Τµήµα Πληροφορικής και Τηλεπικοινωνιών

Σχετικά έγγραφα
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αλγόριθµοι και Πολυπλοκότητα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΣΗΜΕΙΩΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΚΑΘΗΓΗΤΗΣ: ΝΙΚΟΛΑΟΣ ΜΙΣΥΡΛΗΣ

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους

Ορισμός κανονικής τ.μ.

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Κβαντική Επεξεργασία Πληροφορίας

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Αλγόριθµοι και Πολυπλοκότητα

Κβαντική Επεξεργασία Πληροφορίας

P (B) P (B A) = P (AB) = P (B). P (A)

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας

Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Αντώνιος Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής κ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Λογικός Προγραμματισμός Ασκήσεις

Εισαγωγή στους Αλγορίθμους

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Μοντέρνα Θεωρία Ελέγχου

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Διοικητική Λογιστική

Επεξεργασία Στοχαστικών Σημάτων

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Μοντέρνα Θεωρία Ελέγχου

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Γενική Φυσική Ενότητα: Ταλαντώσεις

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Λογικός Προγραμματισμός Ασκήσεις

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Διδακτική των εικαστικών τεχνών Ενότητα 1

Διδακτική των εικαστικών τεχνών Ενότητα 3

Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Βέλτιστος Έλεγχος Συστημάτων

Διδακτική των εικαστικών τεχνών Ενότητα 2

Παιδαγωγική ή Εκπαίδευση ΙΙ

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2

Σχεδίαση Μεικτών VLSI Κυκλωμάτων Ενότητα 9: Ευστάθεια και Αντιστάθμιση Συχνότητας

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Διδακτική της Πληροφορικής

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Μηχανολογικό Σχέδιο Ι

Μηχανές Πλοίου ΙΙ (Ε)

Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Μοντέρνα Θεωρία Ελέγχου

Εισαγωγή στις Επιστήμες της Αγωγής

Μοντέρνα Θεωρία Ελέγχου

Βέλτιστος Έλεγχος Συστημάτων

Κβαντική Επεξεργασία Πληροφορίας

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Α-Κεφάλαιο 4: Διάχυση και εμφύτευση Ιόντων. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι

Ψηφιακή Επεξεργασία Εικόνων

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ

Διδακτική των εικαστικών τεχνών Ενότητα 2

Φιλοσοφία της Ιστορίας και του Πολιτισμού

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Α-Κεφάλαιο 3: Οξείδωση του πυριτίου. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 7: Αλγόριθμοι γραμμικής άλγεβρας

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος

Ψηφιακή Επεξεργασία Εικόνων

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Μοντέρνα Θεωρία Ελέγχου

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Μαθηματική Ανάλυση Ι

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 3: Συναρτήσεις

Transcript:

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών 2 Σεπτεµβρίου 2015 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 35

Περιεχόµενα 1 Εισαγωγή Φυσική διάταξη Κόκκινη-Μαύρη διάταξη 2 Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Ορισµοί Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 2 / 35

Εισαγωγή Φυσική διάταξη στο Ω = {(x, y) : 0 x l 1, 0 y l 2 }. u f(x, y) u g(x, y) u x y = 0 (1) 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 3 / 35

Φυσική διάταξη u ij = l iju i 1,j + r iju i+1,j + t iju i,j+1 + b iju i,j 1 (2) t i, j + 1 l r i 1, j ij i + 1, j i, j 1 k k 2 l ij = 2(k 2 + h 2 ) k 2 t ij = 2(k 2 + h 2 ) (1+ 12 ) ( hfij, r ij = k2 2(k 2 +h 2 ) 1 1 ) 2 hfij, (1 12 ) ( ) kgij, b ij = k2 2(k 2 +h 2 ) 1+ 1 2 kgij, h = l1 M 1 + 1, k = l1, fij = f(ih, jk), gij = g(ih, jk). M 2 + 1 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 4 / 35

