1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Σχετικά έγγραφα
Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

PARTIAL NOTES for 6.1 Trigonometric Identities

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Differential equations

COMPLEX NUMBERS. 1. A number of the form.

CRASH COURSE IN PRECALCULUS

Fourier Analysis of Waves

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Trigonometric Formula Sheet

Solution to Review Problems for Midterm III

Homework 8 Model Solution Section

Differentiation exercise show differential equation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

2 Composition. Invertible Mappings

If we restrict the domain of y = sin x to [ π 2, π 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

TRIGONOMETRIC FUNCTIONS

Section 7.6 Double and Half Angle Formulas

Trigonometry 1.TRIGONOMETRIC RATIOS

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Quadratic Expressions

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Chapter 6 BLM Answers

MathCity.org Merging man and maths

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS


Section 7.7 Product-to-Sum and Sum-to-Product Formulas

298 Appendix A Selected Answers

Example Sheet 3 Solutions

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Solution Series 9. i=1 x i and i=1 x i.

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Statistical Inference I Locally most powerful tests

D Alembert s Solution to the Wave Equation

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 9.2 Polar Equations and Graphs

Probability and Random Processes (Part II)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

F19MC2 Solutions 9 Complex Analysis

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

ST5224: Advanced Statistical Theory II

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Answer sheet: Third Midterm for Math 2339

Solutions to Exercise Sheet 5

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

EE512: Error Control Coding

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Matrices and Determinants

Areas and Lengths in Polar Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Finite Field Problems: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.

Uniform Convergence of Fourier Series Michael Taylor

Local Approximation with Kernels

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Section 8.2 Graphs of Polar Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Reminders: linear functions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

C.S. 430 Assignment 6, Sample Solutions

Parametrized Surfaces

Homework 3 Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

IIT JEE (2013) (Trigonomtery 1) Solutions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Trigonometry Functions (5B) Young Won Lim 7/24/14

derivation of the Laplacian from rectangular to spherical coordinates

SPECIAL FUNCTIONS and POLYNOMIALS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Lifting Entry (continued)

Transcript:

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these

1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

2. If f is an even function and f 1 exists, then f 1 (e) + f 1 (-e) = 1] 0 2] 1 3] -1 4] e

2. Solution :Given that f is an even function then f (-x) = f (x) Diff. w.r.t x f 1 (-x)(-1) = f 1 (x) Substitute x = e f 1 (-e)(-1) = f 1 (e) f 1 (e) + f 1 (-e) =0 Answer 1] 0

3.If f (x) = e x g (x), g(0) = 2, g 1 (0) =1, then f 1 (0) is equal to 1]1 2] 3 3] 2 4] 0

3.Solution :Given that f (x) = e x g (x), g(0) = 2, g 1 (0) =1, Since f (x) = e x g (x), Diff. w.r.t x f 1 (x) = e x g 1 (x) + g(x) e x Substitute, x = 0 f 1 (0) = e 0 g 1 (0) + g(0) e 0 = 1(1) + 2 (1) = 1 + 2 = 3 Answer : 2] 3

4. The derivative of an even function is always 1] an odd function 2] an even function 3] does not exist 4] none of these

4. Solution : The derivative of an even function is always an odd function Answer : 1] odd function

5. Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to 1] ½ 2] 2 3] 2/3 4] -½

5. Solution : Given that Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to Since : fog = I (fog ) x = x f [g(x)] = x Diff.w.r.t x f 1 [ g (x)]. g 1 (x) = 1 Substitute : x = a f 1 [g(a)]. g 1 (a) = 1 f 1 (b). 2 = 1 f 1 (b) = 1/2 Answer 1] 1/ 2

6.If y = Tan -1 4x + Tan -1 2 + 3x 1 + 5x 2 3 2x then dy/dxis equal to 1] 1 2] 5 1 + x 2 1 + 25x 2 3] 1 4] -5 1 + 25x 2

6.Solution : y =Tan -1 4x + Tan -1 2 + 3x 1 + 5x 2 3 2x Since: Tan -1 x ±Tan -1 y = Tan x ±y 1 + xy Y = Tan -1 5x + x + Tan -1 2/3 +x 1 5x.x 1 (2/3)x Y = Tan -1 5x Tan -1 x + Tan -1 2/3 + Tan -1 x

Y = Tan -1 5x +Tan -1 2/3 diff.w.r.t x dy/dx= 5 1+25x 2 Answer 2] 5 1+25x 2

(sin x).. 7. If y = (sinx) (sin x) then dy/dx= 1] y 2 2] y 2 sin x sinx(1-logy) 1 logy 3] y 2 cot x 4] y 2 tanx 1 -logy 1 logy

