23 7 CHINA BIOTECHNOLOGY 2003 7 3 1 3 3 2 2 2 (1 510631 2 510650) 1987, 3 : (1) RNA ; (2) ; (3),,,, ; ;,,, ;,,,,,, 1 (antisense) (sense),,, 111 RNA ( antisense suppression),, DNA RNA, :2002207228 :2003205219 3 (30170667), 100 3 3 :hqli @scnu. edu. cn mrna, mrna, 1988, van der Krol [1 ], (chalcone synthase,chs), Aida [2 ] DFR (dihydroflavonol 42reductase) CHS, CHS,, ; DFR, RNA,, [3,4 ] 112 ( sense suppression cosuppression) ( ) (),, 1990 Jorgenson [5 ], CHS, CHS (overexpression),,42 %
7 : 43 Aida [6 ] DFR CHS, 2 [7,8 ] 2 CHS : CHS2A mrna 90 %, CHS2J 10 %, 85 % CHS2A, CHS2A CHS2J 2 CHS DFR 70 % CHS,48 8,CHS, 97, DFR [7 ], Huits [9 ] dfr A W80 W85,, W85,Shimada [10 ] F3 5 H F3 5 H (vars. Falcon Blue, Cascade Royal, ),,, F3 5 H RNA Jorgensen [8 ] CHS CHS, CHS,CHS,,,CHS,, CHS, Aida [6 ],CHS DFR 2,, DFR ( dihydrokaempferol DHK ) ( dihydroquercetin ) ( dihydromyricetin) (leucopelargonidin) (leucocyanidin) (leucodelphinidin) DFR DHK,,,, RL01 DHK, Ht1 Hf 1, F3 H, F3 5 H,,,DFR A1 Meyer [11 ] A1 RL01,, DHK, A1 DFR DFR,,, Elomaa [12 ] A1 DFR ( gdfr) RL01, A1,,RL01 35S A1 cdna gdfr,, gdfr cdna GC, Davies [13 ] CHR (chalcone reductase),, 6, [14 ] Haematococcus plusvialis 2,,,, [15 ],,,,
44 23 Lloyd [16 ] R C,2,,, F3 5 H F3 5 H,, [17 ] [19 ] 2001 Liu [20 ] Florigene F3 5 H Dfr,,, 2, Moondust TM ( ) Moonshadow TM ( ), 1996 1997 F3 5 H CYTPb5,, Shimada [10 ] F3 5 H cdna TG1 ( Nicotana tabacum cv. Petit Havana SR1, F3 5 H ), F3 5 H cdna A K14 (var. Falcon, F3 5 H, ),,,, ph, [17 ] 3,, van Houwelingen [18 ] ( TEs), 55,,,,, Lc, Lc CaMV 35S Ac,, Ac,Lc R,CaMV 35S R Tag1, R ( CHS DFR UFGT F3 H CHI ) 4 1987,10,,,, ph [17 ] F3, 5 H, 1993 Forkmann [21 ] : (1) ; (2) ; (3) ; (4) (; ; ) ; (5) (, ; ) ; (6) ( ; ; ph ) ; (7) [22 ],, 3 ( )
7 : 45,, [18,20 ],,, [ 1 ] van der Krol A R,Lenting R J,Veenstra J G,et al. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature,1988,333 :866 869 [ 2 ] Aida R, Yoshida K, Kondo T, et al. Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol1242reductase gene. Plant Sci,2000,160 :49 56 [ 3 ] Mitiouchkina T Y,Ivanova E P,Taran S A,et al. Chalcone synthase gene from antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of chrysanthemum. Acta Hort, 2000,508 :215 218 [ 4 ] Elomaa P, Hnkanen J, Puska R, et al. Agrobacterium2mediated transfer of antisense chalcone synthase cdna to Gerbera hybrida inhibits flower pigmentation. BioΠTechnol,1993,11 :508 511 [ 5 ] Napoli D, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co2 suppression of homologous genes in trans. Plant Cell,1990,2 :279 289 [ 6 ] Aida R,Kishimoto S,Tanaka Y,et al. Modification of flower color in torenia ( Torenia fournieri Lindl. ) Plant Sci,2000,153 :33 42 by genetic transformation. [ 7 ] Gutterson N. Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression. Hort Sci, 1995,30 :964 966 [ 8 ] Jorgensen R A, Cluster P D, English J, et al. Chalcone synthase cosuppression phenotypes in petunia flowers : comparison of sense versus antisense constructs and single2copy versus complex T2DNA. Plant Mol Biol,1996,957 973 [ 9 ] Huits H S M,Gerats A G M,Kreike M M,et al. Genetic control of dihydroflavonol 1242reductase gene expression in Petunia hybrida. Plant J,1994,6 :295 310 [ 10 ] Shimada Y,Nakano2Shimada R,Ohbayashi M, et al. Expression of chimeric P450 genes encoding flavonoid23 5 2hydroxylase transgenic tobacco and petunia plants. FEBS Lett,1999,461 :241 245 [ 11 ] Meyer P, heidmann I, Forkmann G, et al. A new petunia flower color generated by transformation of a mutant with a maize gene. Nature,1987,332 :677 678 [ 12 ] Elomaa P,Helariutta Y, Griesbach R J,et al. Transgene inactivation in Petunia hybrida is influenced by the properties of the foreign gene. Mol Gen Genet,1995,248 :649 656 [ 13 ] Davies K,Bloor S,Spiller GB,et al. Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J, 1998,13 :259 266 [ 14 ] Kumagai M H,Keller Y,Bouvier F,et al. Functional integration of non2native carotenoids into chloroplasts by viral2deriver expression of capsanthin2capsorubin synthase in Nicotiana benthamiana. Plant J,1998,14 :305 315 [ 15 ] Mann V, Harker M, Pecker I, et al. Metabolic engineering of astaxanthin production in tobacco flowers. Nature Biotechnol,2000, 18 :888 892 [ 16 ] Lloyd A M, Walbot V, Davis R W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulatiors R and C1. Science,1992,258 :1773 1775 [ 17 ],,,..,2003,39 (1) :51 55 [ 18 ] van Houwelingen A, Souer E, Spelt K, et al. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J,1998,13 :39 50 [ 19 ] Goldsbrough A P,Tong Y,Yoder J I.Lc as a non2destructive visual reporter and transposition excision marker gene for tomato. Plant J, 1996,9 :927 933 [ 20 ] Liu D, Galli M, Crawford N M. Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposalbe elements Tag1. Plant Cell Physiol,2001,42 (4) :419 423 [ 21 ] Forkmann G. Flavonoids as flower pigments :the formation of natural spectrum and its extension by genetic engineering. Plant Breeding, 1991,106 :1 26 [ 22 ],..,1998,25 :81 86 in
46 23 The Progress in Genetic Modification of Flo wer Color Li Hongqing 1 Li Meiru 2 Pan Xiaoping 2 Chen Yizhu 2 (1 College of Life Sciences,South China Normal University Guangzhou 510631 2 South China Institute of Botany, Chinese Academy of Sciences Guangzhou 510650) Abstract The first novel colored flowers of Petunia in the world were obtained by genetic engineering in 1987. Since then, different methods were developed for flower color manipulation. The three effective methods successfully used in developing novel colors were reviewed :changing flower colors by anti2sense and sense suppression technology ; creating novel flower color by expression of new foreign genes ;making variegated flower color by random activation of anthocyanin gene expression through transposon strategy. Finally,the problems and perspectives of genetic engineering of flower color were discussed. Key words Flower color Anthocyanin Genetic engineering Transponson ph DO( ) GKFpH DO ( ),ph, ph DO, ph,,: 11pH :ph1 12 :105 150 :10 95 :125,150,180,200,250mm() :,ph,: ph0 14 :ph0101 :0 10mA 4 20mA :138mm 138mm( ), 20 (130,30min) 21DO : :0 % 100 % :90 %760s :120 130,0117MPa :0 10mA 4 20mA ph DO,,,, : 02240122 : 1295 :200050 : : (021) 62208693 :13901821285 : (021) 62200141