ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Σχετικά έγγραφα
ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Ανανεώσιμες Πηγές Ενέργειας

Αρχές φωτοβολταϊκών διατάξεων

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

12. Εάν ένα κομμάτι ημιαγωγού τύπου n και ένα κομμάτι ΟΧΙ

Ανάστροφη πόλωση της επαφής p n

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2

Ορθή πόλωση της επαφής p n

Διατάξεις ημιαγωγών. Δίοδος, δίοδος εκπομπής φωτός (LED) Τρανζίστορ. Ολοκληρωμένο κύκλωμα

Ξεκινώντας από την εξίσωση Poisson για το δυναμικό V στο στατικό ηλεκτρικό πεδίο:

Ανάστροφη πόλωση της επαφής p n

/personalpages/papageorgas/ download/3/

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ

Η επαφή p n. Η επαφή p n. Υπενθύμιση: Ημιαγωγός τύπου n. Υπενθύμιση: Ημιαγωγός τύπου p

Ορθή πόλωση της επαφής p n

ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 2

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

Θέµατα που θα καλυφθούν

Περιεχόμενο της άσκησης

ΑΠΑΝΤΗΣΕΙΣ. Σχήμα 1 Σχήμα 2 Σχήμα 3

Επαφές μετάλλου ημιαγωγού

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Φυσική Συμπυκνωμένης Ύλης (Ενότητα: Ημιαγωγοί) Ασκήσεις Ι. Ράπτης

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd stvrentzou@gmail.com

ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ

Δίοδοι εκπομπής φωτός Light Emitting Diodes

Ημιαγωγοί. Ημιαγωγοί. Ενδογενείς εξωγενείς ημιαγωγοί. Ενδογενείς ημιαγωγοί Πυρίτιο. Δομή ενεργειακών ζωνών

Δίοδος Εκπομπής Φωτός, (LED, Light Emitting Diode), αποκαλείται ένας ημιαγωγός ο οποίος εκπέμπει φωτεινή ακτινοβολία στενού φάσματος όταν του

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΗΜΙΑΓΩΓΟΙ. Σπύρος Νικολαΐδης Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΑΣΚΗΣΗ 5. Ερωτήσεις προετοιμασίας (Να απαντηθούν στην εργαστηριακή αναφορά)

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί

5. Ημιαγωγοί και επαφή Ρ-Ν

Κεφάλαιο 7. Ηλεκτρονικές ιδιότητες των ημιαγωγών

ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 1 Ο :ΗΜΙΑΓΩΓΟΙ

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

Ημιαγωγοί ΦΒ φαινόμενο

Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙI»-Σεπτέμβριος 2016

ηλεκτρικό ρεύμα ampere

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Υ53 Τεχνολογία Κατασκευής Μικροηλεκτρονικών Κυκλωμάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Οι ηµιαγωγοι αποτελουν την πλεον χρησιµη κατηγορια υλικων απο ολα τα στερεα για εφαρµογες στα ηλεκτρονικα.

ΥΛΙΚΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΔΙΑΤΑΞΕΙΣ

Ήπιες Μορφές Ενέργειας

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ

7.a. Οι δεσμοί στα στερεά

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

1. Ρεύμα επιπρόσθετα

Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode)

Ηλεκτρικη αγωγιµοτητα

Ημιαγωγοί - Semiconductor

Πείραμα - 7 Η Χαρακτηριστικές Καμπύλες Ενός Ηλιακού Φωτοκύτταρου

ΑΣΚΗΣΗ 5 ΦΩΤΟΒΟΛΤΑΙΚΟ ΚΥΤΤΑΡΟ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Άσκηση 3. Δίοδοι. Στόχος. Εισαγωγή 1. Ημιαγωγοί ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ)

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017

ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή

Ένταση Ηλεκτρικού Πεδίου υναµικό

Δομή ενεργειακών ζωνών

Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο

Θεωρητικό Μέρος Η ίοδος

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΔΙΑΦΑΝΩΝ ΗΛΙΑΚΩΝ ΚΥΤΤΑΡΩΝ ΥΨΗΛΗΣ ΑΠΟΔΟΣΗΣ ΘΕΟΔΩΡΟΣ ΜΑΚΡΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΙΩΑΝΝΙΝΑ 2013

