Frobenius integrable decompositions for PDEs

Σχετικά έγγραφα
Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Second Order Partial Differential Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2 Composition. Invertible Mappings

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

The Simply Typed Lambda Calculus

Statistical Inference I Locally most powerful tests

Example Sheet 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Concrete Mathematics Exercises from 30 September 2016

D Alembert s Solution to the Wave Equation

Envelope Periodic Solutions to Coupled Nonlinear Equations

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Approximation of distance between locations on earth given by latitude and longitude

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Space-Time Symmetries

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Homework 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Congruence Classes of Invertible Matrices of Order 3 over F 2

C.S. 430 Assignment 6, Sample Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Uniform Convergence of Fourier Series Michael Taylor

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

( y) Partial Differential Equations

derivation of the Laplacian from rectangular to spherical coordinates

EE512: Error Control Coding

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Matrices and Determinants

Solutions to Exercise Sheet 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SPECIAL FUNCTIONS and POLYNOMIALS

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Cyclic or elementary abelian Covers of K 4

Section 7.6 Double and Half Angle Formulas

Other Test Constructions: Likelihood Ratio & Bayes Tests

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Variational Wavefunction for the Helium Atom

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.3 Forecasting ARMA processes

Lecture 34 Bootstrap confidence intervals

Every set of first-order formulas is equivalent to an independent set

Problem Set 3: Solutions

Solution Series 9. i=1 x i and i=1 x i.

On a four-dimensional hyperbolic manifold with finite volume

Περίληψη (Executive Summary)

Homework 8 Model Solution Section

Generating Set of the Complete Semigroups of Binary Relations

Lecture 26: Circular domains

High order interpolation function for surface contact problem

Fractional Colorings and Zykov Products of graphs

( ) 2 and compare to M.

Higher Derivative Gravity Theories

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

The Pohozaev identity for the fractional Laplacian

Finite Field Problems: Solutions

Exercises to Statistics of Material Fatigue No. 5

Test Data Management in Practice

Numerical Analysis FMN011

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Srednicki Chapter 55

Math221: HW# 1 solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1 String with massive end-points

Commutative Monoids in Intuitionistic Fuzzy Sets

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Areas and Lengths in Polar Coordinates

Derivation of Optical-Bloch Equations

On the Galois Group of Linear Difference-Differential Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Strain gauge and rosettes

A summation formula ramified with hypergeometric function and involving recurrence relation

Second Order RLC Filters

SOLVING CUBICS AND QUARTICS BY RADICALS

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Classification of Single Traveling Wave Solutions to the Generalized Strong Nonlinear Boussinesq Equation without Dissipation Terms in P = 1

Section 9.2 Polar Equations and Graphs

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Notes on the Open Economy

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

A General Note on δ-quasi Monotone and Increasing Sequence

w o = R 1 p. (1) R = p =. = 1

Lecture 12: Pseudo likelihood approach

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Transcript:

Frobenius integrable decompositions for PDEs GAO Liang Department of Applied Mathematics, School of Science, Northwestern Polytechnical University Xi an, Shaanxi 71019, P.R. China gaoliang_box@16.com Joint work with Wen-Xiu Ma and Wei Xu

Outline 1. Introduction. Specific PDEs possessing Frobenius integrable decompositions (FIDs) 3. Conclusions

1. Introduction Many PDEs exhibiting soliton phenomena appeared in many science subjects fluid physics, solid physics, elementary particle physics, biological physics, superconductor physics, It is a quite fascinating research topic that how to solve such PDEs to obtain interesting solutions including solitons, which attracts much attention of mathematicians, physicists and dynamicists.

In the past several decades, there have been many efficient methods for constructing exact solutions to nonlinear PDEs. Though the solving methods are diverse, appropriate reductions similarity reductions, symmetry constraints, travelling wave reductions To reduce given PDEs to simpler PDEs and/or integrable ODEs.

