Ψηφιακή Επεξεργασία Εικόνας

Σχετικά έγγραφα
Ψηφιακή Επεξεργασία Εικόνας

Ηλεκτρονικοί Υπολογιστές IV

Ψηφιακή Επεξεργασία Εικόνας

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

2 Composition. Invertible Mappings

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Μαθηματικές εκφράσεις στον κειμενογράφο

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Section 8.3 Trigonometric Equations

Homework 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

4.6 Autoregressive Moving Average Model ARMA(1,1)

Ηλεκτρονικοί Υπολογιστές IV

Μηχανική Μάθηση Hypothesis Testing

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Μικροβιολογία & Υγιεινή Τροφίμων

derivation of the Laplacian from rectangular to spherical coordinates

Reminders: linear functions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Example Sheet 3 Solutions

Instruction Execution Times

Ηλεκτρονικοί Υπολογιστές IV

Partial Differential Equations in Biology The boundary element method. March 26, 2013

6.3 Forecasting ARMA processes

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

EE512: Error Control Coding

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The Simply Typed Lambda Calculus

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Inverse trigonometric functions & General Solution of Trigonometric Equations

Statistical Inference I Locally most powerful tests

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Other Test Constructions: Likelihood Ratio & Bayes Tests

Notes on the Open Economy

Ιστορία νεότερων Μαθηματικών

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Solutions to Exercise Sheet 5

PRESENTATION TITLE PRESENTATION SUBTITLE

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

the total number of electrons passing through the lamp.

C.S. 430 Assignment 6, Sample Solutions

Ηλεκτρονικοί Υπολογιστές IV

ΟΡΟΛΟΓΙΑ -ΞΕΝΗ ΓΛΩΣΣΑ

European Human Rights Law

PARTIAL NOTES for 6.1 Trigonometric Identities

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ηλεκτρονικοί Υπολογιστές IV

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Démographie spatiale/spatial Demography

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Matrices and Determinants

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

PRESENTATION TITLE PRESENTATION SUBTITLE

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Second Order RLC Filters

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

5.4 The Poisson Distribution.

ECE 468: Digital Image Processing. Lecture 8

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Second Order Partial Differential Equations

CRASH COURSE IN PRECALCULUS

European Constitutional Law

Ηλεκτρονικοί Υπολογιστές IV

Fractional Colorings and Zykov Products of graphs

Εισαγωγή στην Διατροφή

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Solution Series 9. i=1 x i and i=1 x i.

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Lecture 26: Circular domains

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Advanced Subsidiary Unit 1: Understanding and Written Response

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Ηλεκτρονικοί Υπολογιστές IV

Advances in Digital Imaging and Computer Vision

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Section 9.2 Polar Equations and Graphs

Βασικές Αρχές Φαρμακοκινητικής

CE 530 Molecular Simulation

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Digital Image Processing Intensity Transformations (Point Processing) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Intensity Transformations It makes all the difference whether one sees darkness through the light or brightness through the shadows David Lindsay (Scottish Novelist) 1

3 Contents Over the next few lectures we will look at image enhancement techniques working in the spatial domain: What is image enhancement? Different kinds of image enhancement Point processing Histogram processing Spatial filtering 4 What Is Image Enhancement? Image enhancement is the process of making images more useful The reasons for doing this include: Highlighting interesting detail in images Removing noise from images Making images more visually appealing 2

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 5 Image Enhancement Examples 6 Image Enhancement Examples (cont ) 3

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 7 Image Enhancement Examples (cont ) 8 Image Enhancement Examples (cont ) 4

9 Spatial & Frequency Domains There are two broad categories of image enhancement techniques Spatial domain techniques Direct manipulation of image pixels Frequency domain techniques Manipulation of Fourier transform or wavelet transform of an image For the moment we will concentrate on techniques that operate in the spatial domain 10 Contents In this lecture we will look at image enhancement point processing techniques: What is point processing? Negative images Thresholding Logarithmic transformation Power law transforms Grey level slicing Bit plane slicing 5

11 A Note About Grey Levels So far when we have spoken about image grey level values we have said they are in the range [0, 255] Where 0 is black and 255 is white There is no reason why we have to use this range The range [0,255] stems from display technologes For many of the image processing operations in this lecture grey levels are assumed to be given in the range [0.0, 1.0] 12 Basic Spatial Domain Image Enhancement Most spatial domain enhancement operations can be reduced to the form g (x, y) = T [ f (x, y)] where f (x, y) is the input image, g (x, y) is the processed image and T is some operator defined over some neighbourhood of (x, y) Origin y Image f (x, y) x (x, y) 6

