Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities
|
|
- Λεωνίδας Λούπης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 DOI: /CTA Control Theory & Applcatons Vol. 33 No. 9 Sep ( ; ) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan jump systems wth tme-varyng delays and randomly occurrng nonlneartes REN We-jan 1 WANG Chun-le 1 LU Yang 2 (1. College of Electrc and Informaton Engneerng Northeast Petroleum Unversty Daqng Helongjang Chna; 2. College of Informaton Technology Helongjang Bay Agrcultural Unversty Daqng Helongjang Chna) Abstract: Ths paper s concerned wth the fault detecton problem for a class of dscrete-tme Markovan jump systems wth multple tme-varyng stochastc delays and randomly occurrng nonlneartes. Accordng to the stochastc characterstc of multple tme-varyng delays an ndvdual Bernoull dstrbuton s used to descrbe ths phenomenon. Furthermore a knd of stochastc nonlnear dsturbance s also consdered n the fault detecton research by means of a Bernoull dstrbuted whte sequence. The man purpose of ths paper s to desgn a fault detecton flter such that the resdual system s mean square exponental stable and the relevant H performance s satsfed. Through Lyapunov stablty theory and stochastc analyss technology suffcent condtons are set up for the desred exponental stablty and H dsturbance attenuaton a convex optmzaton problem s solved by the semdefnte programmng technque the gan characterstc of the fault detecton flter s obtaned. Fnally a smulaton example s provded to llustrate the usefulness and effectveness of the proposed desgn approach. Key words: fault detecton; Markovan jump system; stochastc tme-varyng delays; randomly occurrng nonlneartes 1 (Introducton)... [1. (Markovan jump systems MJSs) [2. MJSs. MJSs [3 4 [5 11 [12. MJSs ; E-mal: wangcl001@163.com; Tel.: ( ) (LBH Q12143) (QC2013C066). Supported by Natonal Natural Scence Foundaton of Chna ( ) Helongjang Postdoctoral Research Foundaton (LBH Q12143) Helongjang Youth Foundaton (QC2013C066).