W.X. Ma, H.Y. Wu, J.S. He, Partial differential equations possessing Frobenius integrable decompositions, Physics Letters A, 364 (007) 9-3. They presented FIDs for two classes of nonlinear evolution equations (NEEs) with logarithmic derivative Bäcklund transformations in soliton theory. u ψ = (ln φ) x =, φ u λφ ψ = (ln φ) xx =. φ The discussed NEEs are transformed into systems of Frobenius integrable ODEs with cubic nonlinearity.

F.C. You, T.C. Xia, J. Zhang, Frobenius integrable decompositions for two classes of nonlinear evolution equations with variable coefficients, Modern Physics Letters B, 3 (1) (009) 1519-154 They obtained two classes of PDEs with variable coefficients possessing FIDs, including the KdV equation the potential KdV equation the Boussinesq equation the generalized BBM equation,

Puu (,, u, u, ) = 0 t x xt What is FIDs? u = v( Φ ) = v( Φ( x, t)), Φ =Α( Φ), Φ =Β( Φ), x t Then we say that the equation possesses a FID.

FIDs generalize compatible time-space decompositions requiring Hamiltonian structures, which aim to guarantee the Liouville integrability ([1, ]). [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. [] W.X. Ma, in: A. Scott (Ed.), Encyclopedia of Nonlinear Science, Taylor & Francis, New York, 005, pp. 450-453. Through FIDs, a PDE problem can be transformed into two associated ODE problems. Thus, the existence of solutions can be guaranteed easily by the theory of ODEs.

Our work Present two classes of PDEs of specific type possessing FIDs by introducing some general ansatzes on FIDs, motivated by the works about FIDs by Ma and You et al. Two kinds of functions for Bäcklund transformations are taken in our constructive computation algorithm, and the associated Frobenius integrable ODEs possess higher-order nonlinearity.

. Specific PDEs possessing FIDs Ruu (,, u, u, u, u, u, u, u, u, u, ) = 0. x xx xxx xxxx 5x 7x 9x t tt xxt Many interesting wave equations belong to this class of PDEs, the KdV, the potential KdV, the generalized seventh-order KdV, the Burgers, the spatially periodic third-order dispersive PDE, the b-equation,...

Based on the symmetry constrains theory [1-4], [1] W.X. Ma, W. Strampp, Physics Letters A, 185 (1994) 77. [] W.X. Ma, Journal of the Physical Society of Japan, 64 (1995) 1085. [3] W.X. Ma, Z.X. Zhou, Journal of Mathematical Physics, 4 (001) 4345. [4] Y.B. Zeng, W.X. Ma, Journal of Mathematical Physics, 40 (1999) 656. we consider the following case

T T Φ= ( φψ, ) = ( φ( xt, ), ψ( xt, )), which satisfies two Frobenius integrable systems: a real parameter φ = ψ, ψ = λφ, x x undetermined polynomials φ = θ ( φ, ψ), ψ = θ ( φ, ψ). t 1 t It is easy to see that the equation can be generated from the Schrödinger spectral problem with zero potential.

Then, we have the following mixed derivatives for the considered FIDs: and φxt = ψt = θ( φ, ψ), φtx = θ1, φψ + λθ1, ψφ, ψ xt = λφt = λθ1( φ, ψ ), ψ tx = θ, φψ + λθ, ψφ.