13 Point Processing The simplest spatial domain operations occur when the neighbourhood is simply the pixel itself In this case T is referred to as a grey level transformation function or a point processing operation Point processing operations take the form s = T ( r ) where s refers to the processed image pixel value and r refers to the original image pixel value. 14 Point Processing Example: Negative Images Negative images are useful for enhancing white or grey detail embedded in dark regions of an image Note how much clearer the tissue is in the negative image of the mammogram below Original Image s = 1.0 - r Negative Image 7

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 15 Point Processing Example: Thresholding Thresholding transformations are particularly useful for segmentation in which we want to isolate an object of interest from a background s = 1.0 r > threshold 0.0 r <= threshold 16 Intensity Transformations Contrast stretching Thresholding 8

17 Basic Grey Level Transformations There are many different kinds of grey level transformations Three of the most common are shown here Linear Negative/Identity Logarithmic Log/Inverse log Power law n th power/n th root 18 Logarithmic Transformations The general form of the log transformation is s = c * log(1 + r) The log transformation maps a narrow range of low input grey level values into a wider range of output values The inverse log transformation performs the opposite transformation 9

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 19 Logarithmic Transformations (cont ) Log functions are particularly useful when the input grey level values may have an extremely large range of values In the following example the Fourier transform of an image is put through a log transform to reveal more detail s = log(1 + r) 20 Power Law Transformations Power law transformations have the following form s = c * r γ Map a narrow range of dark input values into a wider range of output values or vice versa Varying γ gives a whole family of curves 10

Transformed Intensities 21 Power Law Example 22 Power Law Example (cont ) γ = 0.6 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Old Intensities 11

Transformed Intensities Transformed Intensities 23 Power Law Example (cont ) γ = 0.4 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Original Intensities 24 Power Law Example (cont ) γ = 0.3 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Original Intensities 12

25 Power Law Example (cont ) The images to the right show a magnetic resonance (MR) image of a fractured human spine Different curves highlight different detail s = r 0.4 s = r 0.6 26 Power Law Example 13

Transformed Intensities 27 Power Law Example (cont ) γ = 5.0 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Original Intensities 28 Power Law Transformations (cont ) An aerial photo of a runway is shown This time power law transforms are used to darken the image Different curves highlight different detail s = r 4.0 s = r 3.0 14

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 29 Gamma Correction Many of you might be familiar with gamma correction of computer monitors Problem is that display devices do not respond linearly to different intensities Can be corrected using a log transform 30 Piecewise Linear Transformation Functions Rather than using a well defined mathematical function we can use arbitrary user-defined transforms The images below show a contrast stretching linear transform to add contrast to a poor quality image 15

31 Piecewise-Linear Transformation (cont ) 32 Piecewise-Linear Transformation (cont ) 16

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 33 Bit Plane Slicing Often by isolating particular bits of the pixel values in an image we can highlight interesting aspects of that image Higher-order bits usually contain most of the significant visual information Lower-order bits contain subtle details 34 Bit Plane Slicing (cont ) [10000000] [01000000] [00100000] [00001000] [00000100] [00000001] 17

35 Bit-Plane Slicing (cont ) 36 Bit-Plane Slicing (cont ) Useful for compression. Reconstruction is obtained by: N n1 (, ) 2 n(, ) n1 I i j I i j 18

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 37 Average image Let g(x,y) denote a corrupted image by adding noise η(x,y) to a noiseless image f (x,y): g( x, y) f ( x, y) ( x, y) The noise has zero mean value Ez [ ] 0 i At every pair of coordinates z i =(x i,y i ) the noise is uncorrelated E[ z z ] 0 i j 38 Average image (cont...) The noise effect is reduced by averaging a set of K noisy images. The new image is K 1 g( x, y) g ( x, y) K i 1 The intensities at each pixel of the new image may be viewed as random variables. The mean value and the standard deviation of the new image show that the effect of noise is reduced. i 19

Images taken from Gonzalez & Woods, Digital Image Processing (2002) 39 Average image (cont...) K K E g( x, y) 1 1 E gi ( x, y) K E gi ( x, y) i 1 K i1 K 1 E f ( x, y) i( x, y) K i1 K K 1 1 E f ( x, y) K E i ( x, y) i1 K i1 1 K Kf ( x, y) 1 K0 f ( x, y) K 40 Average image (cont...) Similarly, the standard deviation of the new image is g( x, y) (, ) 2 (, ) 2 E g x y E g x y 1 ( xy, ) As K increases the variability of the pixel intensity decreases and remains close to the noiseless image values f (x,y). The images must be registered! 20

41 Average image (cont...) 42 Summary We have looked at different kinds of point processing image enhancement Next time we will start to look at histogram processing methods. 21

Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php?id=1126.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος. «Ψηφιακή Επεξεργασία Εικόνας. Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=1126. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/