal Electronic Publishing House. All rights reserved.

Section 7.6 Double and Half Angle Formulas

Congruence Classes of Invertible Matrices of Order 3 over F 2

The challenges of non-stable predicates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

A CTA GEO GRA PH ICA S IN ICA

A Study of the O rigin of Comp lex ity in the Science of Comp lex ity

P r s r r t. tr t. r P

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Proforma C. Flood-CBA#2 Training Seminars. Περίπτωση Μελέτης Ποταμός Έ βρος, Κοινότητα Λαβάρων

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Srednicki Chapter 55

The Simply Typed Lambda Calculus

Arbitrage Analysis of Futures Market with Frictions

Solution Series 9. i=1 x i and i=1 x i.

Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Fractional Colorings and Zykov Products of graphs

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Uniform Convergence of Fourier Series Michael Taylor

Single Stock Analysis Stock Pair Analysis Portfolio Dates Portfolio Dates Correl Maturity VolRatio Ref Stock Correl Ref Stock

Transcript:

5 5 V o l 5 N o 5 2002 10 JOU RNAL O F M ANA GEM EN SC IEN CES IN CH INA O ct 2002 ( 200433) : A 4 20 : ; ; ; A P : F830 91 : A : 100729807 (2002) 0520011207 0 ; (2) 1995 5 3 : (1) : 2001 05 16; : 2002 07 01 : (01JC630008) : (1965- )

12 2002 10 1 1 30% 30% 1 55 90% 70% 27% 3 1998 9 1 2000 9 1 406 406 4 : A B 1997 9 30 30 2000 9 30 A A 488 1997 10 1 70% B 4 B 4 1 1 0 331 1A SZSA SZSA 1 SZSC SZSC1 SZSB SZSB 1 SZPR IN 1 0 976 0 873 0 976 0 8725 0 469 0 429 1B SSEA SSEB SSEC SSE30 SSPR IN 1 0 983 0 506 0 982 0 877 : SZSA A SZSA 1 A x it = log (S it + d it) - logs it- 1 (1) SZSC SZSC1 : S it t ; X it SZSB SZSB 1 B ; d it SZPR IN 1 SSEA SSEB SSEC SSE30 A B 30 SSPR IN 1 31 3% A 1 32 2% A 1 A

5 : 13 (po rtfo lio population) 50 50 ; 97 6% 98% 2) A P B 0 5 2 1 A A B 30 E (x it - x j t) 2 : x it x j t E (x it - x j t) 2 E (x it - x j t) 2 (2) E δ (x it - x j t) 2 1 = (x it - x j t) 2 (2) x it x j t t = 1 2 2 A A D ij = A A (x it - x j t) 2 (3) j= 1 A 406 SA S (FA SCLU S) ( A ) A A 50 A 331 : 1) 50 2 50 j= 1 2 50 code distance code distance code distance code distance code distance R 6002 0 34 R 6080 0 35 R 6168 0 29 R 6678 0 35 R 6764 0 34 R 6054 0 33 R 6084 0 34 R 6170 0 28 R 6684 0 28 R 6773 0 33 R 6055 0 35 R 6087 0 35 R 6609 0 35 R 6698 0 35 R 6810 0 36

14 2002 10 2 50 code distance code distance code distance code distance code distance R 6059 0 35 R 6093 0 31 R 6619 0 35 R 6702 0 34 R 6820 0 34 R 6060 0 30 R 6104 0 36 R 6626 0 33 R 6713 0 32 R 6823 0 36 R 6062 0 34 R 6113 0 33 R 6638 0 36 R 6717 0 30 R 6854 0 35 R 6063 0 35 R 6116 0 35 R 6639 0 35 R 6726 0 35 R 6860 0 33 R 6066 0 33 R 6129 0 33 R 6649 0 35 R 6727 0 34 R 6866 0 33 R 6068 0 32 R 6162 0 33 R 6655 0 34 R 6736 0 30 R 6872 0 35 R 6074 0 34 R 6163 0 36 R 6663 0 32 R 6740 0 31 R 6890 0 36 : Code D istance A R 6002 600002 2 2 50 50 d 1 d 2 d p ( p = 50) : A P d q l t= 1 : x it = Χi0 + Χi1g 1t + + Χiqg qt + Εit i = 0 1 2 p (4) : x p t = p d ix it Χp j = p d iχij Εp t = p d iεit i= 1 i= 1 j = 0 1 q i= 1 {x p t} 50 95% {x 0t} : x 0t = logs 0t - logs 0t- 1 S 0t 49% E (x p t - x 0t) 2 30 E (x p t - x 0t) 2 E δ (x p t - x 0t) 2 1 = 3 50 19 (x p t - x 0t) 2 (7) t= 1 19 x 0t 27 x 0t = Χ00 + Χ01g 1t + + Χ0qg qt + Ε0t (8) 0 excel m in (x p t - x 0t) 2 s t ΧP j = Χ0j j = 0 1 q (9) A P 3 : E (Εit) = 0 cov (Εit Εj t) = 0 i j cov (Εit Εrt- k) = 0 k 0 ; {x p t} ; i d i x p td 1x 1t + + d p x p t t = 1 (5) 3 x p t 1 2 x p t = Χp 0 + Χp 1g 1t + + Χp qg qt + Εp t (6) 3 3 2 50 A 30 27 90% 26