Thus, we get and accordingly, θ ( φψ, ) = θ ψ+ λθ φ, 1, φ 1, ψ λθ ( φ, ψ) = θ ψ + λθ φψ + λ θ φ + λ( θ φ+ θ ψ). 1 1, φφ 1, φψ 1, ψψ 1, φ 1, ψ the only condition on θ 1

To search for θ1 which satisfies λθ ( φ, ψ) = θ ψ + λθ φψ + λ θ φ + λ( θ φ + θ ψ). 1 1, φφ 1, φψ 1, ψψ 1, φ 1, ψ Take the following ansatze natural numbers θ m1 m i j 1 = bi, jφψ i= 0 j= 0, arbitrary constants

when m1 = m = 7 θ = λ b φ λ b φ ψ + 3λ b φ ψ + 3λ b φ ψ 3λb φ ψ 3λb φ ψ 3 7 3 6 5 4 3 3 4 5 1 1,6 0,7 1,6 0,7 1,6 0,7 + b φψ + b ψ + λ b φ + λ b φ ψ λb φ ψ λb φ ψ + b φψ 6 7 5 4 3 3 4 1,6 0,7 1,4 0,5 1,4 0,5 1,4 + b ψ λb φ λb φ ψ + b φψ + b ψ + b φ+ b ψ. 5 3 3 0,5 1, 0,3 1, 0,3 1,0 0,1 θ = λ( λ b φ + 6λ b φ ψ + 9λ b φ ψ 1λb φ ψ 15λb φ ψ + 6b φψ 3 6 5 4 3 3 4 5 0,7 1,6 0,7 1,6 0,7 1,6 + 7b ψ + λ b φ 4λb φ ψ 6λb φ ψ + 4b φψ + 5b ψ λb φ 6 4 3 3 4 0,7 0,5 1,4 0,5 1,4 0,5 0,3 + b φψ + 3 b ψ + b ) φ + ( 7λ b φ 6λ b φ ψ + 15λ b φ ψ 3 6 3 5 4 1, 0,3 0,1 1,6 0,7 1,6 + 1λ b φψ 9λb φψ 6λb φψ + b ψ + 5λ b φ 3 3 4 5 6 4 0, 7 1,6 0,7 1,6 1,4 + 4λ b φ ψ 6λb φ ψ 4λb φψ + b ψ 3 3 4 0,5 1,4 0,5 1,4 3λb φ λb φψ + b ψ + b ) ψ. 1, 0,3 1, 1,0

On the other hand, we consider the following specific type of the polynomial R Ruu (,, u, u, u, u, u, u, u, u, u, ) x xx xxx xxxx 5x 7x 9x t tt xxt = d u+ d u + d u + d u + d u + d u + d uu + d uu + d uu 0,0 0,1 x 0, xx 0,3 xxx 0,4 xxxx 1,0 1,1 x 1, xx 1,3 xxx + d uu + d u + d uu + d uu + d uu + d u + d u u + d 1,4 xxxx,0 x,1 x xx, x xxx,3 x xxxx 3,0 xx 3,1 xx xxx 3, u u + d u + d u u + d u + e u + eu + e u xx xxxx 4,0 xxx 4,1 xxx xxxx 5,0 xxxx 0 5x 1 7x 9x + euu + euu + euu + fuu + fuu + fuu + fu 3 3 5x 4 7x 5 9x 0 x 1 xxx 5x 3 x + fuu + fuuu + gu+ gu + gu + gu 3 4 x 5 x xx 0 t 1 tt xxt 3 xxt.

Theorem (a) If we take a Bäcklund transformation ψ u = (ln φ) x = φ from the Frobenius integrable systems φ = ψ, ψ = λφ, x x φ = θ ( φ, ψ), ψ = θ ( φ, ψ), t 1 t to the PDE Puu (,, u, u, ) = 0, t x xt

θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ λb φ ψ 3 7 5 3 4 6 5 3 1 1,6 1,6 1,6 1,6 1,4 1,4 + b φψ λb φ + b φψ + b φ + b ψ, 4 3 1,4 1, 1, 1,0 0,1 θ = λ(6λ b φ ψ 1λb φ ψ + 6b φψ 4λb φ ψ + 4b φψ + b φψ + b ) φ 5 3 3 5 3 3 1,6 1,6 1,6 1,4 1,4 1, 0,1 + (15λ b φψ 7λ b φ 9λb φψ + b ψ + 5λ b φ 6λb φψ 4 3 6 4 6 4 1,6 1,6 1,6 1,6 1,4 1,4 + b ψ 3 λb φ + b ψ + b ) ψ, 4 1,4 1, 1, 1,0