2 [13 [14 ; [15. [ [ [ [24.. 1). 2). 3). 4) Lyapunov H. 2 ; 3 Lyapunov LMI ; 4 ; M T M ; R n n R n m n m ; Z ; I 0 ; l 2 ([0 ); R n ) n [0 ) ; P>0 P ; E{x} x ; x x ; dag{a 1 A 2 A n } A 1 A 2 A n *. 2 (Problem formulaton) x(k +1)=A(θ k )x(k)+γ(k)g(θ k x(k))+ A d1 (θ k ) q α r (k)x (k τ r (k)) + D 1 (θ k )ω(k)+g(θ k )f(k) y(k) =C(θ k )x(k)+d 2 (θ k )ω(k)+ E(θ k )f(k) x(k) =ψ(k) k Z (1) x(k) R n ; y(k) R m ; ω(k) R p l 2 [0 ) ; ( f(k) l ) 2 [0 );R l. A(θ k ) A d1 (θ k ) G(θ k ) C(θ k ) D 1 (θ k ) D 2 (θ k ) E(θ k ). τ r (k)(r =1 2 q) ; ψ(k) ; θ k S = {1 2 N} p j =P{θ k+1 = j θ k = } N θ j =1. j=1 g(θ k x(k)) g(θ k 0) = 0 g(θ k x(k)+δ(k)) g(θ k x(k)) B 1 (θ k )δ(k) (2) B 1 (θ k ) δ(k). α r (k)(r =1 2 q) γ(k) 0 1 (RONs) P{α r (k) =1} =ᾱ r P{α r (k) =0} =1 ᾱ r (3) P{γ(k) =1} = γ P{γ(k) =0} =1 γ ᾱ r [0 1 γ [ g(θ k x(k)). γ(k) g(θ k x(k)) (RONs) RONs. τ r (k)(r =1 2 q)
3 d m τ r (k) d M d m d M. 3 1) 3 ; 2).. A(θ k )=A A d1 (θ k )=A d1 g(θ k x(k)) = g (x(k)) G(θ k )=G C(θ k )=C D 1 (θ k ) = D 1 D 2 (θ k )=D 2 E(θ k )=E B 1 (θ k )=B 1. ˆx(k +1)=A F (θ k )ˆx(k)+B F (θ k )y(k) (4) r(k) =C F (θ k )ˆx(k)+D F (θ k )y(k) ˆx k R n r(k) R l A F (θ k ) B F (θ k ) C F (θ k ) D F (θ k ). A F (θ k )= A F B F (θ k )=B F C F (θ k )=C F D F (θ k )=D F. (1) (4) x(k +1)=Ā(θ k) x(k)+ q (Ādr(θ k )+ à dr (θ k )) x(k τ r (k))+ ( γ + γ(k))zg(θ k x(k))+ (5) D(θ k )v(k) r(k) = C(θ k ) x(k)+ D F (θ k )v(k) x(k) = [ x T (k) ˆx T (k) T r(k) =r(k) f(k) v(k)= [ ω T (k) f T (k) [ T A 0 Ā(θk )= B F C A F [ᾱr A d1 0 [ αr (k)a d1 0 Ā dr (θ k )= à dr (θ k )= D1 G D(θ k )=[ Z=[I 0 T B F D 2 B F E C(θ k )=[D F C C F D F (θ k )=[D F D 2 D F E I α r (k) =α r (k) ᾱ r γ(k)=γ(k) γ. E{ α r (k)} =0 E{ α r(k)} 2 =ᾱ r (1 ᾱ r ) E{ γ(k)} =0 E{ γ 2 (k)} = γ(1 γ). Ā(θ k)=ā Ā dr (θ k )=Ādr à dr (θ k ) = Ãdr D(θk )= D C(θ k )= C D F (θ k )= D F. 1 v(k) =0 δ >0 0 <κ<1 E{ x(k) 2 } δ k κ sup Z E{ ψ() 2 } k 0 (5).. (4) A F B F C F D F a) (5). b) γ > 0 v(k) r(k) E{ r(k) 2 } γ 2 E{ v(k) 2 } (6) γ >0 (6). J(k) J th : J(k) ={ L r T (h)r(h)} 1 2 h=0 (7) J th = sup E{J(k)} ω k l 2f k =0 L. (7). J(k) >J th J(k) J th. 3 (Man results) Lyapunov (1).. 1 ( Schur [25.) S 1 S 2 S 3 S 1 = S1 T 0 <S 2 = S2 T S 1 + S3 T S 1 2 S 3 < 0 [ [ S1 S3 T S2 S 3 < 0 < 0. (8) S 3 S 2 S3 T S 1 2 x R n y R n Q >0 x T Qy + y T Qx x T Qx + y T Qy. (6). 1 (5) H γ >0 P > 0( N) Q r > 0(r =1 2 3 q) ρ >0