7. Solution: Given that y = (sinx) (sin x).. (sin x) Y = [f(x)] y then dy = y 2 f 1 (x) dx f(x) (1 log y ) Y = ( sin x ) y dy = y 2 cosx y 2 cot x dx (1 log y ) sin x 1 log y Answer : 3] y cot x 1-logy

8. If x y = e x y, then dy / dx is equal to 1] y 2] x (1 + log x) 2 (1 + logx) 2 3] log x 4] none of these ( 1 + logx ) 2

8. Solution : Given that : x y = e x y y log x = (x y) log e e y log x + y = x y ( 1 + log x ) = x y = x 1 + log x Diff. y w.r.t x dy log x dx (1 + logx) 2 Answer : 3] log x (1 + logx) 2

9. If 3 sin (xy) + 4 cos( xy) = 5, then dy/ dx 1] -y / x 2] 3 sin (xy) + 4 cos(xy) 3 cos(xy) 4 sin ( xy) 3] 3cos (xy) + 4 sin (xy) 4 cos(xy) 3 sin (xy) 4] none of these

9. Solution: Given that 3 sin (xy) + 4 cos( xy) = 5, Take xy= k Diff. w.r.t x x dy+ y = 0 dx dy = -y dx x Answer : 1] y/x

10. If f (x)=cos -1 1 ( log x ) 2,then f 1 (e) is 1 + ( log x ) 2 1] 1 / e 2] 1 3] 2 / e 4] 2e

10. (x)=cos -1 1 ( log x ) 2 1 + ( log x ) 2 cos -1 1 f 2 ( x ) 2 Tan -1 [f(x)] 1 + f 2 (x) f (x) = 2 Tan -1 ( log x) Diff. w.r.t x f 1 ( x ) = 2 1 1 1 + ( logx) 2 x

f 1 ( x ) = 2 1 1 1 + ( logx) 2 x Substitute : x = e f 1 (e) 2 1 2 1 1 + ( log e e) 2 e 2e e Answer : 1] 1 e

11. If 2x 2 + 4xy + 3y 2 = 0, then d 2 y / dx 2 = 1] 0 2] ½ 3] 1 4] ¾ (2x+y) 2

11. Solution :Given that 2x 2 + 4xy + 3y 2 = 0, ax 2 + 2hxy + by 2 = 0 then d 2 y = 0 dx 2 Answer : 1] 0

12. ltf (x + y) = f(x). f(y) for all x and y. suppose f(5) = 2, f 1 (0) =3, then f 1 (5)= 1] 3 2] 2 3] 6 4]-1

12. Solution:Given that f (x + y) = f(x). f(y) f(5) = 2, f 1 (0) =3, then f 1 (5)= consider f ( x + 5 ) = f (x) f (5) Diff. w.r.t x f 1 ( x + 5) = f 1 ( x) f (5) Sub x = 0 f 1 ( 0 + 5 ) = f 1 (0) f (5) f 1 (5) = 3 (2) = 6 Answer : 3] 6

13. The differential co-efficient of f(sinx) w.r.tx where f (x) = logxis 1] tan x 2] cotx 3] (cosx) 4] 1/x

13. Solution: The differential co-efficient of f (sinx) w.r.tx where f (x) = logxis Diff. f (sinx) w.r.t x f 1 ( sinx) cosx since f (x) = log x 1 cosx = cot x f 1 (x) = 1 sinx x Answer: 2] cotx

14. If y = 1 + x + x 2 +.. to dy/ dx = [ x < ] 1] x/y 2] x 2 / y 2 3] -y 2 4] y 2

14. Solution : Given that : y = 1 + x + x 2 +.. to [ x < ] which represents a geometric series S = a, where r < 1 r y = 1 1 -x Diff. y.w.r.t x dy/dy = -1 (-1) = 1 (1-x) 2 (1-x) 2 = y 2 Answer : 4] y 2

15.If f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) then f 1 (o) = 1] 0 2] 1 3] -1 4] 2

15. Solution: Given that : f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) log f (x) = log ( 1+x) + log (1+x 2 ) + log (1+x n ) Diff. w.r.t x f 1 (x) = 1 2x n x n-1 f(x) 1 + x 1 + x 2 1 + x n f 1 (0) = 1 2(0) n(0) f(0) 1 + 0 1 + 0 1 + 0 f 1 (0) = 1 Answer : 2] 1