R = (4λ e + 8λd 40λe + 4d d 6 d ) u u + f u u + f u u + f u 3 3 4,3 3 0,4,1 1,3 x 1 xxx 5 x 3 x + d uu + d uu + (3d 40λ f 60e + d 3 f 1/ f + 1 d ) uu u 1,4 xxxx 1,3 xxx, 0 3,0 1 3 1,4 x xx + d uu + e uu + e uu + 630e u 35e u u + d u u 1, xx 3 5x 4 7x xxxx 4 xxx xxxx,3 x xxxx + d u u + d u + d u u (56λ e + 64λ e + 16λ f + 16λ e 4 3 3, x xxx 3,0 xx,1 x xx 1 0 + 4λ f 8λ d + 4λb g + 4λd λd + b g + d ) u u / λ 1 1,4 0,1 0,3 1, 0,1 0 0,1 + (4λ e 88λ e 8λ d + b g + λd + λd 3 3 4,3 0,1 1,1 16λd0,4 1,3 + d ) uu + (105e 3/4d + 5/f 3/4 b g ) u xx u xxxx 0, x 1 xxt + gu 3 xxt. 4,0 0,1 3 + d u (140λ e + d + 10 e ) u u + d u 0,4 xxxx 4,3 3 xx xxx 0,3 xxx + d u + e u + eu + e u + d u (4λ c g 3 0, xx 9x 1 7x 0 5x 0,1 x 0,1 3 + 7936λ e + 4λ d 7λ e + 16λ e 4 3 3 4,0 1 0 λ d + λ f λb g λd, 3 0,1 0,3 + b g + d ) u / λ + g u + g u + gu 0,1 0 0,1 x 0 t 1 tt x + d 4,0 u xxx

(b) If we take a Bäcklund transformation u = (ln φ) xx = λφ ψ φ θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ λb φ ψ 3 7 5 3 4 6 5 3 1 1,6 1,6 1,6 1,6 1,4 1,4 + b φψ λb φ + b φψ + b φ + b ψ, 4 3 1,4 1, 1, 1,0 0,1 θ = λb φψ+ 3λ b φψ 3λb φψ + λb φψ λb φψ 3 6 4 3 5 4 3 1,6 1,6 1,6 1,4 1,4 λb φ ψ + λb φ+ b ψ + b ψ + b ψ + b ψ, 7 5 3 1, 0,1 1,6 1,4 1, 0,1

R = f uu + fuu + fuuu + (44350λ e 35λ d 3584λ e 10λe + 8λ f λ f + λ f 3 4 x 1 xxx 5 x xx 4,1 4 3 1 4 5 360e + 1d + 6 d ) u u + (4d 5040e + 56 e ) u u + e uu + e uu + d uu + d uu 0 1,3,1 x 4,1 4 5x 4 7x 3 5x 1,4 xxxx 1,3 xxx + d uu + (40λd 30400λe + 1680λe + 30d,3 + 18d3,1 5040e1 + 90e3 3 f1 + 1/ 4 f4 1, xx 4,1 4 3/ f ) u + d u u + d u u + d u u + d u u + d u + d u u + (3λ d 3 3 5 x,3 x xxxx,1 x xx 3, xx xxxx 4,1 xxx xxxx 3,0 xx 3,1 xx xxx 3, 16λ d 4λ d + 6b g + λd + 6 d ) u + (6580λ e 64λ d 64λ e 16λ d 3 3 3 1,4 3,0 0,1 1 1, 0, 4,1 4,3 3,1 1 3 0 1,3,1 0,1 0,3 x 1,4 3, 0,4 1, x 1,4 3,0 x xxx 9x 1 7x 0 5x 0,4 xxxx 0,3 xxx 0, xx 0,1 3 3, xxx 16λ d + 403λ e 16λ e + 40λe 4λd 4λd + 1b g + 1 d ) uu + (10λd 4λ d + 30d 3 / d ) u (5 / d + 3 / 4 d ) u u + e u + eu + e u + d u + d u + d u ( b g + 5/4 d ) u 4 3 (4λb g + 16λ d + 4 λd ) u (56λ e + 64λ e + 16λ e 0,1 1 0,4 0, 1 0 + + + + + + + 4λb0,1g 4 λd0,3 b0,1g0) ux g0ut g1utt guxxt g3uxxt.