4 Φ 1 + C T C 2 γ x T Φ = Ẑ T P Zg (x(k))+ P Ā Φ 2 < 0 q D T P Ā + D F T C x DT P Ẑ Φ (k τ r (k))ãt P dr à dr x(k τ r (k))+ 3 (9) 2( q Ā dr x(k τ r (k))) T P D v(k)+ Z T P Z ρi (10) v T (k) P D v(k)+ (6) 2 γ( q Ā dr x T (k τ r (k))) T P Zg (x(k))+ P = N p j P j γg T (x(k))z T P Zg (x(k)) j=1 (12) Φ 1 =2ĀT P Ā + q (d M d m +1)Q r P + ρ B dr à dr } = Φ 2 =dag{ Q 1 + Ã1 Q 2 + Ã2 Q q + [ T [ αr (k)a d1 0 αr (k)a d1 0 à q } +2ẐT P Ẑ E{ P } = Φ 3 =2 D T P D + D T D F F γ 2 I [ T [ à r =ᾱ r (1 ᾱ r )ÂT P Ad1 0 Ad1 0 d1  d1 2 q ᾱ r (1 ᾱ r ) P = Ẑ =[Ād1 Ā d2 Ā dq ᾱ B =dag{(3 γ 2 + γ)b T r (1 ᾱ r B 0} d1  d1. (13) 2  d1 =dag{a d1 0}. 2 γ x T P Zg (x(k)) η(k) := [ x T (k) x T (k τ 1 (k)) x T (k τ q (k)) T x T. P Ā x(k)+ γ 2 g T (x(k))z T P Zg (x(k)) (14) θ k = N 2 γg T (x(k))z T P D v(k) Lyapunov-Krasovsk γ 2 g T (x(k))z T P Zg (x(k)) + v T (k) D T P D v(k) V ( x(k)θ k )= (15) V 1 ( x(k)θ k )+V 2 ( x(k)θ k )+V 3 ( x(k)θ k ) (11) 2 γ( q Ā dr x(k τ r (k))) T P Zg (x(k)) ( q Ā dr x(k τ r (k))) T P ( q Ā dr x(k τ r (k)))+ V 1 ( x(k)θ k )= x T (k)p (θ k ) x(k) V 2 ( x(k)θ k )= q k 1 x T (l)q r x(l) V 3 ( x(k)θ k )= q l=k τ r (k) d m k 1 m= d M+1 l=k+m x T (l)q r x(l). ΔV 1 ( x(k)θ k )= E {V 1 ( x(k +1)θ k+1 ) x(k)θ k = } V 1 ( x(k)θ k )= N p j x T (k +1)P j x(k +1) x T (k)p x(k) = j=1 x T (k)(āt P Ā P ) x(k)+ 2 x T (k)āt P ( q Ā dr x(k τ r (k)))+ 2 x T (k)āt P D v(k)+2 γg T (x(k))z T P D v(k)+ ( q Ā dr x(k τ r (k))) T P ( q Ā dr x(k τ r (k)))+ γ 2 g T (x(k))z T P Zg (x(k)). (16) (2) g T (x(k))(3 γ 2 + γ)z T P Zg (x(k)) x T (k)(3 γ 2 + γ)ρb T B x(k) = x T (k)ρ B x(k) (12) (17) ΔV 1 ( x(k)θ k )= E {V 1 ( x(k +1)θ k+1 ) x(k)θ k = } V 1 ( x(k)θ k ) x T (k)(2āt P Ā P + ρ B ) x(k)+ 2 x T (k)āt P ( q Ā dr x(k τ r (k)))+ 2 x T (k)āt (17) P D v(k)+2( q Ā dr x(k τ r (k))) T
5 P ( q Ā dr x(k τ r (k)))+ k d m l=k d M+1 x T (l)q r x(l)) (21) q x T (k τ r (k))ãt P dr à dr x(k τ r (k))+ v(k) =0 2( q E{ΔV ( x(k)θ k )} η T (k)φ η(k) (22) Ā dr x(k τ r (k))) T P D v(k)+ 2v T (k) D [ T P D v(k) (18) Φ1 Φ =. ΔV 2 ( x(k)θ k )= Ẑ T P Ā Φ 2 E {V 2 ( x(k +1)θ k+1 ) x(k)θ k = } V 2 ( x(k)θ k )= 1 Φ < 0. (5). N p j ( q k x T (5) H (l)q r x(l) j=1 l=k τ r (k)+1 q k 1 x T (l)q r x(l)) J N =E [ r T (k) r(k) β 2 v T (k)v(k) = l=k τ r(k) q ( x T E [ r (k)q r x(k) (k) r(k)+δv( x(k)θ k ) x T β 2 v T (k)v(k) E {V (k τ r (k))q r x(k τ r (k))+ k+1 ( x(k+1)θ k+1 )} k d m E [ r T (k) r(k) β 2 v T (k)v(k)+ x T (l)q r x(l)) (19) l=k d M +1 ΔV ( x(k)θ k ) ΔV 3 ( x(k)θ k )= E {V 3 ( x(k +1)θ k+1 ) x(k)θ k = } η T (k)φη(k) < 0. V 3 ( x(k)θ k )= q ((d M d m ) x T (k)q r x(k) E{ r(k) 2 } γ 2 E{ v(k) 2 }. k d m x T (l)q r x(l)). (20). l=k d M +1. (18) (20) 2 ΔV ( x(k)θ k ) x T (k)(2āt P Ā P + ρ B ) x(k)+. H γ >0. P > 0( N) Q r > 0 2 x T (k)āt P ( q (r =1 2 3 q) ρ>0 X K Ā dr x(k τ r (k)))+ 2 x T (k)āt P D v(k)+2( q Ā dr x(k τ r (k))) T Y = ˆΓ P ( q 11 Ā dr x(k τ r (k)))+ 0 γ 2 I q x T (k τ r (k))ãt P ˆΓ dr à dr x(k τ r (k))+ 31 P ˆD0 + X ˆR2 P < 0 ˆΓ 41 P 2( q ˆΓ Ā dr x(k τ r (k))) T 51 ˆΓ52 ˆP P D v(k)+ (23) 2v T (k) D T P D v(k)+ q ( x T (k)q r x(k) Z T P Z ρi (24) x T (4) (k τ r (k))q r x(k τ r (k))+. k d m l=k d M +1 x T (l)q r x(l))+ q ((d M d m ) x T (k)q r x(k) ˆΓ 11 =dag{γ 11 Γ 22 } ˆΓ 31 =[ P  0 + X ˆR1 P Ẑ ˆΓ 41 =dag{ P  0 + X ˆR1 P Ẑ }
6 Γ 11 = ρ B + q (d M d m +1)Q r P. Γ 22 =dag{ Q 1 + Ã1 Q 2 + Ã2 [ Q q + [ Ãq} ˆΨ = ˆΓ 51 = K ˆR1 0 [ [ P ˆD0 + X ˆR2 0n n ˆΓ 52 = Ê = [ [ K ˆR2 ÊT 1 I n n P =dag { P P } ˆP =dag { P I } A 1 = A 2 =.7.5 [ Ê 1 =[0 l p I l p T Ê 2 =[0 m n I m n T A [ [ d11 = A 0 D1 G [ Â 0 = ˆD0 = A [ [ d12 = I [ [ ˆR 1 = ˆR2 =. C 0 D 2 E D 11 = D 12 =.3.4 (P Q r X K ρ) (23) (24) (4) C 1 = C 2 =[ H 1 = H 2 =0.9 D 21 =[ D 22 =[ [A F B F =[ÊT P Ê 1 Ê T X G (25) 1 =[ T G 2 =[ T. [C F D F =K. 2 τ r (k) 6(r =1 2) P Q r 1. ᾱ 1 =E{α 1 (k)} =0.9 Ā = Â0 + ÊK ˆR 1 1 ᾱ 2 =E{α 2 (k)} =0.7 D = ˆD 0 + ÊK ˆR 1 2 (26) γ =E{γ(k)} =0.8. C = K ˆR1 D F = K ˆR2 ÊT 1 K 1 =[A F B F. Shur (9) ˆΓ 11 0 γ 2 I ˆΓ 31 ˆD0 +ÊK ˆR 1 2 P 1 1 ˆΓ 41 P ˆΓ 51 ˆΓ52 ˆP 1 ˆΓ 31 =[Â0 + ÊK ˆR 1 1 Ẑ ˆΓ 41 =dag{â0 + ÊK ˆR 1 1 [ Ẑ} ˆD0 + ˆΓ 52 = ÊK ˆR 1 2. K ˆR2 ÊT 1 <0 (27) 1 X = P ÊK 1 (23). 4 (Numercal example) g 1 (x(k)) = g 2 (x(k)) = 0.5x 1 (k)sn(x 2 (k)) ε(k) =1 B(k) =dag{ } (2). 2 (25) [ A F1 = B F1 = [ C F1 = D F1 = [ A F2 = B F2 = [ [ C F2 =[ D F2 = k = f(k) { 1 40 k 80 f(k) = 0. ˆΨ θ(0) = 1 θ(k) 1.
7 { [rand[ rand[0 1 T 0 k 50 ω(k) = 0 1 Fg. 1 Modes evoluton ω(k) =0 r(k) J(k) 2 3. rand [0 1. r(k) J(k) 4 5. J th =sup f=0 r T (s)r(s)} 1/2 E{ 150 s=0 200 J th =J(40)<J th <J(41) = Fg. 4 Resdual sgnal wth dsturbance 2 Fg. 2 Resdual sgnal wthout dsturbance 5 Fg. 5 Resdual evaluaton functon wth dsturbance 3 Fg. 3 Resdual evaluaton functon wthout dsturbance 5 (Conclusons)..
