A generalized Holland model for wave diffraction by thin wires

Σχετικά έγγραφα
Partial Differential Equations in Biology The boundary element method. March 26, 2013

High order interpolation function for surface contact problem

ST5224: Advanced Statistical Theory II

Lecture 26: Circular domains

Statistical Inference I Locally most powerful tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Example Sheet 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Finite Field Problems: Solutions

Exercises to Statistics of Material Fatigue No. 5

EE512: Error Control Coding

Uniform Convergence of Fourier Series Michael Taylor

Discretization of Generalized Convection-Diffusion

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

5. Choice under Uncertainty

Spherical Coordinates

Finite difference method for 2-D heat equation

Institut de Recherche MAthématique de Rennes

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Lecture 34 Bootstrap confidence intervals

Homework 8 Model Solution Section

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Wavelet based matrix compression for boundary integral equations on complex geometries

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Second Order Partial Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

D Alembert s Solution to the Wave Equation

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

The wave equation in elastodynamic

Numerical Analysis FMN011

Section 9.2 Polar Equations and Graphs

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Local Approximation with Kernels

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 3 Solutions

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Math 6 SL Probability Distributions Practice Test Mark Scheme

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Congruence Classes of Invertible Matrices of Order 3 over F 2

(As on April 16, 2002 no changes since Dec 24.)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

4.6 Autoregressive Moving Average Model ARMA(1,1)

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Capacitors - Capacitance, Charge and Potential Difference

On optimal FEM and impedance conditions for thin electromagnetic shielding sheets

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Exercise Sheet 5

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

Durbin-Levinson recursive method

Variational Wavefunction for the Helium Atom

the total number of electrons passing through the lamp.

[1] P Q. Fig. 3.1

ADVANCED STRUCTURAL MECHANICS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΤΕΧΝΟΛΟ ΓΙ ΚΟ ΕΚΠΑ ΙΔ ΕΥ Τ ΙΚΟ Ι ΔΡΥ Μ Α 'ΠΕ Ι ΡΑ ΙΑ ΤΜΗΜΑ ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ ΕΙΔΙΚΟΤΗΤΑ ΒΑΦΙΚΗΣ ΠΤΥΧΙΑΚΉ ΕΡΓ ΑΣΙΑ ΤΙΤΛΟΣ ΕΥΧΡΗΣΤΙΑ ΕΞΕΙΔΙΚΕΥΜΕΝΟΥ

Forced Pendulum Numerical approach

If we restrict the domain of y = sin x to [ π 2, π 2

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Math221: HW# 1 solutions

C.S. 430 Assignment 6, Sample Solutions

Abstract Storage Devices

The ε-pseudospectrum of a Matrix

Higher Derivative Gravity Theories

Reminders: linear functions

Risk! " #$%&'() *!'+,'''## -. / # $

Iterated trilinear fourier integrals with arbitrary symbols

Repeated measures Επαναληπτικές μετρήσεις

Every set of first-order formulas is equivalent to an independent set

From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

3+1 Splitting of the Generalized Harmonic Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

The Spiral of Theodorus, Numerical Analysis, and Special Functions

6.3 Forecasting ARMA processes

Part 4 RAYLEIGH AND LAMB WAVES

Linearized Lifting Surface Theory Thin-Wing Theory

FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 21: Properties and robustness of LSE

posterior distribution is well defined for any prior π and ν-almost all x X. Moreover,

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Transcript:

A generalized Holland model for wave diffraction by thin wires Xavier Claeys Joint work with Francis Collino Marc Duruflé POEMS, Inria Rocquencourt, France Generalized Holland model p.1/26

Motivation Incident wave Hypothesis: λ = wavelength Diffracted wave perfectly conducting wire. ε λ. ɛ = thickness of the wire Context: simulation of EM wave propagation in media including perfectly Context: conducting thin wires (ex: antennas). Wish: propose a volumic method with no mesh refinement. Wish: Different from integral equation approach (Rogier, Fedoryuk, Mazari.) Generalized Holland model p.2/26

Motivation Holland method Heuristic method used for straight wires in FDTD schemes based on: Assumption: the current is constant across any section of the wire. Assumption: the field is electrostatic close to the wire. Technical ingredient: averaging operator in a region as large as a cell close to the wire (parameter). R.Holland and L.Simpson Finite difference analysis of emp coupling to thin struts and wires, IEEE Trans. Electromagn. Compat. 1981. Generalized Holland model p.3/26

Model problem Hypothesis 2D acoustic diffraction. Dirichlet condition on the boundary of obstacles. Small obstacle (section of a wire). Radius: ε 0. u 0 Γ ε Ω R = D(0, R), Γ R = Ω R. Ω ε = D(0, ε), Γ ε = Ω ε. u 0 (x) = e ik x (incident wave). Γ R Generalized Holland model p.4/26

