1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
|
|
- Νικάτωρ Αγγελοπούλου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473)
2 2 3 Dermenian-Guillot[3] M.Kawashita-W.Kawashita-oga [7] [8] M. Kawashita-oga[9] [6] ) ) 2. 3 [3] ) x = x x 2 x 3 ) = x x 3 ) R 2 R + = ux) = t u x) u 2 x) u 3 x)) C3 ρ > µ > λ R 3λ + 2µ > H = L 2 C 3 ρ dx) L L u = ρ λ + µ ) u + µ u} DL ) = u H C 3 ); ρ λ + µ ) u + µ u} H u λ u)δ 3 + µ + u ) 3 = in the trace sense = 2 3) x 3 x x3 = = t / x / x 2 / x 3 ) = 2 / x / x / x 2 3 L L k = k k 2 k 3 ) = k k 3 ) R 2 R + = p = p p 2 ) R 2 k = k ω = k ω ω 3 ) = k ω ω 2 ω 3 ) p = p ν = p ν ν 2 ) ξ l k) = c 2 c 2 l c 2 P = λ + 2µ c 2 = µ ρ ρ ) /2 ) c 2 /2 k 2 k 2 γ l ω) = ω 2 for l = P ) /2 ) /2 ξ l k) = k 2 c2 c 2 k 2 γ l ω) = ω 2 c2 l c 2 for l = P l ) /2 γ R = c2 R c 2 for = P c 2 R < c2 R < µ ρ } E V = k ; k 3 > c 2 P c 2 ) /2 k c 2 l E V = k ; < k 3 < c 2 P c 2 ˆk = k k 3 ) k P = k ξ P k)) = k ω γ P ω)) k ξ P k)) = k ω γ P ω)) k = k ω E V ) k P = k iξ P k)) = k ω iγ P ω)) k = k ω E V ) }. ) /2 k }
3 3 3 L ) k Ψ P x k) = 2π) 3 2 ρ 2 α ±) P ω) = c2 P c 2 a ) e iˆk x a ) P ω) + eik P x a 2) P ω) eik x a 3) P ω) } 2 ω 2 ) 2 ± 4 ω 2 ω 3 γ P ω) β P ω) = 4 ω c2 P c 2 2 ω 2 )ω 3 P ω) = t ω ω 2 ω 3 ) P ω) = β P ω) ω γ P ω) ω a 2) a 3) P 2) k Ψ V x k) = 2π) 3 2 ρ 2 t α +) P ω) ω) = α ) P ω) α +) P ω) t ω ω 2 ω 3 ). β P ω) = 4 ω 2 ω 2 )ω 3 α ±) P ω) = a ) a 2) V ω ) 2γ P ω) ω ω e iˆk x a ) V ω) + eik x a 2) V ω) + eik P x a 3) V ω) } c2 P c 2 2 ω 2 ) 2 ± 4 ω 2 ω 3 γ P ω) k = k ω E V ) c2 P c 2 2 ω 2 ) 2 ± 4i ω 2 ω 3 γ P ω) k = k ω E V ) V ω) = t ω ω 3 ω 2ω 3 ω ω α ) P ω) = ω) ω ω 3 ω a 3) V ω) = 3) k 4) p R 2 Ψ R x p) = ) a ) R ν) = 2 c2 R c 2 t α +) P ω) β P ω) α +) ) ω ω ) 2ω 3 ω ω t ω ω 2 γ P ω)) P ω) k = k ω E V ) β P ω) ω α +) ω 2 iγ P ω) P ω)) k = k ω E V ) Ψ H x k) = e iˆk x + e ik x )a 2π) 3 2 ρ H ω) 2 a H ω) = t ω 2 ω ω ) ω. C 2π p 2 e ip x e p γ RP x 3 a ) R ν) + e p γ Rx 3 a 2) R ν) } t iν iν 2 γ RP ) a 2) R ν) = 2 γ RP t iν γ R iν 2 γ R )
4 4 C 4π 2 Ψ R x p) 2 ρ dx 3 =. Ψ P x k) : incident P wave+refleced wave +reflected P wave Ψ V x k) : incident wave+refleced wave +reflected P wave Ψ H x k) : incident wave+refleced wave Ψ R x p) : Rayleigh wave F = P V H) F R u C R3 + C 3 ) ): F uk) = F R up) = Ψ x k) ux)ρ dx Ψ R x p) ux)ρ dx. F = P V H) H L 2 ) F R H L 2 R 2 ). F [3]. F H F u = F P u F V u F H u F R u) for u H Ĥ = =PVH L 2 ) L 2 R 2 ) unitary u DL ) F L u = c 2 P k 2 F P u c 2 k 2 F V u c 2 k 2 F H u c 2 R p 2 F R u). 3. z = λ + iε C ε L R z) R z) = L z) ) u H suppu compact u L R z)u = F c 2 k 2 z) F u + FRc 2 R p 2 z) F R u 3.) 3.2) = G x y; z) = =PVH =PVH G R x y; z) = c = G x y; z)uy)dy + G R x y; z)uy)dy c P = P ) = V H) c c 2 k 2 z ψ x k) t ψ y k)dk R 2 c 2 R p 2 z ψ Rx p) t ψ R y p)dp = P V H)
5 3 5 ) 2) ) G x y; λ ± i) = lim ϵ ± G x y; z) = P V H R). λ y ) x G x y λ ± i) x 3.) 3.2) 2) < a < b a < λ < b a b Φ l s) C R) l = 2) Φ s) = a/2 < s < 3b/2) s < a/3 2b < s) Φ 2 s) = Φ s). G x y; z) = G l) x y; z) = P V H R) l=2 G l) x y; z) = Φ l c 2 k 2 ) R 3 c 2 + k 2 z ψ x k) t ψ y k)dk G l) R x y; z) = Φ l c 2 R p ) c 2 R p 2 z ψ Rx p) t ψ R y p)dp R 2 = P V H) l = 3.3) 3.4) G ) x y; z) = G ) R x y; z) = µ 2 Φ c 2 µ2 ) c 2 µ2 z J x y µ)dµ = P V H) τφ c 2 R τ 2 ) c 2 R τ 2 z J Rx y τ)dτ J x y µ) = 2 + ψ x µω) t ψ y µω)dω J R x y τ) = ψ R x τν) t ψ R y τν)dν = P V H) J x y µ) = P V H) J R x y τ) ) x = x x 2 x 3 ) = x x 3 ) = x ϕ = r ϕ ϕ 3 ) = rϕ ϕ 2 ϕ 3 ) ˇϕ = ϕ ϕ 3 ) ϕ l = ϕ γ l ϕ)) x = x ϕ = r ϕ.