Φυσική διάταξη Au = b (3) όπου A = M 1 T 1 0 B 2 M 2 T 2 B 3 M 3 T 3......... B N 1 M N 1 T N 1 0 B N M N. (4) Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 5 / 35

Κόκκινη-Μαύρη διάταξη Κόκκινη-Μαύρη διάταξη - Παραλληλία. Au = b 15 7 16 8 5 13 6 14 11 3 12 4 όπου A = ( ) D1 F E D 2 (5) 1 9 2 10 D 1, D 2 τετραγωνικοί διαγώνιοι. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 6 / 35

Αδιάσπαστοι πίνακες Ορισµός Για n 2, ο A C n n λέγεται διασπάσιµος (reducible) αν υπάρχει ένας n n µεταθετικός πίνακας Ρ τέτοιος ώστε [ ] PAP T A11 A = 12 O A 22 (6) όπου A 11 είναι ένας r r υποπίνακας και A 22 είναι ένας(n r) (n r) υποπίνακας, µε 1 r < n. Αν δεν υπάρχει τέτοιος µεταθετικός πίνακας τότε ο Α λέγεται αδιάσπαστος (irreducible). Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 7 / 35

Αδιάσπαστοι πίνακες Η έννοια της διάσπασης είναι ιδιαίτερα σηµαντική καθώς το αρχικό σύστηµα µπορεί να µετασχηµατιστεί στο Au = k, όπου A = PAP T είναι της µορφής (6). Στην περίπτωση αυτή έχουµε A 11 u 1 + A 12 u 2 = k 1 A 22 u 2 = k 2 (7) οπότε το αρχικό σύστηµα υποβιβάζεται σε δύο µικρότερης τάξης συστήµατα, τα οποία διατηρούν µεταξύ τους τη σχέση των εξισώσεων µε τους αγνώστους και µπορούν να επιλυθούν ανεξάρτητα από το αρχικό σύστηµα. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 8 / 35

Αδιάσπαστοι πίνακες και Γραφήµατα Ορισµός Ενα κατευθυνόµενο γράφηµα είναι ισχυρά συνεκτικό αν για κάθε Ϲεύγος κόµβων (P i, P j ), υπάρχει ένα µονοπάτι από τον P i στον P j και από τον P j στον P i. ηλαδή, οι κόµβοι P i και P j ϐρίσκονται πάνω σε ένα κύκλο. Παράδειγµα B = 1 4 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 P 1 P 3 G(B) P4 P 2 Το παραπάνω κατευθυνόµενο γράφηµα είναι ισχυρά συνεκτικό, γιατί για κάθε Ϲεύγος κόµβων υπάρχει ένα µονοπάτι. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 9 / 35

Αδιάσπαστοι πίνακες και Γραφήµατα Παράδειγµα A = ( 1 1 0 3 ) G(A) P 1 P2 Το παραπάνω κατευθυνόµενο γράφηµα δεν είναι ισχυρά συνεκτικό διότι δεν υπάρχει µονοπάτι από τον κόµβο P 2 προς τον κόµβο P 1. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 10 / 35

Αδιάσπαστοι πίνακες και Γραφήµατα Θεώρηµα Ενας πίνακας Α τάξης n είναι αδιάσπαστος αν και µόνο αν το κατευθυνόµενο γράφηµα του G(A) είναι ισχυρά συνεκτικό. Σηµείωση Οταν ένας πίνακας είναι αδιάσπαστος, όλα τα εκτός της διαγωνίου του στοιχεία σε κάθε γραµµή ή στήλη του πίνακα δεν είναι µηδενικά. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 11 / 35