16. If y = Tan -1 log (e/x 2 ) + Tan 4 +2logx log (ex 2 ) 1-8 logx then d 2 y/dx 2 = 1] 2 1] 2 2] 1 3] 0 4] -1

16.y = Tan -1 log (e/x 2 ) +Tan -1 4 +2logx log (ex 2 ) 1-8 logx y = Tan -1 1 2 logx + Tan -1 4 + 2 log x 1 + 2 log x 1 4(2 logx) Y= Tan -1 1-Tan -1 (2logx ) + Tan -1 4 + Tan -1 (2logx ) diff. w.r.t x dy/dx= 0 d 2 y = 0 Answer : 3] 0 dx 2 Answer : 3] 0

17.If y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to terms then dy/dx = 1] sec 2 x 2] sec 2 x 2y-1 1-2y 3] Tanx 4] Tan x 2y-1 2y-1

17. y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to y = f(x) + f(x) + to dy f 1 (x) dx 2y 1 dy sec 2 x -1 Tan x dx 2y-1 2y-1 Answer : 3] Tan x 2y-1

18. Let f be a function defined for all x Є.R If f is differentiable and f (x 3 ) = x 5 ( x 0 ) then the value of f 1 ( 27) is 1]15 2] 45 3] 0 4] 10

18. Solution: Given that f (x 3 ) = x 5 ( x 0 ) Diff. w.r.t x f 1 (x 3 ) 3x 2 = 5x 4 f 1 ( 3 3 ) 3. 3 2 = 5.3 4 f 1 (27 ) = 5 (3) = 15 Answer: 1] 15

19. If log sinx y = cosx then dy/ dx= 1] [ cosx cotx sinxlog sinx] 2] y [ cosxcotx+ sin x log sinx] 3] [cosx cotx sinxlog sinx] 4] y [cosxcotx sinxlog sinx]

19. Solution: log sinx y = cosx then = Y = (sinx) cosx y = [f (x)] g(x) dy= [ f(x)] g(x) g (x) f 1 (x) + g 1 (x) log f (x) dx f(x) dy= ( sinx) cosx cosx cosx -sinx log sin x dx sinx = y [cosx cotx sinxlog sinx] Answer: 4] y [cosx cotx sinxlog sinx]

20. If y = sinx. Sin2x. sin3x.. Sinnx then dy/dx= n 1] y k cot kx 2] y k cot kx k=1 k=1 n 3] y k TAnkx 4] y k Tan kx k=1 k=1 n n

20. Solution : If y = sinx. Sin2x sin3x.. Sinnx log y = log sinx+ log sin 2x +. + log sinnx y 1 cosx 2 cos2x 3 cos3x +..+ n cosnx y sinx sin2x sin3x sinnx Y 1 = y [ cotx+ 2cot 2x +. + k cot k x] n Y 1 = y k cot kx K=1 Answer : 1] n y k cot k x K=1

21. If y = 1+ logx+ (logx) 2 + ( logx)3 + 2 3! terms then d 2 y /dx 2.. to 1] 1 / x 1] 1 / x 2] 2 / x 3] 1 4] 0

21. Solution: y = 1+ logx+ (logx) 2 + ( logx)3 +.. to 2 3! e x = 1 + x + x 2 + x 3 +. to 2! 3! y = e log x y = x dy/dx = 1 d 2 y dx 2 = 0 Answer: 4] 0

22. If y = sec x + Tanx and o < x < π. then dy secx Tanx dx 1] sec x [ secx Tanx ] 1] sec x [ secx Tanx ] 2] Tan x [ secx + tanx ] 3] secx [secx + Tanx] 4] Tan x [ secx Tanx]

22. Solution : If y = sec x + Tanx and o < x < π. secx Tanx y = (sec x + Tanx) 2 sec 2 x Tan 2 x y = secx + Tan x dy = secx Tan x + sec 2 x dx = secx [Tan x + secx] Answer: 3] secx [ Tan x + secx]

23. If g is the inverse function of f and f 1 (x) = 1 then g 1 (x) is equal to 1 + x n, 1] 1+(g (x)) n 2] 1 g (x) 3] 1 + g (x) 4] 1 (g(x)) n

23. Solution : Given that: g is the inverse function of f and f` (x) = 1 1 + x n, and also f = g -1 (fog) = I ( identity function) (fog) x = x f ( g (x)] = x diff. w.r.t x f 1 [g(x)] g 1 (x) = 1 1 g 1 (x) = 1 1+ (g(x) n g (x) = 1+ [g(x) n Answer 1] 1 + [ g (x)] n

24. If f (x) is an odd differentiable function defined on (-, ) such that f 1 (3) = 2, then f 1 (-3) equals : 1] 0 1] 0 2] 1 3] 2 4] 4