Model problem Hypothesis 2D acoustic diffraction. Dirichlet condition on the boundary of obstacles. Small obstacle (section of a wire). Radius: ε 0. u 0 Γ ε Ω R = D(0, R), Γ R = Ω R. Ω ε = D(0, ε), Γ ε = Ω ε. u 0 (x) = e ik x (incident wave). Γ R Generalized Holland model p.5/26

Model problem Hypothesis 2D acoustic diffraction. Dirichlet condition on the boundary of obstacles. Small obstacle (section of a wire). Radius: ε 0. u 0 Γ ε 8 >< >: u ε H 1 (Ω R \ Ω ε ), u ε + k 2 u ε = 0 in Ω R \ Ω ε, u ε = 0 on Γ ε, u ε u 0 outgoing. Γ R Generalized Holland model p.6/26

eu ε = (1 χ ε ) u 0 + Asymptotic analysis Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 X.Claeys, H.Haddar and P.Joly Etude d un problème modèle pour la diffraction par des fils minces par développements asymptotiques raccordés. cas 2-d. Research Report 5839, INRIA,2006. Generalized Holland model p.7/26

eu ε = (1 χ ε ) u 0 + Asymptotic analysis Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 1.5χ ε Cut-off function χ ε Gauge function λ 0 = π γ, γ: Euler constant. 2 More complicated in general. 1 0.5 Incident field u 0 0 x ε 2 ε 3 3 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 u 0 (x) = e ik x. Generalized Holland model p.8/26

eu ε = (1 χ ε ) u 0 + Asymptotic analysis Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 Far field v 0 Close Field V ε 0 v 0 (x) = 1 i H(1) 0 (k x ). V ε 0 (x) = 1 2π ln x ε 1 Ω R \Ω ε. Close Field V ε 0 Incident field u 0 u 0 (x) = e ik x. V ε 0 (x) = 1 2π ln x ε 1 Ω R \Ω ε. Generalized Holland model p.9/26

Asymptotic analysis eu ε = (1 χ ε ) u 0 + Approximate field π u 2 0(0) 2π u 0 (0) v 0 + χ ε V0 ε. ln(1/ε) + λ 0 ln(1/ε) + λ 0 Matched asymptotic expansions H = H 1 (Ω R ) H 1 (Ω R \ Ω R ) u ε eu ε H ε 1/2 ε u ε u 0 H ln ε 1/2 ln ε 1 Γ ε Ω R \ Ω R Generalized Holland model p.10/26

Usual formulation Usual formulation without any obstacle a(u, v) = R Ω R u v k 2 uv + R Γ R v T R u u, v H 1 (Ω R ) 8 >< >: Find (u ε, p ε ) H 1 (Ω R ) H 1/2 (Γ ε ) such that a(u ε, v)+b ε (p ε, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ) = 0, q H 1/2 (Γ ε ). Generalized Holland model p.11/26

Usual formulation Fictitious domain formulation b ε (q, v) = R Γ ε q v q H 1/2 (Γ ε ), v H 1 (Ω R ). 8 >< >: Find (u ε, p ε ) H 1 (Ω R ) H 1/2 (Γ ε ) such that a(u ε, v)+b ε (p ε, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ) = 0, q H 1/2 (Γ ε ). Remarks u ε Γ ε = 0 and pε = [ uε n ] Γ ε on Γε. u ε is extended by 0 in Ω ε. Generalized Holland model p.12/26

Asymptotic analysis Approximate jump of the normal derivative p ε = [ uε n ] Γ ε for uε = 0 in Ω ε. ep ε = [ euε n ] Γ ε = 2πu 0(0) V0 ε ln 1/ε + λ 0 n = 2πu 0(0) 1 ln 1/ε + λ 0 2πε P 0. v 2 H 1/2 (Γ ε ) = ε2 X n Z (1 + n 2 ) 1/2 Z 2π 0 v(θ)e inθ dθ 2. Matched asymptotic expansions p ε 0 H 1/2 (Γ ε ) κ ln ε 1. p ε ep ε H 1/2 (Γ ε ) κ ε. Generalized Holland model p.13/26

Simplified problem Reduced space of Lagrange multipliers Remind ep ε = [ euε n ] Γ ε P 0. Idea: replace H 1/2 (Γ ε ) by P 0. Initial fictitious domain formulation 8 >< >: Find (u ε ap, p ε ap) H 1 (Ω R ) H 1/2 (Γ ε ) such that a(u ε ap, v) + b ε (p ε ap, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ap) = 0, q H 1/2 (Γ ε ). Generalized Holland model p.14/26