p-κυκλικοί πίνακες Ορισµός Εστω A 0 ένας αδιάσπαστος n nπίνακας και k το πλήθος των ιδιοτιµών του Α µε µέτρο ρ(a). Αν k = 1, τότε ο Α λέγεται πρωτεύων. Αν k > 1, τότε ο Α λέγεται κυκλικός µε δείκτη k. Ορισµός Ενας πίνακας A C n n είναι ασθενώς κυκλικός µε δείκτη k (> 1) αν υπάρχει ένας µεταθετικός n n πίνακας Ρ τέτοιος ώστε ο PAP T να είναι της µορφής 0 0... 0 A 1,k A 2,1 0... 0 0 PAP T 0 A = 3,2... 0 0....... 0 0... A k,k 1 0 (8) όπου οι µηδενικοί διαγώνιοι υποπίνακες είναι τετραγωνικοί. Η (8) είναι η κανονική µορφή ενός αδιάσπαστου n nπίνακα A 0, ο οποίος είναι κυκλικός µε δείκτη k(> 1). Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 12 / 35

p-κυκλικοί πίνακες-γραφήµατα Θεώρηµα Εστω A = (a ij ) 0 ένας αδιάσπαστος n n πίνακας και G(A) το κατευθυνόµενο γράφηµά του. Για κάθε κόµβο P i του G(A), ϑεωρούµε όλα τα κλειστά µονοπάτια (κύκλους) που συνδέουν το P i µε τον εαυτό του. Αν S i είναι το σύνολο όλων των µηκών m i αυτών των κλειστών µονοπατιών και k i είναι ο Μέγιστος Κοινός ιαιρέτης (ΜΚ ) των µηκών, δηλαδή k i = ΜΚ mi S i {m i }, 1 i n. Τότε, k 1 = k 2 = = k n = k, όπου k = 1 όταν ο Α είναι πρωτεύων, και k > 1 όταν ο Α είναι κυκλικός µε δείκτη k. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 13 / 35

p-κυκλικοί πίνακες-γραφήµατα Παράδειγµα 0 0 1 0 B 1 = 0 0 0 1 0 1 0 0 1 0 0 0 G(B 1 ) : P 1 P 2 έχει το κατευθυνόµενο γράφηµα Παρατηρούµε ότι για το γράφηµα G(B 1 ) ισχύει ότι P 4 P 3 k 1 = ΜΚ {4, 8, 12,...} = 4, οπότε ο πίνακας B 1 είναι κυκλικός µε δείκτη 4. Παρατηρήστε ότι και k 2 = k 3 = k 4 = 4 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 14 / 35

p-κυκλικοί πίνακες-γραφήµατα Παράδειγµα 0 0 1 0 B 2 = 0 0 0 1 1 0 0 0 0 1 0 0 G(B 2 ) : P 1 P 2 έχει το κατευθυνόµενο γράφηµα P 4 P 3 Παρατηρούµε ότι το γράφηµα G(B 2 ) είναι µη συνεκτικό διότι δεν υπάρχει µονοπάτι που να συνδέει τους κόµβους P 1, P 3 µε τους κόµβους P 2, P 4 και αντίστροφα, µε αποτέλεσµα ο πίνακας B 2 να είναι µη κυκλικός. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 15 / 35

p-κυκλικοί πίνακες Ορισµός Αν G είναι ένα ισχυρά συνεκτικό κατευθυνόµενο γράφηµα, τότε το G είναι ένα κυκλικό γράφηµα µε δείκτη k > 1, ή ένα πρωτεύων γράφηµα αν ο Μέγιστος Κοινός ιαιρέτης όλων των µηκών των κύκλων του είναι, αντίστοιχα, k > 1 ή k = 1. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 16 / 35