Ηλεκτρονική. Ενότητα: 3 Δίοδος. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Μέτρηση της φωτοαγωγιμότητας του CdS συναρτήσει της έντασης και της συχνότητας της ακτινοβολίας διέγερσης

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Μάθημα 23 ο. Μεταλλικός Δεσμός Θεωρία Ζωνών- Ημιαγωγοί Διαμοριακές Δυνάμεις

4. Παρατηρείστε το ίχνος ενός ηλεκτρονίου (click here to select an electron

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Περιοχή φορτίων χώρου

Κεφάλαιο 6: Δυναμικός Ηλεκτρισμός

Θεωρία Μοριακών Τροχιακών (ΜΟ)

ηλεκτρικό ρεύµα ampere

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 24/01/2016

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

Διάρθρωση της Παρουσίασης

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΠΡΩΤΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ

Transcript:

ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν να μετακινηθούν εύκολα Τ η αντίσταση αυξάνεται Ημιαγωγοί: Η αγωγιμότητα εξαρτάται από τη θερμοκρασία, φως, πίεση, παρουσία αερίων ( π.χ. για Τ = 0 Κ μονωτής ) Τ η αντίσταση μειώνεται Μονωτές: Μεγάλο Eg με αποτέλεσμα να έχουμε πολύ μεγάλη αντίσταση (άδεια ζώνη αγωγιμότητας)

Ενεργειακό χάσμα και απορρόφηση Άμεσο- έμμεσο ενεργειακό χάσμα Η ενέργεια του φωτονίου θα πρέπει να είναι μεγαλύτερη από το Eg Όταν το ελάχιστο της ζώνης αγωγιμότητας παρατηρείται στην ίδια τιμή ορμής (p = hk) ή κυματανύσματος με το μέγιστο της ζώνης σθένους τότε ο ημιαγωγός είναι άμεσου ενεργειακού χάσματος Όταν το ελάχιστο της ζώνης αγωγιμότητας παρατηρείται σε διαφορετική τιμή ορμής (p = hk) ή κυματανύσματος με το μέγιστο της ζώνης σθένους τότε ο ημιαγωγός είναι έμμεσου ενεργειακού χάσματος

Ενεργειακό χάσμα και απορρόφηση Όταν για την ενέργεια του φωτονίου ισχύει: hv < E g τότε δεν εχουμε απορρόφηση hv = E g τότε έχουμε απορρόφηση χωρίς απώλειες ενέργειας hv > E g τότε έχουμε απορρόφηση, αλλά η επιπλέον ενέργεια χάνεται υπό μορφή θερμότητας (εκπομπή φωνονίου) hc 1,24 Eg h EgeV m max max Χρειάζονται επομένως ημιαγωγοί μικρού Ενεργειακού χάσματος (~ 1,5 ev) Οι ευρέως χάσματος (>3 ev) είναι διαφανείς στο ορατό- υπέρυθρο.

I( x) I e Νόμος του Beer για την απορρόφηση: 0 Ας θυμηθούμε ότι: ax I0 0 OD log( ) OD ax loge I( x) I ( x) I e ax OD( y) y 1 AM ά 65 OD( x) x cos I (x) Άμεσο E g : Απότομη αύξηση της α, μεγάλες τιμές Έμμεσο E g :Σταδιακή αύξηση της α, μικρότερες τιμές Το βάθος διείσδυσης της ακτινοβολίας εξαρτάται από το μήκος κύματος

Εξάρτηση της θεωρητικής μέγιστης απόδοσης ημιαγωγών για χρήση σε Φ/Β από Eg και θερμοκρασία Όριο Shockley Queisser 31% Εξάρτηση από E g 0 C 25 C 50 C 80 C 100 C 150 C 200 C 250 C Μείωση της απόδοσης με τη θερμοκρασία Μείωση του E g με τη θερμοκρασία Επιλέγεται το πυρίτιο για οικονομικούς και περιβαλλοντικούς λόγους Εξάρτηση της θεωρητικής μέγιστης απόδοσης για την παραγωγή υδρογόνου (STH) από το Eg του ημιαγωγού Όσο μικρότερο το Eg, τόσο μεγαλύτερο μέρος της ηλιακής ακτινοβολίας χρησιμοποιείται

