Robust Robot Monte Carlo Localization

Σχετικά έγγραφα
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

A Multi2commodity Flow Supply Chain Network Equilibrium Model with Stochastic Choice

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Βαθμονόμηση Δεκτών GPS από Μετρήσεις σε Μηδενική Βάση

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

L-SLAM: Μείωση διαστάσεων στην οικογένεια αλγορίθµων FastSLAM

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters


Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

ER-Tree (Extended R*-Tree)

Μελέτη Κωδίκων ιόρθωσης Σφαλµάτων Με Μεθόδους Στατιστικής Φυσικής (1)

Τεχν. Χρον. Επιστ. Έκδ. ΤΕΕ, Ι, τεύχ , Tech. Chron. Sci. J. TCG, I, No

Quantum annealing inversion and its implementation

Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Discriminative Language Modeling Based on Risk Minimization Training

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

0#// SCA !. >8'

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

2002 Journal of Software, );

Vol. 37 No. 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Jun %

SOLUTIONS TO SECOND ORDER NON-HOMOGENEOUS MULTI-POINT BVPS USING A FIXED-POINT THEOREM

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1

Super-Resolution Reconstruction for Face Images Based on Particle Filters Method

Power allocation under per-antenna power constraints in multiuser MIMO systems

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max

:,,, PACS: a. , (3D-Var) (4D-Var) [7 9].,. 4D-Var 3D-Var,.,4D-Var,., ,.,, ;,,,,. ( ), . (PF). PF EnKF,,,

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.


Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion

Sydney 2052, Australia.

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

General theorems of Optical Imaging systems

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ


Stochastic Finite Element Analysis for Composite Pressure Vessel

ISSN / CN / TP Journal of Computer Research and Development 42 (6) : , 2005

Estimators when the Correlation Coefficient. is Negative

Generalized Linear Model [GLM]

Phasor Diagram of an RC Circuit V R

DOI /J. 1SSN

A method of power system harmonic detection based on wavelet transform

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

. i-vector, Total Variability Subspace Adaptation Based Speaker Recognition. Brief Paper ACTA AUTOMATICA SINICA Vol. 40, No. 8 August, 2014.

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Aerodynamics & Aeroelasticity: Eigenvalue analysis

Downloaded from hakim.hbi.ir at 17:53 IRST on Thursday October 11th : . C.A.MAN AFP. 1 Acute Flaccid Paralysis (AFP)

High order interpolation function for surface contact problem

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Transfer Learning. keywords: transfer learning, inductive transfer, domain adaptation, multitask learning, semi-supervised learning

Merging Particle Filter

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Application of UK-GMPHDF algorithm based on IMM in multiple maneuvering targets tracking

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΤΟ ΟΜΟΓΕΝΕΣ MΑΡΚΟΒΙΑΝΟ ΣΥΣΤΗΜΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΜΕ ΠΕΠΕΡΑΣΜΕΝΗ ΧΩΡΗΤΙΚΟΤΗΤΑ ΣΕ ΜΙΑ ΚΑΤΑΣΤΑΣΗ

Derivation for Input of Factor Graph Representation

Non-linear Effects in Physics of Dielectrics

SHUILI XUEBAO km. Honolulu Weatcart Contractor Giggs. Home J. M. U. Jucson

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Αλγόριθμοι και πολυπλοκότητα Η Άπληστη Μέθοδος

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

V. Finite Element Method. 5.1 Introduction to Finite Element Method

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Ανάλυση ευαισθησίας σε αναδρομικό νευρωνικό δίκτυο εκπαιδευμένο για αναγνώριση συναισθήματος

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Quick algorithm f or computing core attribute

Mellin transforms and asymptotics: Harmonic sums

Οικονοµικό Πανεπιστήµιο Αθηνών. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη φίλτρου διήθησης ηλεκτρονικής αλληλογραφίας για το Mozilla Thunderbird» ηµήτρης Μπόχτης

A Formal Method for Analyzing Electronic Commerce Protocols

Numerical Analysis FMN011

Transcript:

XX X Vol. XX, No. X 200X X ACTA AUTOMATICA SINICA Month, 200X 1 1 1.,,, ; (MCMC, ;, MCMC, ;.,,, TP242.6 Robut Robot Monte Carlo Localzaton WU Er-Yong 1 XIANG Zh-Yu 1 LIU J-Ln 1 Abtract A robot localzaton algorthm baed on partcle flter preented. Frtly n order to mprove the flterng effect and decreae the number of partcle needed, one parallel extended Kalman flter ued a the propoal denty of partcle flter, thu partal obervaton nformaton wll be nfued nto the flterng proce. Secondly, n order to enhance the partcle refnng capacty, one mproved Marov Chan Monte Carlo (MCMC reamplng method wth varable boundary of propoal denty put forward; Fnally, the robot localzaton algorthm wth mproved MCMC reamplng advanced, thu the effect of partcle mpoverhment wll be decreaed and the localzaton accuracy wll be mproved. Experment reult how that th algorthm ha the advantage n computatonal complexty, localzaton accuracy and robutne. Key word Robot localzaton, partcle flter, Marov Monte Carlo, reample 1 [1] [2],.,., (EKF,, [1] [3].,, (Monte-Carlo [4] [5],.. Thrun Fox 2007-03-27 2007-09-14 Receved March 27, 2007; n reved form September 14, 2007 (60534007, (2005C14008, (60505017 Supported by Key Project of Natonal Natural Scence Foundaton of P. R. Chna (60534007, Scence Plannng Project of Zhejang Provnce of P. R. Chna (2005C14008, Natonal Natural Scence Foundaton of P. R. Chna (60505017 1. 327 1. Inttute of Informaton & Communcaton Engneerng, Zhejang Unverty, Hangzhou 327 DOI: 10.1360/aa-007-xxxx, Mxture-MCL, [6]. Fox, KD-tree [7]. Fox Burgard, [8] [9]. Dellaert Revere-Jump MCMC,, (MCMC [10].,,, [6] 000, [7] 400,,,,. 1:, ; 2:,,, ;,,,., :., : ;,

2 XX ; MCMC,,, ; ;. 2 x, x (1.,, [4]. p(x z 1: = p(z x p(x z 1: 1 /p(z z 1: 1 (1 (1. {x, w } N =1 p(x z 1:, {x, = 0...N }, {w, = 0...N }. [11] : N p(x 0: z 1: wδ(x 0: x 0: (2 =1 w [11], w p(x 0: z 1: /q(x 0: z 1:, q(x 0: z 1:, (1 : w = p(z x p(x x 1p(x 0: 1 z 1: 1 p(z z 1: 1 1 q(x x 0: 1, z 1: q(x 0: 1 z 1: 1 p(z w x p(x x 1 1 q(x x 0: 1, z 1: (3 q(x x 0: 1, z 1: = q(x x 1, z, x 1 z, : p(z w w x p(x x 1 1 q(x x 1, z (4 : N p(x z 1: wδ(x x (5 =1 N, (5 x. (5. 3 3.1.,, (x, y, θ., q(x x 1, z p(x x 1, ˆx = f (x 1, u, z., ;,,.,., : 1: x 1, ˆx, (6 ; 2:, z,, (7 (8 ; 3:, (9. ˆx = f(x 1, u ˆP = f x ˆP 1 f T x + Q ẑz = h(ˆx, θ ˆP z = ˆP hx h T x + h ˆP θ f h T θ + R K = ˆP f T x ˆP z (6 (7 x = ˆx + K(z ẑz (8 P = ˆP K f ˆP x ˆx = drawsample(x, P ; ˆP = [0] (9 h θ, h x h(x, θ θ x. R Q., (8, N, p(x x 1 p(z x. 3.2 MCMC,, [6]., N eff [11]. N eff [11],.,. [11],.,,.

X 3 (MCMC: Marov Monte Carlo, [10].,,,, ; ;. MCMC,. :,, ;, ; MCMC Metropol- Hatng, (propoal denty functon Q(x, x,.,.,,., 1. 2 x, x, ± x x /2., KD-Tree [12], N 2 N log 2 N, N. 3.1,, P, x,.,.,.,, ;,.,,. 1. 1 Fg. 1 VPDMetropolHatng ( x Q ( x ; x Q( x ; x x acceptance rato p( x z p( x z 1 x 1 x x x x x Metropol-Hatng Metropol-Hatng algorthm wth varable boundary of probablty denty functon,. MCMC.,,., MCMC, 2.,, Metropol-Hatng., ;,,. j j N w j 1 [{ x, } ] N VMCMCReamplng ({ x, w } 1 N ( 0, c = c w c 1 1, for u u N j j x j w N j j 1: N u U[0, N ] -1 1-1 1 ( -1 whle uj c +1 end whle end for 1 1 VPDMetropolHatng ( x 2 MCMC Fg. 2 Improved MCMC reamplng method, (IMCMCRL: Improved Marov Monte Carlo Reamplng Robot Localzton 3. Fg. 3 z w 3 x IMCMCRL The IMCMCRL algorthm advanced n th paper 4 (CMU,, 20 m, 0.5, 361 ;