8 H. Lyapunov H.... (References): [1 WANG Yongqang YE Hao WANG Guzeng. Recent development of fault detecton technques for networked control systems [J. Control Theory and Applcatons (4): (. [J (4): ) [2 DONG H L WANG Z D HO DWCetal.RobustH flterng for Markovan jump systems wth randomly occurrng nonlneartes and sensor saturaton: the fnte-horzon case [J. IEEE Transactons on Sgnal Processng (7): [3 WANG G L ZHANG Q L YANG C Y. Stablzaton of sngular Markovan jump systems wth tme-varyng swtchngs [J. Informaton Scences (1): [4 LIU X H XI H S. Stochastc stablty for uncertan neutral Markovan jump systems wth nonlnear perturbatons [J. Journal of Dynamcal and Control Systems (2): [5 ZHANG Y Q LIU C X SONG Y D. Fnte-tme H flterng for dscrete-tme Markovan jump systems [J. Journal of the Frankln Insttute (6): [6 ZHANG B Y LI Y M. Exponental flterng for dstrbuted delay systems wth Markovan jumpng parameters [J. Sgnal Processng (1): [7 ZHUANG G M SONG G F XU S Y. H flterng for Markovan jump delay systems wth parameter uncertantes and lmted communcaton capacty [J. Control Theory and Applcatons (14): [8 TERRA M H ISHIHARA J Y JUNIOR A P. Array algorthm for flterng of dscrete-tme Markovan jump lnear systems [J. IEEE Transactons on Automatc Control (7): [9 LI Z C YU Z D. Further result on H flter desgn for contnuoustme Markovan jump systems wth tme-varyng delay [J. Journal of the Frankln Insttute (9): [10 ZHUANG G M LU J W ZHANG M S. Robust H flter desgn for uncertan stochastc Markovan jump Hopfeld neural networks wth mode-dependent tme-varyng delays [J. Neurocomputng (1): [11 LONG S H ZHONG S M LIU Z J. H flterng for a class of sngular Markovan jump systems wth tme-varyng delay [J. Sgnal Processng (11): [12 LAM J. Robust H control of descrptor dscrete-tme Markovan jump systems [J. Internatonal Journal of Control (3): [13 LIU M HO DWC NIUYG. RobustStablzaton of Markovan jump lnear system over networks wth random communcaton delay [J. Automatca (2): [14 WANG Hongru WANG Changhong GAO Hujun. Robust fault detecton for dscrete-tme Markovan jump systems wth tmedelays [J. Control and Decson (7): (. [J (7): ) [15 WANG H R WANG C H MOU S S et al. Robust fault detecton for dscrete tme Markovan jump systems wth mode-dependent tmedelays [J. Journal of Control Theory and Applcatons (2): [16 OUALI A MAKHLOUF A B HAMMAMI M A et al. State feedback control law for a class of nonlnear tme-varyng system under unknown tme-varyng delay [J. Nonlnear Dynamcs (1/2): [17 PHAT V N NIAMSUP P. Global stablzaton of lnear tme-varyng delay systems wth bounded controls [J. Appled Mathematcs Letters (1): [18 HU J WANG Z D GAO H J et al. Extended Kalman flterng wth stochastc nonlneartes and multple mssng measurements [J. Automatca (9): [19 SHEN B WANG Z D HUNG Y S. Dstrbuted consensus H flterng n sensor networks wth multple mssng measurements: the fnte-horzon case [J. Automatca (10): [20 YANG F W WANG Z D HUNG Y S et al. H control for networked systems wth random communcaton delays [J. IEEE Transacton on Automatc Control (3): [21 DING D R WANG Z D SHEN B et al. Envelope-constraned H flterng wth fadng measurements and randomly occurrng nonlneartes: the fnte horzon case [J. Automatca (1): [22 DONG H L WANG Z D DING S X et al. Event-based H flter desgn for a class of nonlnear tme-varyng systems wth fadng channels and multplcatve noses [J. IEEE Transactons on Sgnal Processng (14): [23 DONG H L WANG Z D GAO H J. On desgn of quantzed fault detecton flters wth randomly occurrng nonlneartes and mxed tme-delays [J. Sgnal Processng (4): [24 ZHANG J H SHI P QIU J Q. Non-fragle guaranteed cost control for uncertan stochastc nonlnear tme-delay systems [J. Journal of the Frankln Insttute (7): [25 BOYD S GHAOUI L E FERON E et al. Lnear Matrx Inequaltes n System and Control Theory [M. Phladelpha: SIAM (1963 ) E-mal: renwj@126.com; (1991 ) E-mal: wangcl001@163.com; (1976 ) E-mal: luyanga@sna.com.