p-κυκλικοί πίνακες Εστω το γραµµικό σύστηµα (3), όπου ο A C n n, n 2, ο οποίος έχει διαµερισθεί στην ακόλουθη µορφή A 1,1 A 1,2... A 1,N A 2,1 A 2,2... A 2,N A =..., (9) A N,1 A N,2... A N,N όπου κάθε διαγώνιος υποπίνακας A i,i (1 i N) είναι τετραγωνικός. Υποθέτουµε ότι οι διαγώνιοι υποπίνακες A i,i (1 i N) είναι µη ιδιάζοντες. Θεωρούµε ότι ο πίνακας των συντελεστών Α αναλύεται ως ακολούθως A = D C L C U, (10) και ο κατά οµάδες Jacobi πίνακας του Α που αντιστοιχεί στη διαµέριση (9) είναι ο B = I D 1 A = L+U (11) όπου L = D 1 C L και U = D 1 C U. Ο D είναι µη ιδιάζων αφού οι A i,i (1 i N) είναι µη ιδιάζοντες. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 17 / 35

p-κυκλικοί πίνακες Ιδιαίτερο ενδιαφέρον παρουσιάζουν οι ακόλουθοι πίνακες A 1 = A 1,1 0... 0 A 1,p A 2,1 A 2,2... 0 0 0...... 0 0..... 0 0. 0 0 0... A p,p 1 A p,p A 1,1 A 1,2 0 A 2,1 A 2,2 A 2.3......... A 2 =...... AN 1,N 0 A N,N 1 A N,N 0 0... 0 B 1,p B 2,1 0... 0 0... B 1 = 0 B 3,2 0 0..... 0 0. 0 0 0... B p,p 1 0 όπου p 2. Ο πίνακας B 1 είναι ασθενώς κυκλικός µε δείκτη p. 0 B 1,2 0 B 2,1 0 B 2,3......... B 2 =...... BN 1,N 0 B N,N 1 0 Ο πίνακας B 2 µε κατάλληλη µετάθεση των οµάδων του είναι ασθενώς κυκλικός µε δείκτη p = 2. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 18 / 35

p-κυκλικοί πίνακες Ορισµός Αν ο κατά οµάδες πίνακας Jacobi Β της (11) του πίνακα Α της (9) είναι ασθενώς κυκλικός µε δείκτη p ( 2), τότε ο Α είναι p κυκλικός, σε σχέση µε τη διαµέριση (9). Σηµείωση Αν οι διαγώνιοι υποπίνακες A i,i της (9) είναι 1 1 πίνακες, τότε ο πίνακας Jacobi είναι ασθενώς δικυκλικός και κατά συνέπεια προκύπτει ότι ο πίνακας Α είναι δικυκλικός. Ισοδύναµα, ϑα λέµε ότι ο πίνακας Α έχει την ιδιότητα A. [Young] Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 19 / 35

p-κυκλικοί πίνακες - Ιδιότητα A Το γράφηµα ενός δικυκλικού πίνακα είναι διµερές (bipartite). S1 S2 Ο έλεγχος αν ένα γράφηµα είναι διµερές χρησιµοποιεί την Οριζόντια διερεύνηση και ϐασίζεται στο γεγονός ότι δεν µπορεί να περιέχει κύκλο περιττού µήκους. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 20 / 35

p-κυκλικοί πίνακες - Ιδιότητα A Αξίζει να σηµειωθεί ότι επιλέγοντας το Ν=2 στην (9), ο πίνακας Β της (11) είναι της µορφής [ ] 0 B1,2 B =, (12) B 2,1 0 δηλαδή είναι ένας ασθενώς κυκλικός πίνακας µε δείκτη 2. Με άλλα λόγια, οποιαδήποτε διαµέριση του πίνακα Α της (9) µε Ν=2, για την οποία οι διαγώνιοι υποπίνακες είναι µη ιδιάζοντες, είναι τέτοια ώστε ο πίνακας Α να είναι δικυκλικός. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 21 / 35

p-κυκλικοί πίνακες - Γραφήµατα Παράδειγµα 1 Κυκλικό κατευθυνόµενο γράφηµα µε δείκτη p = 5 του πίνακα B 1. P π(1) P π(5) G π (B 1 ) : P π(2) P π(4) P π(3) Εχει ΜΚ =5, οπότε είναι ένα κατά οµάδες κατευθυνόµενο γράφηµα το οποίο είναι κυκλικό µε δείκτη 5. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 22 / 35

p-κυκλικοί πίνακες - Γραφήµατα Παράδειγµα 2 Το κατά οµάδες κατευθυνόµενο γράφηµα του πίνακα B 2 για p = 2 G π (B 2 ) : P π(1) P π(2) P π(3) P π(4) P π(5) Εχει ΜΚ =2, οπότε είναι ένα κυκλικό γράφηµα µε δείκτη 2. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 23 / 35