4 XX, 5 m. CMU Wean Hall, 4,,, 80 m 40 m. 1, (Beam enor model [16],. 000, (SIR: Sequental Importance Reamplng ( 500, 5.,,,,., 3.1,,,. MCMC,.., [11] N eff,.,, ( 820,.,,,. The percent of effectve partcle [%] 120 80 60 40 20 0 0 500 0 1500 6 Fg. 6 MCMC The percent of non-duplcated effectve partcle ung MCMC reamplng method wth fxed boundary 110 Fg. 4 400 350 4 The probabltc grd map ued n the experment IMCMCRL SIR partcle flter The percent of effectve partcle [%] 90 80 70 60 50 40 Localzaton RMS error [cm] 300 250 200 150 50 0 0 20 40 60 80 5 Fg. 5 The experment comparon for localzaton error. 1, 2 5000, MCMC. (0.21 m, 0.13 m, 0.0087 rad, Fg. 7 7 5 30 20 0 500 0 1500 The percent of non-duplcated effectve partcle ung our algorthm,, ;, MCMC., MCMC (IMCMCRL..,,

X 5. Reference 1 Thrun S. Bayean landmar learnng for moble robot localzaton. Machne Learnng, 1998, 33(1: 41-76 2 Mour A I, Roumelot S I, Burdc J W. SC-KF moble robot localzaton: a tochatc clonng Kalman flter for proceng relatve-state meaurement. IEEE Tranacton on Robotc, 2007, 23(4: 717-730 3 Davon A J, Red I D, Molton N D, Stae O. MonoSLAM: real-tme ngle camera SLAM. IEEE Tranacton on Pattern Analy and Machne Intellgence, 2007, 29(6: 1052-1067 4 Arulampalam M S, Maell S, Gordon N. A tutoral on partcle flter for onlne nonlnear/non-gauan Bayean tracng. IEEE Tranacton on Sgnal Proceng, 2003, 50(2: 174-188 5 Lmeta B, Fox D, Ln Lao. CRF-Flter: Dcrmnatve Partcle Flter for Sequental State Etmaton. In: Proceedng of IEEE Internatonal Conference on Robotc and Automaton, Roma, Italy: IEEE, 2007. 3142-3147 6 Thrun S, Fox D, Burgard W. Robut Monte Carlo localzaton for moble robot. Artfcal Intellgence, 2000, 128(1: 99-141 7 Fox D. Adaptng the ample ze n partcle flter through KLD-Samplng. Internatonal Journal of Robotc Reearch, 2003, 22(1: 985-4 8 Fox D, Ko J, Konolge K, Lmeta B, Schulz D, Stewart B. Dtrbuted multrobot exploraton and mappng. Proceedng of the IEEE, 2006, 94(7: 1325-1339 9 Burgard W, Moor M, Stachn C, Schneder F. Coordnated mult-robot exploraton. IEEE Tranacton on Robotc, 2005, 21(3: 376-378 10 Khan Z, Balch T, Dellaert F. MCMC-baed partcle flterng for tracng a varable number of nteractng target. IEEE Tranacton on Pattern Analy and Machne Intellgence, 2005, 27(1: 1805-1819 11 Doucet A, Freta N de, Gordon N. Sequental Monte Carlo method n practce. New Yor: Sprnger-Verlag, 2001 12 Fredman J H, Bentley J L, Fnel R A. An algorthm for fndng bet matche n logarthmc expected tme. ACM Tranacton on Mathematcal Software, 1977, 3(3: 209-226 13 Gamn Danayae M W M, Newman P. A oluton to the multaneou localzaton and map buldng (SLAM problem. IEEE Tranacton Robotc and Automaton, 2001, 17(3: 229-241 14 Baley T. Moble Robot Localzaton and Mappng n Extenve Outdoor Envronment. [Ph. D. dertaton], Unverty of Sydney, 2002 15 Montemerlo M. Fatlam: a factored oluton to the multaneou localzaton and mappng problem. [Ph. D. dertaton], Carnege Mellon Unverty, 2003 16 Fox D, Burgard W. Thrun S, Marov localzaton for moble robot n dynamc envronment. Journal of Artfcal Intellgence Reearch, 1999, 11(1: 391-427.. E- mal: wueryong343@ohu.com (WU Er-Yong Ph. D. canddate at Zhejang Unverty. H reearch nteret nclude the navgaton of ntellgent robot and pattern recognton... E-mal: xangzy@zju.edu.cn (XIANG Zh-Yu Aocate Profeor at Department of Informaton Scence & Electronc Engneerng, Zhejang Unverty. H reearch nteret nclude ntellgent robot and machne learnng. Correpondng author of th paper... Emal: jllu@zju.edu.cn (LIU J-Ln Profeor at Department of Informaton Scence & Electronc Engneerng, Zhejang Unverty. H reearch nteret nclude ntellgent tranportaton and mage proceng.