Ενεργειακά διαγράμματα ημιαγωγού (ενδογενούς) Ηλεκτρόνια (ΖΑ),Οπές (ΖΣ) Η συνάρτηση Fermi δείχνει την πιθανότητα μια κατάσταση να καταλειφθεί (1: κατειλλημένη, 0: άδεια) Η στάθμη Fermi (Fermi level) αντιστοιχεί σε εκείνη την ενεργειακή στάθμη, η οποία έχει 50% πιθανότητα να καταληφθεί για T > 0 K Σε ενδογενή κρύσταλλο ισχύει: Ε F = E g 2 Το συνολικό ρεύμα οφείλεται στην κίνηση των e - στη ζώνη αγωγιμότητας και των h + (οπών) στη ζώνη σθένους Όμως η συνολική αγωγιμότητα είναι μικρή, άρα οδηγούμαστε στη νόθευση (doping)

τύπου p τύπου n Ενεργειακά διαγράμματα ημιαγωγού με προσμείξεις (εξωγενής) Φορείς πλειονότητας Φορείς μειονότητας Φορείς μειονότητας N N AD, Si 10 10 510 16 19 3 cm 22 3 cm Φορείς πλειονότητας

Η επαφή pn 1. Διάχυση φορέων πλειονότητας εκατέρωθεν της επαφής (λόγω διαφορετικής συγκέντρωσης) 2. Δημιουργία περιοχής έλλειψης φορέων (ή απογύμνωσης) 3. Φορτίο χώρου- δυναμικό επαφής 4. Διέλευση φορέων με «ολίσθηση» (ευνοείται η διέλευση φορέων μειονότητας) Ακίνητα αρνητικά ιόντα αποδεκτών Ακίνητα θετικά ιόντα δοτών Ηλεκτρικό πεδίο Διάχυση οπών Διάχυση ηλεκτρονίων Δύναμη ηλεκτρικού πεδίου στις οπές Δύναμη ηλεκτρικού πεδίου στα ηλεκτρόνια

Η επαφή pn Κατανομή φορτίου για N D = 2N A Ενεργειακή εικόνα Ισχύει ότι: x p N A = x n N D x p = 2x n Μέγιστη τιμή στην επαφή pn Η στάθμη Fermi πρέπει να είναι κοινή στην κατάσταση ισορροπίας Η δημιουργία φραγμού δυναμικής ενέργειας εμποδίζει την κίνηση των φορέων πλειονότητας, αλλά ευνοεί την κίνηση των φορέων μειονότητας

Λειτουργία της επαφής ως διόδου Ορθή και ανάστροφη πόλωση Ορθή πόλωση: Μειώνεται το δυναμικό επαφής, διευκολύνεται η διάχυση φορέων πλειοωότητας. Η δίοδος «άγει» Ανάστροφη πόλωση: Αυξάνεται το δυναμικό επαφής, εμποδίζεται η διάχυση φορέων πλειονότητας. Η δίοδος δεν «άγει», παρατηρείται μόνο διαρροή, «ρεύμα κόρου» Ι 0 (ρεύμα φορέων μειονότητας) Ορθή πόλωση Ανάστροφη πόλωση

Λειτουργία της επαφής ως ΦΒ Ανοικτό και κλειστό κύκλωμα Όταν η επαφή φωτίζεται, δημιουργούνται ζεύγη ηλεκτρονίου-οπής. Οι φορείς μειοψηφίας διέρχονται από την επαφή και «διαχωρίζονται» Βραχυκύκλωμα: Φωτόρευμα αρνητικής φοράς, ανάλογο της έντασης ακτινοβολίας Ανοικτό κύκλωμα: Ορθή πόλωση της διόδου. Όταν το ρεύμα της διόδου εξισωθεί με το φωτόρευμα, τότε αποκαθίσταται ισορροπία (Ιολ = 0) και η διαφορά δυναμικού στα άκρα της επαφής ονομάζεται τάση ανοικτού κυκλώματος (Voc) Σύνδεση καταναλωτή (R L ): Ρεύμα αρνητικής φοράς, τάση θετικής φοράς. R L

