General theorems of Optical Imaging systems

Σχετικά έγγραφα
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

The Finite Element Method

Pairs of Random Variables

ECE 222b Applied Electromagnetics Notes Set 3b

ϕ be a scalar field. The gradient is the vector field defined by

Finite Field Problems: Solutions

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Multi-dimensional Central Limit Theorem

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

ϕ be a scalar field. The gradient is the vector field defined by

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師


ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

α & β spatial orbitals in

derivation of the Laplacian from rectangular to spherical coordinates

Phasor Diagram of an RC Circuit V R

The Simply Typed Lambda Calculus

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

4.6 Autoregressive Moving Average Model ARMA(1,1)

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

MathCity.org Merging man and maths

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Notes on the Open Economy

Solution Series 9. i=1 x i and i=1 x i.

Constant Elasticity of Substitution in Applied General Equilibrium

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Example Sheet 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Galatia SIL Keyboard Information

PARTIAL NOTES for 6.1 Trigonometric Identities

Σχέσεις, Ιδιότητες, Κλειστότητες

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Homework 8 Model Solution Section

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

Κύµατα παρουσία βαρύτητας

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Section 8.2 Graphs of Polar Equations

CS348B Lecture 10 Pat Hanrahan, Spring 2002

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

F19MC2 Solutions 9 Complex Analysis

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Durbin-Levinson recursive method

16 Electromagnetic induction

ST5224: Advanced Statistical Theory II

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2 Composition. Invertible Mappings

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Trigonometric Formula Sheet

A Class of Orthohomological Triangles

Section 9.2 Polar Equations and Graphs

UNIT 13: TRIGONOMETRIC SERIES

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

TMA4115 Matematikk 3

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Appendix A. Stability of the logistic semi-discrete model.

Derivation of Optical-Bloch Equations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

«Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».

Chapter 7 Transformations of Stress and Strain

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Answer sheet: Third Midterm for Math 2339

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

1. For each of the following power series, find the interval of convergence and the radius of convergence:

If we restrict the domain of y = sin x to [ π 2, π 2

Statistical Inference I Locally most powerful tests

EE512: Error Control Coding

C.S. 430 Assignment 6, Sample Solutions

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Other Test Constructions: Likelihood Ratio & Bayes Tests

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

PETROSKILLS COPYRIGHT

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

From the finite to the transfinite: Λµ-terms and streams

Right Rear Door. Let's now finish the door hinge saga with the right rear door

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards

Transcript:

Gnral thorms of Optcal Imagng sstms

Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp pont Prfct Imagng Imag s (mathmatcall) smlar to th obct Contmporar optcal magng Optcal magng optcal sstm sgnal procssng Computatonal magng magng pr- or postprocssng

Gnral Optcal Imagng Thorms Rlats mostl wth th tratonal optcal magng topcs Mawll s thorm Prfct magng s onl possbl for thr s no magnfcaton Abb sn conton Rla conton for transvrsal obcts Hrschl cosn conton Rla conton for longtunal obcts

tgmatc Imagng tgmatc magng P P 0 H(rr ) P 0 P H s th transfr functon btwn 0 to 0 plans. For fr spac for ampl H E P 0 : (00) at 0 plan ( ) ( ) δ ( 0 0) 0 mag to 0 P 0 : (00) at 0 plan

Transfr functon of stgmatc magng P 0 : (00) at 0 plan so E mag to ( ) E ( ) ( 0) HE( ) ( ) H const. δ const. P 0 : (00) at 0 plan ( 00 0) ( ) thrfor H ( ) ( ) ( ) ( )

Transfr functon of stgmatc magng H ( ) ( ) ( ) ( ) H s th transfr functon btwn 0 (n th obct spac) to 0 plan (n th mag spac) If on pont sourc n th obct spac s mag nto an nfntl sharp pont n th mag spac H has to assum th abov form. What wll happn to othr pont sourc at 0 plan? Can H also mag othr pont sourc to prfct ponts?

Othr pont sourcs at 0 plan H Fourr transform for spctrum P : ( ) at 0 plan E δ It s stll a constant but wth ffrnt phas.

Tracng n th spctrum oman E nstrumnt transfr from 0 plan to 0 plan P : ( ) at 0 plan has th spatal spctrum: H H

Output mag at 0 A A A E 0 0 0

tgmatc Imagng conton for transvrsal plan (D Imagng) E ( ) A 0 If γ γ ar constants ( ) A δ ( γ γ ) E 0 Pont sourcs on 0 plan ar all mag nto prfct ponts f / an / ar constants.

Abb sn conton for Prfct Imagng n transvrsal plans Prfct Imagng prsrvs mathmatcal smlart thrfor for prfct magng γ γ an E A0 δ γ γ Abb sn conton: for ρ snθ ρ snθ sn θ or snθ snθ snθ snθ sn θ f th mag spac has sam n of rfracton as th obct spac. ρ P H(rr ) P ρ

Othr pont sourcs on th optcal as H Fourr transform for spctrum P : (00) at plan E δ It s stll a constant but wth ffrnt phas.

Othr pont sourcs on th optcal as E Fr spac transfr to 0 plan E nstrumnt transfr from 0 plan to 0 plan P : (00) at plan has th spatal spctrum: H Fr spac transfr from 0 plan to plan H

Output mag at A A E 0 0

tgmatc Imagng conton for longtunal obcts Pont sourcs at orgn of 0 an plans ar mag nto prfct ponts at orgn of 0 an plans. It s also prfct magng. (Wh?) If 00 0δ A E A A E 0 0 thn For all ( ) an

Hrschl cosn conton for Prfct Imagng of longtunal obcts ( ) ( ) 0 0 Hrschl cosn conton: cosθ cosθ H(rr )

Prfct magng n 3D Abb sn conton an Hrschl cosn conton hav to b smultanousl hol wth th sam scalng factor ρ snθ ρ snθ or ρ ρ snθ snθ an an cosθ cosθ cosθ cosθ For prfct magng: ρ ρ or sn θ cosθ snθ cosθ

Prfct magng n 3D: Mawll s Thorm sn θ cosθ snθ cosθ tanθ tanθ For nonro cosθ ρ P H(rr ) P ρ Thrfor for -/ < θ < / θ θ an M ρ ρ n n

Prfct magng n 3D: Mawll s Thorm M ρ ρ n n Mawll s Thorm Prfct magng s onl possbl for th magnfcaton of n/n or for sam n an n magnfcaton of.

Contmporar Optcal Imagng Contmporar optcal magng Optcal magng optcal sstm sgnal procssng 3D Imagng 3D prfct magng from (gtal) sgnal procssng Computatonal magng pr- or post- procssng