Συνεπώς διατεταγµένοι πίνακες Θεώρηµα Εστω ότι το κατά οµάδες (block) κατευθυνόµενο γράφηµα του διαµερισµένου πίνακα Jacobi Β της (11) είναι ισχυρά συνεκτικό. Τότε ο πίνακας Α της (9) είναι p-κυκλικός αν το κατά οµάδες (block) κατευθυνόµενο γράφηµα του πίνακα Β είναι ένα κυκλικό γράφηµα µε δείκτη p. Ορισµός Αν ο πίνακας Α της (9) είναι p κυκλικός, τότε ο Α είναι συνεπώς διατεταγµένος (consistently ordered) αν όλες οι ιδιοτιµές του πίνακα B(a) = al+a (p 1) U (13) που προκύπτει από τον κατά οµάδες πίνακα Jacobi Β της (11), είναι ανεξάρτητες του α, για a 0. Ο πίνακας Β ϑα λέγεται επίσης συνεπώς διατεταγµένος. Σε οποιαδήποτε άλλη περίπτωση οι πίνακες Α και Β είναι µη συνεπώς διατεταγµένοι. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 24 / 35

Συνεπώς διατεταγµένοι πίνακες Για το παράδειγµα του πίνακα A 1 έχουµε σύµφωνα µε την (13), ότι 0 0... 0 a (p 1) B 1,p ab 2,1 0... 0 0 B 1 (a) = 0 ab 3,2... 0 0....... 0 0... ab p,p 1 0 (14) και µε απλούς πολλαπλασιασµούς πινάκων έχουµε ότι B p 1 (a) = Bp 1 για όλα τα a 0, δηλαδή, οι ιδιοτιµές του B 1 (a) είναι ανεξάρτητες του α. Εποµένως, καταλήγουµε στο συµπέρασµα ότι ο πίνακας A 1 είναι ένας p κυκλικός και συνεπώς διατεταγµένος πίνακας. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 25 / 35

Συνεπώς διατεταγµένοι πίνακες Για το παράδειγµα του πίνακα A 2 έχουµε ότι B 2 (a)x = λx (15) όπου x 0. Η (15) είναι ισοδύναµη µε το ακόλουθο σύστηµα εξισώσεων ab j,j 1 X j 1 + 1 a B j,j+1x j+1 = λx j, 1 j N (16) όπου B 1,0 και B N,N+1 είναι µηδενικοί πίνακες. Για Z j = 1 a j 1 X j, 1 j N, η (16) λαµβάνει τη µορφή B j,j 1 Z j 1 + B j,j+1 Z j+1 = λz j, 1 j N. (17) Συνεπώς, κάθε ιδιοτιµή λ του B 2 (a) είναι για a 0, ιδιοτιµή και του B 2 αποδεικνύοντας έτσι ότι ο πίνακας A 2 είναι ένας δικυκλικός και συνεπώς διατεταγµένος πίνακας. Συµπέρασµα Κάθε κατά οµάδες τριδιαγώνιος πίνακας της µορφής (18), µε µη ιδιάζοντες διαγώνιους υποπίνακες, είναι ένας δικυκλικός και συνεπώς διατεταγµένος πίνακας. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 26 / 35

Συνεπώς διατεταγµένοι πίνακες Παράδειγµα B = 1 4 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 Ĝ(B) : P 1 P 3 P 4 P 2 Σχήµα: Γράφηµα δικυκλικού και συνεπώς διατεταγµένου πίνακα Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 27 / 35