I I 0 V V OC I SC

Απορρόφηση φωτονίων από μια φ/β κυψελίδα πυριτίου (Si) Φωτόνια διαφορετικής ενέργειας απορροφώνται σε διαφορετικό βάθος Η περιοχή τύπου p έχει μεγαλύτερο πάχος γιατί τα e - έχουν μεγαλύτερο μήκος διάχυσης από τις οπές. Επομένως η απορρόφηση των φωτονίων μεγάλου μήκους πρέπει να γίνεται στην περιοχή p, ώστε να φθάνουν στην επαφή p n χωρίς επανασύνδεση. Διαφορετικά μικρό πάχος επαφής n (οπές δυσκίνητες), μεγάλο πάχος επαφής p (e - ευκίνητα) Ομοίως πρώτα η επαφή n και μετά η επαφή - p

Αρχή λειτουργίας φ/β κυψελίδων 3 ης γενιάς Ευαισθητοποιημένες φ/β κυψελίδες 1) Απορρόφηση φωτός : o S hs * 2) Έκχυση ηλεκτρονίων : * t = 10-12 10-13 s S S e TiO 2 2S 3I 2S I 3 3) Αναγέννηση χρωστικής : o t = 10-6 s 4) Αναγωγή ιόντων τριωδιδίου: I 2e Pt 3I 3 Συνολική διεργασία: e Pt h e TiO 2 Συρροκώστας Γ. Ανάπτυξη και μελέτη ημιαγώγιμων και μεταλλικών νανοδομών για εφαρμογή σε φ/β κυψελίδες και φωτοηλεκτροχρωμικές διατάξεις Διδακτορική διατριβή, Τμήμα Φυσικής, Πανεπιστήμιο Πατρών, 2013

Αρχή λειτουργίας φ/β κυψελίδων 3 ης γενιάς Οργανικά φ/β Διαφορετικές μορφές της διεπιφάνειας δότη - αποδέκτη 1) Απορρόφηση του φωτός από το δότη, που οδηγεί στη δημιουργία εξιτονίου (δέσμια κατάσταση ηλεκτρονίου οπής) 2) Διάχυση του εξιτονίου στη διεπιφάνεια δότη αποδέκτη 3) Διάσπαση του εξιτονίου 4) Συλλογή ελεύθερων φορέων στα ηλεκτρόδια ΗΟΜΟ: το υψηλότερο κατειλλημένο μοριακό τροχιακό (αντίστοιχο της ζώνης σθένους) LUMO: το χαμηλότερο μη κατειλλημένο μοριακό τροχιακό (αντίστοιχο της ζώνης αγωγιμότητας)

Ι R p ή R sh www.pveducation.org/pvcdrom

Ισοδύναμο κύκλωμα ΦΒ (2) Χαρακτηριστική της διόδου qv ( kt I 1) d I0 e Φωτόρευμα I q N ~ G ph ph T qv ( kt I I 1) ph Id I ph I0 e V kt q Iph I ln 1 I0 Συνθήκες ανοικτού κυκλώματος, Ι=0 V OC kt Iph kt Iph ln 1 ln q I q I 0 0 διότι I ph >>I 0. Συνθήκες κλειστού κυκλώματος, V=0, I d =0, I SC I ph

I(A) Επίδραση έντασης ακτινοβολίας στην I-V ISC ~ GT VOC ~ lngt 5.0 4.5 4.0 3.5 GT=200W/m^2 GT=400W/m^2 GT=600W/m^2 GT=800W/m^2 GT=1000W/m^2 GT=1200W/m^2 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 V(V)

V OC kt I ph ln q I 0 0 E g I qce kt όπου E g το ενεργειακό χάσμα του ημιαγωγού V OC Eg kt C ln q q N ph

Πραγματικό (μη ιδανικό) Φ/Β qv V ( kt I 1) L I I ph I0 e R p V R V V I R kt I ln I 1 I R ph L L s L s q I0 p

I (A) P (W) Απόδοση φωτοβολταϊκού 3,5 3 I IL P PL 120 100 Ηλεκτρική Ισχύς (Μέγιστη) P I V m m m 2,5 2 1,5 1 0,5 0 80 60 40 20 0 0 10 20 30 40 50 V (Volt) Απόδοση P AG m m m T I I V AG Παράγοντας Κάλυψης (Fill Factor) V m m FF I SC V OC T FF I V FF J V SC OC SC OC ή όπου J η πυκνότητα ρεύματος AG T G T