Take a special reduction as follows: Ruu (,, u, u, u, u, u, u, u, u, u, ) x xx xxx xxxx 5x 7x 9x t tt xxt = d u + d u + d u + d u + d u + d uu + d uu + d uu 0,0 0,1 x 0, xx 0,3 xxx 0,4 xxxx 1,1 x 1, xx 1,3 xxx + d u + d u u + d u u + d u u + d u u + e u + eu,0 x,1 x xx, x xxx,3 x xxxx 3,1 xx xxx 0 5x 1 7x + eu + euu + fu u + fu u + fu u + fu + fuu 3 3 9x 3 5x 0 x 1 xxx 5x 3 x 4 x 5 x xx 0 t 1 tt xxt. + fuuu + gu + gu + gu

For the u ψ = (ln φ) x = φ The corresponding results 3 7 5 3 4 6 5 θ1 = λ b1,6φ + 3λ b1,6 φ ψ 3λb1,6φ ψ + b1,6 φψ + λ b1,4φ λb φ ψ + b φψ λb φ + b φψ + b φ + b ψ, 3 4 3 1,4 1,4 1, 1, 1,0 0,1 θ = λ (6λ b φ ψ 1λb φ ψ + 6b φψ 4λb φ ψ + 4b φψ + b φψ 5 3 3 5 3 3 1,6 1,6 1,6 1,4 1,4 1, + b ) φ+ ( 7λ b φ + 15λ b φ ψ 9λb φ ψ + b ψ + 5λ b φ 3 6 4 4 6 4 0,1 1,6 1,6 1,6 1,6 1,4 6λb φ ψ + b ψ 3 λb φ + b ψ + b ) ψ, 4 1,4 1,4 1, 1, 1,0

R = (8 λ d 40 λe + 4 d 6 d d ) u u + f u u 4e u u + f u 3 3,3 3 0,4 1,3,1 x 1 xxx 1 5x 3 x + ( 336λ e λ d 4λ f + λ f 6b g 6 d + d + d ) uu 1, 1 3 0,1 0,3 1,,0 + d uu + (1680λ e + 3d 60e 3 f 1/ f ) uu u + d 1, xx 1, 0 1 3 x xx 1,3 xxx + e uu + d u u + d u u 3 5x,1 x xx, x xxx,3 x xxxx,0 x 3,3 0,1 1 0,4 1,3,1 0,,3 3 xx xxx 0, xx 0,3 xxx 0,4 xxxx 3 0 5x 1 7 x 1, 0 λ f3 λb0,1g λ d0,3 λ d,0 0,1 0 + d uu + d u + (4λ e 8λ d + b g 16λ d + λ d + λ d + d ) uu (d + 10 e ) u u + d u + d u + d u + e u + eu + (7λ e + λ d 16λ e + + b g ) u + g u xxt. x + g u + g u 0 t 1 tt x uu x

It includes many nonlinear equations, the potential KdV equation gu 0 t + d0,3uxxx + 6d0,3ux = 0, the Burgers equation gu 0 t + d0,uux + d0,uxx = 0, b - equation 1 1 gu 0 t uxxt uux = ( 3 uu x xx + uuxxx ). λ a general case of the famous Rod equation [1] [1] H.H. Dai, Y. Huo, Proceedings of the Royal Society of London Series A, 456 (000) 331. λ