5 : 15 excel 0 ( M atlab) 0 0 0 3 code w eigh t code w eigh t code w eigh t code w eigh t code w eigh t R 6002 0 043 3 R 6080 0 R 6168 0 R 6678 0 R 6764 0 R 6054 0 00 806 R 6084 0 R 6170 0 R 6684 0 R 6773 0 R 6055 0 08 117 R 6087 0 084 89 R 6609 0 R 6698 0 R 6810 0 R 6059 0 R 6093 0 R 6619 0 026 02 R 6702 0 R 6820 0 R 6060 0 R 6104 0 R 6626 0 R 6713 0 R 6823 0 107 54 R 6062 0 047 65 R 6113 0 R 6638 0 R 6717 0 R 6854 0 R 6063 0 R 6116 0 R 6639 0 R 6726 0 113 8 R 6860 0 049 63 R 6066 0 055 32 R 6129 0 124 5 R 6649 0 017 59 R 6727 0 R 6866 0 005 75 R 6068 0 R 6162 0 003 48 R 6655 0 032 44 R 6736 0 R 6872 0 037 78 R 6074 0 R 6163 0 R 6663 0 056 29 R 6740 0 011 04 R 6890 0 095 67 : code w eigh t 3 0 977 8 A 0 975 027 A A ( 3 ) 1 1 (10 000 ) 8 (5 000 10 000 ) 7 (5 000 ) 4 19

16 2002 10 4 A (4) (1) 70% ; (2) A A (3) A P 20 : [1 ]Sharpe W Cap ital asset p rices: A theo ry of m arket equilibrium [J ] Journal of F inance 1964 (4): 109-113 [2 ]John L he valuation of risk assets and the selection of risky investm ents in stock po rtfo lio s and cap ital budgets [J ] R eview of Econom ics and Statistics 1965 (1): 56-67 [3 ]Jan M Equilibrium in a cap ital asset m arket [J ] Econom etrica 1966 (1): 118-121 [4 ]Bodie Kane M arcuṡ Investm ents[m ] th ird edition Bo ston: Irw in M cgraw 2H ill 1996 [ 5 ]Kariya Q uantitative M ethod fo r Po rtfo lio A nalysis2m V M ethod A pp roach [M ] Bo ston: A cadem ic P ress 1993: 127-136 [ 6 ]Conno r G he tree types of facto r models: A comparison of their exp lanato ry pow er [J ] F inancial A nalysts Jou rnal 1995 (3): 42-46 [7 ]Conno r G Ko rajczyk R R isk and return in an equilibrium A P: A pp lication of a new test m ethodo logy [J ] Jou rnal of F inancial Econom ics 1988 (2): 255-289 [8 ]Fam a E M acbeth J R isk return andequilibrium: Emp irical test [J ] Journal of Po litical Econom y 1973 (2): 607-636 [9 ]Ro senberg B Extra2m arket components of covariance in security m arkets[j ] Journal of F inancial and Q uantita2 tive A nalysis 1974 (1): 263-274 [10 ]Fam a E F rench K he cro ss2section of expected stock returns [J ] Journal of F inance 1992 (2): 427-465 [ 11 ]H akansson GR H igher return low er risk: H isto rical returns on long2run actually m anaged po rtfo lio s of stock s bonds and b ills[j ] F inancial A nalysts Jou rnal 1982 (2): 2-16 [12 ]Grino ld R Kahn R A ctive Po rtfo lio M anagem ent [M ] N ew Yo rk: M cgraw 2H ill 2000 [13 ] Granger [J ] 2001 (5): 7-12 [14 ] [J ] 2000 (2): 62-68 Stock indexes and index ing portfol ios in Ch ina stock markets FA N L ong 2z hen W A N G H a i2tao H E H ua Schoo l of M anagem en t Fudan U n iversity Shangha i 200433 Ch ina Abstract: W ith the app roach of p rincipal com ponen t analysis the m ain indexes are studied to deter2 m ine if they can reflect the stock m a rket change of the Shangha i Stock Exchange o r the Shenzhen

5 : 17 Stock Exchange he resu lts indicate that the tw o com po site indexes and tw o A 2share indexes can ac2 cu rately reflect the m arket changes and o ther indexes are no t so good in th is function Becau se all the fou r indexes are no t good investm en t po rtfo lio s w e need to m ake index ing po rtfo lio s to track them W ith the theo ry of A P and the app roaches of statistics and op tim ization w e choo se p rincipal com po2 nen ts as facto rs m ake the facto r loadings of track ing po rtfo lio s the sam e as the indexes and then let the sum of squared differences of residuals m in im ized in the sam p le period to ob tain the w eigh t of each stock in the po rtfo lio A bou t 20 stock s are selected from every m arket to ob tain the track ing po rtfo lio w ith specified w eigh ṫ he index ing po rtfo lio s have alm o st the sam e retu rn s as the indexes bo th in the sam p le period and after sam p le period (th ree m on th s) Key words: m arket indexes; index ing po rtfo lio; clu ster analysis; A P m odel ( 5 ) Study on comm on factors of vector stochastic volatility m odel D U Z i2p ing ZH A N G S h i2y ing Schoo l of M anagem en t ian jin U n iversity ian jin 300072 Ch ina Abstract: In th is paper from the idea of comm on trend w e put fo rw ard the defin ition of co2persis2 tence in vo latility of vecto r SV m odel and estab lish the equ ivalen t relation sh ip betw een comm on per2 sistence in vo latility and co in tegration M eanw h ile w e give tw o rep resen tation s of comm on persisten t facto rs under the Stock2W o tson and Gonzalo2Granger facto r decom po sition s and verify the ex istence of co in tegration betw een these tw o rep resen tation ṡ M o reover under the unob served variab les to be VA R (1) the rep resen tation of co2persistence facto rs is p resen ted and necessary condition s of ex ist2 ing co2persistence facto rs are also studied Key words: vecto r SV m odel; comm on persistence in vo latility; comm on persisten t facto r; co in te2 gration; long2run comm on trend