Simplified problem Reduced space of Lagrange multipliers Remind ep ε = [ euε n ] Γ ε P 0. Idea: replace H 1/2 (Γ ε ) by P 0. Simplified fictitious domain formulation 8 >< >: Find (u ε ap, p ε ap) H 1 (Ω R ) P 0 such that a(u ε ap, v) + b ε (p ε ap, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ap) = 0, q P 0. Generalized Holland model p.15/26

Simplified problem Reduced space of Lagrange multipliers Remind ep ε = [ euε n ] Γ ε P 0. Idea: replace H 1/2 (Γ ε ) by P 0. Simplified fictitious domain formulation 8 >< >: Find (u ε ap, p ε ap) H 1 (Ω R ) P 0 such that a(u ε ap, v) + b ε (p ε ap, v) = R Γ R (T R u 0 + u 0 n )v v H1 (Ω R ), b ε (q, u ε ap) = 0, q P 0. Remarks: Uniform Inf-Sup condition on a and b ε with respect to ε. Continuity of b ε : b ε κ p ln 1/ε. Well posed and nearly stable problem for ε sufficiently small. Generalized Holland model p.15/26

Simplified problem Asymptotic analysis H = H 1 (Ω R ) H 1 (Ω R \ Ω R ) u ε ap u 0 H ln ε 1/2 ln ε 1 eu ε u ε H ε 1/2 ε u ε ap u ε H ε 1/2 ε u ε ap provides an approximation of u ε of the same quality as eu ε. p ε ap 0 H 1/2 (Γ ε ) = ε pε ap κ ln ε 1. p ε ap p ε H 1/2 (Γ ε ) = ε pε ap p ε κ ε. Generalized Holland model p.16/26

Finite element approximation 8 >< >: Discrete simplified fictitious domain formulation Find (u ε,h ap, p ε,h ap ) V h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh v h V h, b ε (q h, u ε,h ap ) = 0, q h P 0. Hypothesis: Uniformly regular triangulation and ε < κ h Error estimate: u ε ap u ε,h ap H 1 κ p ln 1/ε inf v h V h uε ap v h H 1 Generalized Holland model p.17/26

Finite element approximation 8 >< >: Discrete simplified fictitious domain formulation Find (u ε,h ap, p ε,h ap ) V h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh v h V h, b ε (q h, u ε,h ap ) = 0, q h P 0. Hypothesis: Uniformly regular triangulation and ε < κ h Error estimate: u ε ap u ε,h ap H 1 κ p ln 1/ε inf v h V h uε ap v h H 1 Problem: inf v h V h uε ap v h H 1 is not small: Problem: inf uε v h V h ap v h H 1 κ h 1 2 δ u ε ap 3 δ and u ε H 2 ap 3 δ κ H 2 ε. 1 2 δ Generalized Holland model p.17/26

Numerical locking We use Q 3 finite elements. u ε ap u ε,h ap H u ε ap H 10 1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 1 10 0 h/λ H = H 1 (Ω R \ Ω R ) Ω R = D(0, 3) Ω R = D(0, 1.5) eps = 1e 2 eps = 1e 3 eps = 1e 4 eps = 1e 5 ε/λ slope 10 2 0.9051 10 3 0.8697 10 4 0.6163 10 5 0.5074 Generalized Holland model p.18/26

Additional shape function ϕ ε ad(x) = χ 0 (x)v ε 0 = χ 0 (x) 1 2π V h e = V h span{ϕ ε ad(x)}. ln x ε 1 Ω R \Ω ε. χ 0 ϕ ε ad 1.4 1 1.2 0.8 1 0.6 0.8 0.6 0.4 0.4 0.2 0 1 2 0 3 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 x 0.2 0 ε 1 2 3 3 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 x Generalized Holland model p.19/26

Additional shape function ϕ ε ad(x) = χ 0 (x)v ε 0 = χ 0 (x) 1 2π V h e = V h span{ϕ ε ad(x)}. ln x ε 1 Ω R \Ω ε. Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h ap, p ε,h ap ) Ve h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h ap ) = 0, q h P 0. v h V h e, P.Ciarlet, B.Jung, S.Kaddouri, S.Labrunie, J.Zou The Fourier Singular Complement Method. Part I&II. Numer.Math. 2005 M.Bourlard, M.Dauge, M-S.Lubuma, S.Nicaise Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III: Finite element methods on polygonal domains. SIAM J.Numer.Anal. 1992 Generalized Holland model p.19/26

Additional shape function ϕ ε ad(x) = χ 0 (x)v ε 0 = χ 0 (x) 1 2π V h e = V h span{ϕ ε ad(x)}. ln x ε 1 Ω R \Ω ε. Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h ap, p ε,h ap ) Ve h P 0 such that a(u ε,h ap, v h ) + b ε (p ε,h ap, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h ap ) = 0, q h P 0. v h V h e, Lemma: u ε u ε,h ap H 1 (Ω R ) κ p ln 1/ε (ε 1/2 + h). Generalized Holland model p.20/26