24. Solution : Given that f (x) is an odd differentiable function : f (-x) = -f (x) Diff w.r.t x f 1 (-x) (-1) = - f 1 (x) f 1 (-x) = f 1 (x) since f 1 (3) = 2 f 1 (-3) = f 1 (3) f 1 (-3) = 2 Answer: 3] 2

25.A differentiable function f(x) is such that f (1) = 7 and f 1 (1) = 1/7. If f -1 exists and f -1 = g, then 1] g 1 (7) = 1/7 2] g 1 (7) = 7 3] g 1 (1) = 1/7 4] g 1 (1) = 8

25.Solution : Given that : f -1 = g, f(1) = 7, and f 1 (1) = 1/7 go f = I ( gof) x = x g [ f (x)] = x g 1 [(f(x)]. f 1 (x) =1 g 1 [f(1)]. f 1 (1) = 1 g 1 (7). 1/7 = 1 g 1 (7) = 7 Answer 2] g (7) = 7

-1 2 2 26. If x = e Tan [y x x] then dy/dx= 1] 2x [1 + Tan x (log x )] + x sec 2 ( logx) 2] 2 x [ 1 + Tan ( log x) ] + sec 2 ( log x ) 3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx) 4] 2x [ 1 + tan ( logx) ] + sec 2 ( logx)

-1 2 2 26. Solution : Given that x = e Tan [y x x ] Tan (logx) = y x 2 x 2 x 2 Tan (logx) = y x 2 Y = x 2 + x 2 Tan ( logx) dy/dx=2x + x 2 sec 2 (logx) + Tan ( logx) ( 2x) x Answer :3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx)

. 27. If x = a [θ-sinθ], y = a[1-cosθ].then dy/dx = 1] cotθ/2 2] Tan θ/2 3] ½ coesec 2 θ/2 4] -½ cosec 2 θ/2

. 27. Solution : Given that If x = a [θ-sinθ], y = a[1-cosθ]. dy/dx = a [1-cosθ] a sinθ = 2sin 2 θ/2 2 sin θ/2 cosθ/2 =Tan θ/2 Answer 2] Tan θ/2

. 28. If log y = m tan -1 x, then 1] (1 +x 2 ) y 2 + (2x + m ) y 1 = 0 2] (1 +x 2 ) y 2 + (2x - m ) y 1 = 0 3] (1 +x 2 ) y 2 - (2x + m ) y 1 = 0 4] (1 +x 2 ) y 2 - (2x - m ) y 1 = 0

. 28. Solution : Given that log y = m tan -1 x, y 1 = m y 1+x 2 (1+x 2 ) y 1 = my (1 + x 2 ) y 2 + y 1 2x = my 1 ( 1 + x 2 ) y 2 + 2 xy 1 my 1 = 0 ( 1 + x 2 ) y 2 + ( 2 x m ) y 1 = 0 Answer : 2] ( 1 + x) y + ( 2x m) y = 0

. 29. If y2 2x 2 = y, then dy/dxat (1, -1 ) is 1] -4/3 2] 4/3 3] ¾ 4] -3/4

. 29. Solution: Given that y 2-2x 2 - y = 0 dy/dx = - (diff. w.r.t x keeping y as constant) = - (-4x) (diff. w.r.t y keeping x as constant) (2y-1) dy/dx = 4x 2y-1 dy 4(1) (4) -4 dx (1,-1) 2(-1) -1-3 3 Answer : 1] -4/3

. 30. Derivative of f (logx) w.r.t x where f (x) = e x 1] e x 2] log x 3] 1/x 4] 1

. 30. Solution :diff f (logx) w.r.t x = f 1 ( log x ) 1 f (x) = e x x f 1 (x) = e x = x 1 f 1 ( logx) = e logx = 1 x =x Answer: 4] 1

. 31. If f (x) = sin [π / 2 [x]-x 5 ], 1 <x<2, where[x] denotes the greatest integer.less than or equal to x, then f 1 (5π/2) = 1] 5 (π /2) 4/5 2] -5 (π /2) 4/5 3] 0 4] none of these

. 31. Solution : Given that f (x) = sin [π/2 [x]-x 5 ], 1 < x < 2, [x]=1 f (x) = sin [π/2 (1) x 5 ], f 1 (x) = cos [π/2 x 5 ]. [-5x 4 ] f 1 (5π/2) = cos [π/2 5π/2 ) 5 ].(-5)(5π/2 ) 4 = - 5 (π/2) 4/5 Answer 2] - 5 (π/2) 4/5