Συνεπώς διατεταγµένοι πίνακες Παράδειγµα B φ = 1 4 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 Ĝ(B φ ) : P 1 P 2 P 4 P 3 Σχήµα: Γράφηµα δικυκλικού µη συνεπώς διατεταγµένου πίνακα Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 28 / 35

Συνεπώς διατεταγµένοι πίνακες - Γραφήµατα Παράδειγµα 3 4 1 2 Σχήµα: Πλέγµα τεσσάρων σηµείων Παρατήρηση Ακολουθώντας τη ϕορά 1 3 4 2 1 έχουµε δύο τόξα µε ϕορά ίδια µε αυτή των δεικτών του ϱολογιού και δύο τόξα µε ϕορά αντίθετη µε αυτή των δεικτών του ϱολογιού. Εποµένως ο πίνακας του συστήµατος που προκύπτει από αυτά τα 4 σηµεία του πλέγµατος, είναι συνεπώς διατεταγµένος. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 29 / 35

Συνεπώς διατεταγµένοι πίνακες - Γραφήµατα Στο ακόλουθο σχήµα παρατηρείται ότι ο πίνακας που προκύπτει από την ϕυσική διάταξη, την κόκκινη µαύρη διάταξη και την κατά διαγωνίους διάταξη των σηµείων του πλέγµατος είναι δικυκλικός συνεπώς διατεταγµένος. 7 8 9 4 9 5 6 8 9 4 5 6 7 3 8 3 5 7 1 2 3 1 6 2 1 2 4 (a) (b) (c) Σχήµα: (a) Φυσική διάταξη (b) Κόκκινη µαύρη διάταξη (c) Κατά διαγωνίους διάταξη Συµπέρασµα Οι διατάξεις εκείνες που παράγουν συνεπώς διατεταγµένους πίνακες είναι οι ϐέλτιστες. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 30 / 35

Βιβλογραφία R. S. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962. D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 31 / 35

Σηµειώµατα Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 32 / 35

Σηµείωµα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήµιον Αθηνών 2015, Νικόλαος Μισυρλής, Επιστηµονικοί Υπολογισµοί. Εκδοση:1.01. Αθήνα 2015. ιαθέσιµο από τη δικτυακή διεύθυνση:http://opencourses.uoa.gr/courses/di108/. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 33 / 35

Σηµείωµα Αδειοδότησης Το παρόν υλικό διατίθεται µε τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εµπορική Χρήση Παρόµοια ιανοµή 4.0 [1] ή µεταγενέστερη, ιεθνής Εκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. ϕωτογραφίες, διαγράµµατα κ.λ.π., τα οποία εµπεριέχονται σε αυτό και τα οποία αναφέρονται µαζί µε τους όρους χρήσης τους στο «Σηµείωµα Χρήσης Εργων Τρίτων». [1] http://creativecommons.org/licenses/by-nc-sa/4.0/ Ως Μη Εµπορική ορίζεται η χρήση: που δεν περιλαµβάνει άµεσο ή έµµεσο οικονοµικό όφελος από την χρήση του έργου, για το διανοµέα του έργου και αδειοδόχο που δεν περιλαµβάνει οικονοµική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προορίζει στο διανοµέα του έργου και αδειοδόχο έµµεσο οικονοµικό όφελος (π.χ. διαφηµίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος µπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιµοποιεί το έργο για εµπορική χρήση, εφόσον αυτό του Ϲητηθεί. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 34 / 35

ιατήρηση Σηµειωµάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού ϑα πρέπει να συµπεριλαµβάνει: το Σηµείωµα Αναφοράς το Σηµείωµα Αδειοδότησης τη δήλωση ιατήρησης Σηµειωµάτων το Σηµείωµα Χρήσης Εργων Τρίτων (εφόσον υπάρχει) µαζί µε τους συνοδευόµενους υπερσυνδέσµους. Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 35 / 35