Locking free We use Q 3 finite elements. 10 1 10 0 H = H 1 (Ω R \ Ω R ) Ω R = D(0, 3) Ω R = D(0, 1.5) u ε ap u ε,h ap H u ε ap H 10 1 10 2 10 3 10 4 10 5 10 6 10 2 10 1 10 0 h/λ eps = 1e 2 eps = 1e 3 eps = 1e 4 eps = 1e 5 ε/λ slope 10 2 3.8883 10 3 4.1136 10 4 4.2392 10 5 4.3103 Generalized Holland model p.21/26

Generalized Holland model Projection on the approximation space For ϕ H 1 (Ω R ),! P h (ϕ) V h such that a(ϕ P h (ϕ), v h ) = 0, v h V h. δ h = Id Ph. Generalized Holland model p.22/26

Generalized Holland model Projection on the approximation space For ϕ H 1 (Ω R ),! P h (ϕ) V h such that a(ϕ P h (ϕ), v h ) = 0, v h V h. δ h = Id Ph. Decomposition in singular and regular part Or u ε,h ap = eu ε,h reg + p ε,h s ϕ ε ad, u ε,h reg V h. Or u ε,h ap = u ε,h reg + p ε,h s δ h (ϕ ε ad), u ε,h reg = eu ε,h reg + P h (ϕ ε ad) V h. Generalized Holland model p.22/26

Generalized Holland model Projection on the approximation space For ϕ H 1 (Ω R ),! P h (ϕ) V h such that a(ϕ P h (ϕ), v h ) = 0, v h V h. δ h = Id Ph. Decomposition in singular and regular part Or u ε,h ap = eu ε,h reg + p ε,h s ϕ ε ad, u ε,h reg V h. Or u ε,h ap = u ε,h reg + p ε,h s δ h (ϕ ε ad), u ε,h reg = eu ε,h reg + P h (ϕ ε ad) V h. Q 3 ε = 0.01 h = 0.02597 Re{ϕ ε ad } Re{δ h(ϕ ε ad )} Generalized Holland model p.22/26

Generalized Holland model Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h reg, p ε,h ap ) V h P 0 such that a(u ε,h reg, v h ) + b ε (p ε,h ap, v h ) = R Γ R (T R u 0 + u 0 n )vh b ε (q h, u ε,h reg ) L ε,h c(p ε,h ap, q h ) = G ε,h (q h ), q h P 0 v h V h With L ε,h = bε`1, δ h (ϕ ε ad) 2 a(δ h (ϕ ε ad), δ h (ϕ ε ad)) and c(p ε,h ap, q h ) = p ε,h ap q h. Generalized Holland model p.23/26

Generalized Holland model Augmented discrete simplified fictitious domain formulation 8 >< >: Find (u ε,h reg, p ε,h ap ) V h P 0 such that a(u ε,h reg, v h ) + b ε (p ε,h ap, v h ) = R Γ R (T R u 0 + u 0 n )vh b ε (q h, u ε,h reg ) L ε,h c(p ε,h ap, q h ) = G ε,h (q h ), q h P 0 v h V h F.Collino and F.Millot Fils et méthodes d éléments finis pour les équations de Maxwell. Le modèle de Holland revisité. Research Report 3472, INRIA, 1998. 8 >< >: Find (u ε,h hol Holland formulation, p ε,h hol ) V h P 0 such that a(u ε,h hol, v h ) + b ε (p ε,h hol, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h hol ) L hol c(p ε,h hol, q h ) = 0, q h P 0 v h V h Generalized Holland model p.24/26

Generalized Holland model 8 >< >: Find (u ε,h hol Holland formulation, p ε,h hol ) V h P 0 such that a(u ε,h hol, v h ) + b ε (p ε,h hol, v h ) = R (T Γ R R u 0 + u 0 n )vh b ε (q h, u ε,h hol ) L ε,h hol c(p ε,h hol, q h ) = 0, q h P 0 v h V h H3: There exists κ > and ν > 0 such that κh ν < ε. Lemma: Under H3 there exists κ > 0 (idpdt of ε and h) such that G ε,h < κ h q. Lemma: Under H3, for L hol = L ε,h there exists κ > 0 (idpdt of ε and h) such that u ε,h reg u ε,h hol H 1 (Ω R ) + p ε,h ap p ε,h hol H 1/2 (Γ ε ) κ hq. Generalized Holland model p.25/26

Conclusions Method compatible with high order FEM. Generalization of the Holland method for arbitrary meshes. Analytical expression of L hol. Weakly locking method. Not local with respect to the mesh. Generalized Holland model p.26/26