. 32. If y = cos -1 2cosx -3sinx then dy = 1] 2 2] -2 3] -1 4] 1 13 dx

. 32. Solution : y = cos -1 2cosx -3sinx 13 y = cos -1 2 cosx - 3 sinx 13 13 cosα = 2/ 13 sinα3/ 13 y = cos -1 [cosα cosx sinα sinx] y = cos -1 [cos(α + x)] y = α + x dy/dx = 1 Answer: 4] 1

. 33. If y = cos 2 3x/2 sin 2 3x/2, then d 2 y/dx 2 is 1] 9y 2] -3 1 y 2 3] 3 1 y 2 4] -9y

. 33. Solution : Given that y = cos 2 3x/2 sin 2 3x/2 y= cos 3x dy/dx = - 3 sin 3x d 2 y/dx 2 = -9 cos 3x = -9y Answer: 4]-9y

. 34. If y = log 5 ( log 5 x ) then dy/dx = 1] 1 x log 5 x 2] 1 x log 5 x.log 5 x 3] 1 x log 5 x.(log5) 2 4] none of these

. 34. Solution : Given that: y = log 5 ( log 5 x ) dy 1 dx (log5) (log 5 x) x (log5) 1 = x (log 5 x) (log5) 2 Answer:3] 1 x (log 5 x) (log5) 2

. 35. If f (x ) =1+nx+ n (n-1) x 2 + n ( n-1) (n-2) x 3 2 6 +.. + x n then f (1) = 1] n ( n-1 ) 2 n-1 2] (n-1)2 n-1 3] n (n-1)2 n-2 4] n (n-1)2 n

. 35. Solution : Given that: f (x ) = 1 + nx+ n (n-1) x+ n ( n-1) (n-2) x 2 +.+ x n f (x) = ( 1+x) n f 1 (x) = x ( 1 + x ) n-1 f 11 (x) = n ( n-1) ( 1+x) n-2 f 11 (1) = n ( n-1) ( 1+1) n-2 = n ( n-1) 2 n-2 2 6 (by binomial theorem) Answer : 3]n ( n-1) 2 n-2

36. If y = sec -1 x+1 + sin -1 x - 1, then dy = 1] x - 1 x + 1 ` 2] x + 1 3] 0 4] 1 x - 1 x-1 x+1 dx

. 36. Solution : Given that: y = sec -1 x+1 + sin -1 x - 1 x -1 x +1 y = cos -1 x - 1 + sin -1 x - 1 y = π / 2 dy/dx = 0 x +1 x +1 Answer :3] 0

. 37.If y = tan -1 1+sinx+ 1 sinx, 0 <x< π/2 Then dy/dx = 1] ½ 2] -½ 3] x/2 4] x/2 1+sinx 1 sinx

. 37. Solution : Given that: y = tan -1 1+sinx+ 1 sinx 1+sinx 1 sinx 0 <x< π/2 0 <x/2< π/4 y = tan -1 Cos x/2 > sin x/2 cosx/2 + sin x/2+ cos x/2-sinx/2 cosx/2 + sin x/2- cos x/2+sinx/2 y = tan -1 [cotx/2] y = π/2 x/2 dy/dx = - ½ Answer :2] - ½

. 37. 38. y = sin -1 (3x 4x 3 ), then dy/dx at x = 1/3, is 1] -9 2 4 2] 9 2 3] 9 2 4 4] 9/8

. 37. 38. Solution : Given that: y = sin -1 (3x 4x 3 ) y = 3 sin -1 x dy/dx = 3 1 - x dy/dx = 3 9 9 2 1-1/9 8 4 Answer :3] 9 2 4

. 37. 39. If y = tan -1 1 + tan -1 1 + tan -1 1 1 + x+x 2 x 2 +3x+3 x 2 +5x+7. to n terms then y 1 (0) = 1] -1/n 2 +1 2] n 2 /(n 2 +1) 1] -1/n 2 +1 2] n 2 /(n 2 +1) 3] n 2 /n 2 +1 4] n / n+1

. 37. 39. If y = tan -1 1 + tan -1 1 + tan -1 1 1 + x+x 2 x 2 +3x+3 x 2 +5x+7 +..+ to n terms y = tan -1 (x+1)-x tan -1 (x+2) (x+1) 1+ (x+1)x 1+ ( x+2) ( x + 1) tan -1 (x+n)-(x+n-1) 1 + ( x + n) ( x + n-1) Y= tan -1 (x+1)-tan 1 x + tan -1 (x+2) tan -1 (x+1).+ tan -1 (x+n) tan -1 (x+n-1) Y=tan -1 (x+n) tan -1 x y 1 = 1/1+(x+n) 2 1/1+x 2 y 1 (0)=1/(1+n 2 )-1 Answer: 2] n 2 /(n 2 +1)