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
2002 Journal of Software /2002/13(08) Vol.13, No.8. , )
000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Resilient static output feedback robust H control for controlled positive systems
31 5 2014 5 DOI: 10.7641/CA.2014.30666 Control heory & Applications Vol. 31 No. 5 May 2014 H,, (, 250100), (LMI),, H,,,,, H,, ; H ; ; ; P273 A Resilient static output feedback robust H control for controlled
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1
50 17 2014 9 OURNAL OF MECHANICAL ENGINEERING Vol.50 No.17 Sep. 2014 DOI10.3901/ME.2014.17.077 * 1 2 2 2, 3 (1. 361005 2. 710049 3. 710049) -- () - TH17 Novel Ensemble Analytc Dscrete Framelet Expanson
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
Quantum annealing inversion and its implementation
49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,
K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< \ -S;? P A" ( 6M [ X& 5 +; \ ; D7 ] +; I$ X & >?# ; U (6 3 I q +W R% RBH % a >M 5 د! "#$#% & '( a.khan9@ms.tabrzu.a.r >" *+ + LN6
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet
Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.
b,% SIR 2 MOTDPC (CDMA 6 ) Aein CDMA Journal of Nonlinear Systems in Elect. Eng., Vol. 1, No 2, Fall 2013
CDMA t< c&4 ;*E D&/ * 3 \ ^ K [ F 39 + @ M N 8 < - F" @ ' E J D K L H5 I CDMA ; A 5 b,% m_rezae_5@yahoocom 3 )* EQ / G* * /!" D" - hfarrokh@brjandacr 3 )* EQ / G* A*B C &* - (39/5/7 :H9 [ ge 39/3/ :H9
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Control Theory & Applications PID (, )
26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO
Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm
32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes
Internatonal Journal of Industral Engneerng & Producton Management (22) March 22, Volume 22, Number 4 pp. 39-33 http://ijiepm.ust.ac.r/ Estmatng Tme of a Smple Step Change n Nonconformng Items n Hgh-Yeld
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
Vol. 37 No. 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Jun. 2011 70% . 2009-10-25.
37 6 2011 6 Vol 37 No 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Jun 2011 100124 2 BP BP BP U 491 A 0254-0037 2011 06-0882 - 06 1 70% BP 1 2 2 2 2009-10-25 50578003 2006BAG01A01 1984 6 883 2 1 3 3 5
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Discriminative Language Modeling Based on Risk Minimization Training
1,a) 1 1 1 2 Bayes Dscrmnatve Language Modelng Based on Rsk Mnmzaton Tranng Kobayash Ako 1,a) Oku Takahro 1 Fujta Yuya 1 Sato Shoe 1 Nakagawa Sech 2 Abstract: Ths paper descrbes dscrmnatve language models
Robust Robot Monte Carlo Localization
XX X Vol. XX, No. X 200X X ACTA AUTOMATICA SINICA Month, 200X 1 1 1.,,, ; (MCMC, ;, MCMC, ;.,,, TP242.6 Robut Robot Monte Carlo Localzaton WU Er-Yong 1 XIANG Zh-Yu 1 LIU J-Ln 1 Abtract A robot localzaton
New conditions for exponential stability of sampled-data systems under aperiodic sampling
33 10 2016 10 DOI: 10.7641/CTA.2016.50818 Control Theory & Applications Vol. 33 No. 10 Oct. 2016,, (, 273165) :. Lyapunov, Lyapunov.,,. Lyapunov,, Wirtinger,.. : ; ; Lyapunov; : TP273 : A New conditions
35 90% 30 35 85% 2000 2008 + 2 2008 22-37 1997 26 1953- 2000 556 888 0.63 2001 0.58 2002 0.60 0.55 2004 0.51 2005 0.47 0.45 0.43 2009 0.