For the u = (ln φ) xx = λφ ψ φ The corresponding results θ = λ b φ + 3λ b φ ψ 3λb φ ψ + b φψ + λ b φ 3 7 5 3 4 6 5 1 1,6 1,6 1,6 1,6 1,4 λ b φ ψ + b φψ λb φ + b φψ + b φ + b ψ, 3 4 3 1,4 1,4 1, 1, 1,0 0,1 θ = λ b φ ψ + 3λ b φ ψ 3λb φ ψ + λ b φ ψ λb φ ψ 3 6 4 3 5 4 3 1,6 1,6 1,6 1,4 1,4 λb φ ψ + λb φ+ b ψ + b ψ + b ψ + ψ b 7 5 3 1, 0,1 1,6 1,4 1, 1,0,

R = fuu + fuu + (44350λ e 10λ e + 8λ f λ f + λ f + 1 d + 6 d 3 4 x 1 xxx 3 1 4 5 1,3,1 360 e ) u u + d uu + d uu + e uu + d u u + d u u + (30 d 0 x 1, xx 1,3 xxx 3 5x 3,0 xx xxx,1 x xx,3 + 18d 30400λ e 5040 e + 90 e 3 f + 1/ 4 f 3 / f ) u + e u 3 3,0 1 3 1 4 5 x 9x + d u + f uu 0,3 xxx 5 x u + d u + e u + eu + ( 30 d 3 / d ) u xx 0,4 xxxx 0 5x 1 7x 0,4 1, x + ( 4/3λ d 16 λ d ) u ( b g + 1/3 λ d ) u ( 64λ e 3 1, 0,4 0,1 1 1, xx 1 + 56λ e + 16λ e + 4λ c g + 4λ d + b g ) u 4 0 0,1 0,3 0,1 0 + d u u 5040 e u u + (6580λ e 3,3 x xxxx 5x 16λ d 16λ d + 403 λ e,3 3,0 1 16λ e3 4λ d1,3 4λ d,1 + 40λ e + 1b g 0 0,1 + 1 d ) uu + g u 0,3 x 0 + gu + gu 1 tt xxt. t x

It includes: the KdV equation gu+ 1d uu + d u = 0, 0 t 0,3 x 0,3 xxx the family of spatially periodic third-order dispersive PDE 1 b0,1g0ut b0,1g0ux + b0,1d0,3uxxx d0,3uxxt = b0,1αλ ( u + ux uuxx ) x,

the generalized seventh-order KdV equation 3 g u + (λf 10λe + 8 λ f ) uu + (30d + 18d f + 90e 5040e 3 f ) u + fuuu + fuu + d u u + d uu + euu + eu = 0, 3 0 t 5 3 1 x,3 3,0 5 3 1 1 x 5 x xx 1 xxx 3,0 xx xxx,3 x xxxx 3 5x 1 7x which has two well-known special cases [1]: the Lax seventh-order equation the Sawada-Kotera-Ito seventh-order equation [1] M. Ito, Journal of the Physical Society of Japan, 49 (1980) 771

3. Conclusions Through two Bäcklund transformations of dependent variables, ninth-order PDEs possessing the FIDs have been obtained. Two special classes of such nonlinear PDEs possessing special FIDs have been presented under a reduction. The obtained PDEs contain various significant nonlinear wave equations.

The approach adopted here can be easily applied to nonlinear variable coefficient PDEs, which are quite intriguing in ocean dynamics, fluid mechanics, plasma physics, etc. A question? If we take the Möbius transformation u = ( aϕ + bψ)/( cϕ + dψ), ( ad bc 0) instead of the logarithmic derivative type Bäcklund transformations, what we will get?

Thank Prof. Wen-Xiu Ma, Prof. Xingbiao Hu and Prof. Qingping Liu! Thank you for your attention!