184 C913.7 A 1672-616221 2-21- 7 Vol.7 No.2 Apr., 21 1 26 1997 26 25 38 35 9% 8% 3 35 85% 2% 3 8% 21 1 2 28 + 2 1% + + 2 556 888.63 21 572 986.58 22 657 1 97 23 674 1 229.55 24 711 1 48.51 25 771 1 649.47
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
!",! ## $% ( )) ( ( )!*
5.13.1!",! ## $% &%' ( )) ( ( )!* )) ( )%.+., 8 ! &... 4, ++ 1. #- (...!*.! /!*... 18 1.1. '' #"(' #- (...... 18 1.. #-' (...!* )!... 1.3. #-' (... $$ )!... 9 1.4. "!*... 3, ++. +!" #. (!* (.!'... 33.1.
EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE
7 Vol. 7 No. 003 Power Sytem Technology Fe. 003 000-36730030-0004-05 T7. A 3007 EQIVALENT ODEL OF HVDC-VSC AND ITS HYBRID SILATION TECHNIQE WANG Guan, CAI Ye, ZHANG Gu-n, X Zheng Department of Electrcal
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Aerodynamic Design Optimization of Aeroengine Compressor Rotor
17 < > Aerodynamc Desgn Optmzaton of Aeroengne Compressor Rotor, NASA JAXA, Brook Park, Oho, U.S.A., oyama@flab.eng.sas.jaxa.jp Meng-Sng LIOU, NASA Glenn Research Center, Brook Park, Oho, U.S.A. meng-sng.lou-1@nasa.gov,,
Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις
Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network
IPSJ SIG Tecncal Report Vol.-MPS-9 No.5 Vol.-BIO-3 No.5 //6 T,a,b,c,d,e T Drosopla melanogaster RJMCMC Nonparametrc Bayesan T-Process Algortm for Heterogeneous Gene Regulatory Network HIROKI MIYASHITA,a
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Robust resource allocation algorithm for cognitive radio system
35 4 Vol.35 No. 4 2014 4 Journal on Communcatons Arl 2014 o:10.3969/j.ssn.1000-436x.2014.04.014 ( 130012) SINR QoS SOCP QoS N929 A 1000-436X(2014)04-0124-06 Robust resource allocaton algorm for cogntve
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
(8) 017 У У θβ1.771...... ю E-mal: avk7777@mal.ru....... Р х х.. 93 % 6 % 166 %. М х х хх. : х х. ю. ю ( ). ю ю. ю. ю ю. - ю ю. ю [1 8] ю. [9 11] ю. [1]. 58 (8) 017 У ю μ (У) юю (. 1). u u+1 ЭС - ЭС (+1)-
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm
Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Trajectory tracking of quadrotor based on disturbance rejection control
33 11 216 11 DOI: 1.7641/CTA.216.6117 Control Theory & Applications Vol. 33 No. 11 Nov. 216, (,, 224) :,,,.,,, ;,... : ; ; ; ; ; : TP273 : A Trajectory tracking of quadrotor based on disturbance rejection
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]
OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea
2011 48 4 909 914 * 1 2** 2 2 2 2 2*** 1. 110161 2. 100081 026000 3 Calliptamus italicus L. 3 LC 50 LC 90 1. 34 14. 17 mg / L LC 50 LC 90 2. 09 45. 22 mg / L 50 mg / L 14 d 87% 100% 50 mg / L 50% The toxicity
8.323 Relativistic Quantum Field Theory I
MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture
Συγκριτική Αξιολόγηση των Μεθόδων Βελτιστοποίησης των Αρδευτικών Δικτύων
Συγκριτική Αξιολόγηση των Μεθόδων Βελτιστοποίησης των Αρδευτικών Δικτύων Μ. Θεοχάρης ΤΕΙ Ηπείρου, Τμήμα Φυτικής Παραγωγής, Εργαστήριο Αρδεύσεων και Στραγγίσεων, 47100, Άρτα, e-mal: theoxar@teep.gr Περίληψη
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
CAP A CAP
2012 4 30 2 Journal of Northwestern Polytechnical University Apr. Vol. 30 2012 No. 2 Neal-Smith 710072 CAP Neal-Smith PIO Neal-Smith V249 A 1000-2758 2012 02-0279-07 Neal-Smith CAP Neal-Smith Neal-Smith
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS
6 Vol. No.6 005 ENGNEENG MEHANS Dec. 005 000-4750(005)06-0046-06 * (. 00084. 000) O47.4, P5. A THEE-DMENSONAL VSO-ELAST ATFAL BOUNDAES N TME DOMAN FO WAVE MOTON POBLEMS * LU Jng-bo, WANG Zhen-yu, DU Xu-l,
Sydney 2052, Australia.
ΕΛΕΓΧΟΣ ΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΣΥΣΤΗΜΑΤΩΝ ΣΤΑ ΓΕΩΡΓΙΚΑ ΟΧΗΜΑΤΑ, ΒΑΣΙΣΜΕΝΟΣ ΣΤΗΝ ΣΥΝΤΗΞΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΩΝ ΟΝΗΣΕΩΝ. Κατέρης,. Μόσχου, Ι. Γράβαλος 2, Ν. Sawalh 3, Θ. Γιαλαµάς 2, Π. Ξυραδάκης 2,
Fragility analysis for control systems
3 1 213 1 DOI: 1.7641/CTA.213.2294 Control Theory & Applications Vol. 3 No. 1 Jan. 213 1, 1, 2, 1, 1 (1., 151; 2., 158) :. ( 1, j), ( 1, j)., Bode...,,,, Bode. : ; Bode ; ; ; : TP273 : A Fragility analysis
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
SHUILI XUEBAO km. Honolulu Weatcart Contractor Giggs. Home J. M. U. Jucson
2010 5 SHUILI XUEBAO 41 5 0559-9350 2010 05-0560-07 400041 Vsual Modflow 600mg / L 16. 9m 8. 3m 4 9 9 4 8. 5% 1 ~ 2 P641. 2 A 1 32 330km Honolulu 1 20 60 1974 Meyer 2 1979 Weatcart 3 1981 Contractor 4
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Global Optimization of Thermal Power System Based on Structure Theory of Thermoeconomics
27 26 Vol.27 No.26 Sep. 2007 2007 9 Proceedngs of the CSEE 2007 Chn.Soc.for Elec.Eng. 0258-803 (2007) 26-0065-07 TK23 A 470 0 ( 430074) Global Optmzaton of Thermal Power System Based on Structure Theory
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
!"#$%&'(!"# ! O == N N !"#$% PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS
www.clmatechange.cn 11 = 1!"#$% 2015 1 PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS Vol. 11 No. 1 January 2015 do:10.3969/j.ssn.1673-1719.2015.01.009,,,.!"#$%&'(!"#=[j].!"#$%, 2015, 11 (1): 61-67!"#$%&'(!"#
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
製品系列統合化設計における最適性と最適化法に関する Title研究 ( 第 3 報, システム属性とモジュール組合せの同時最適化法 ) Citation 日本機械学会論文集 C 編. 68(668) P.1329-P
製品系列統合化設計における最適性と最適化法に関する Ttle研究 ( 第 3 報, システム属性とモジュール組合せの同時最適化法 ) Author(s) 藤田, 喜久雄 ; 吉田, 寛子 Ctaton 日本機械学会論文集 C 編. 68(668) P.1329-P.1337 Issue 2002-04 Date Text Verson publsher URL http://hdl.handle.net/11094/3406
A System Dynamics Model on Multiple2Echelon Control
2007 9 9 :100026788 (2007) 0920107208 1, 1, 1, 2 (11, 100876 ;21, 100044) :..,,.,.,. : ;;; : TP39119 : A A System Dynamics Model on Multiple2Echelon Control YANG Tian2jian 1, LV Ting2jie 1, ZHANG Xiao2hang
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu.
5 6 202 6 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 5 No 6 Jun 202 36005 CAPM F830 9 A 007 9807 202 06 0040 09 0 4 5 6 2 7 8 9 5 2 20 03 24 20 0 0 70974 702 2009J036 966 Emal zlzheng@ xmu edu cn NYSE
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)
Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),
ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