6 6 I P x y µ) =e iµr a ) P ˇϕ) t Ψ P y µ ˇϕ) e iµr a 3) χ ϕ < c e iµ c P cp c r c P ϕ 3 c γ P ω) a2) P P ϕ) t Ψ P y µϕ) ) cp ϕ P c t Ψ P y c c P µϕ P I V x y µ) =e iµr a ) V ˇϕ) t Ψ V y µ ˇϕ) e iµr a 2) V ϕ) t Ψ V y µϕ) ) e iµ c cp r c γ P ω) a 3) c V ϕ P c P ϕ 3 c t Ψ V y c ) µϕ P P c P I H x y µ) =e iµr a H ˇϕ) t Ψ H y µ ˇϕ) e iµr a H ϕ) t Ψ H y µϕ) I R x y τ) =e πi 4 e iτ r e τ γ RP x 3 a ) R ϕ) + e τ γ Rx 3 a 2) R ϕ) } t Ψ R y τ ϕ) + e πi 4 e iτ r e τ γ RP x 3 a ) R ϕ) + e τ γ Rx 3 a 2) R ϕ) } t Ψ R y τ ϕ) a i ) il=23 a i ) il=23 = max i=23 a i 2. M a b < a < b M > ) ) 3) ) y < M a/3 < c 2 P µ2 < 2b y µ J i P x y µ) 2πρ ) 2 µr I P x y µ) = or ) r ). 2) = V H y < M a/3 < c 2 µ2 < 2b y µ J i x y µ) 2πρ ) 2 µr I x y µ) = O r log r ) r x 3 > r r r ) or ) < x3 < r r r ). ) 3) y < M a/3 < c 2 R τ 2 < 2b y τ J C Rx y τ) I 2π) 3 2 τ r) R x y τ) 2 = O r 3 2 ) e a 3 c R γ RP x 3 + e ) a 3 c R γ Rx 3 r ) 3. 2) V i ) = 3 ) 3 2) 3 3) 3 ) 3 2) ) i J V x y µ) 2πρ ) 2 µr I V x y µ) = or ) r ) H i ) = 3 ) 3 2) 3 3) 3 ) 3 2) 2 [4] [2] Copson[] Lewis[5] i
7 ) 3.4) ϵ ) lim ϵ ± G) x y; z) = p.v. µ 2 Φ c 2 µ2 ) c 2 µ2 λ J x y µ)dµ ± πij x y c λ 2 ) = P V H) lim ϵ ± G) R x y; z) = p.v. τφ c 2 R τ 2 ) c 2 τ 2 λ J Rx y τ)dτ ± πij R x y c R λ 2 ) G ) x y; λ ± i) = P V H R) x y; z) = P V H R) G 2) ϵ = ) x ) 4. M a b < a < b M > ) ) 4) ) λ > y < M a < λ < b y λ G 2) P x y; λ) = or ) r ). 2) y < M y 3 a < λ < b y λ G 2) V x y; λ) = or ) r ). 3) y < M a < λ < b y λ G 2) H x y; λ) = or ) r ). 4) y < M a < λ < b y λ 5. 2) ) y 3 G 2) R x y; λ) = Or 2 ) G 2) V x y; λ) = Φ 2 c 2 k 2 ) E V c 2 k 2 λ ψ V x k) t ψ V y k)dk+ r ). E V Φ 2 c 2 k 2 ) c 2 k 2 λ ψ V x k) t ψ V y k)dk 2 2) ux) C 2 ) suppux) E V Φ 2 c 2 k 2 ) c 2 k 2 λ ψ V x k) t ψ V y k)dkuy)dy = o x ) References [] E.T.Copson Asymptotic Expansions. Cambridge Tracts in Mathematics 55 Cambridge Univ. Press965. [2] D.Colton and R.Kress Inverse Acoustic and Electromagnetic cattering Theory. Appl.Math.ci.Vol.5 pringer-verlag997. [3] Y. Dermenian and J.C. Guillot cattering of elastic waves in a perturbed isotropic half space with a free boundary. The limiting absorption principle Math. Meth. in the Appl. ci. 988) [4]. 976 [5] [6] M.Kadowaki On a framework of scattering for dissipative systems. Osaka J. Math.4 23) no
8 8 [7] M.Kawashita W.Kawashita and H.oga Relation between scattering theories of the Wilcox and Lax- Phillips types and a concrete construction of the translation representation. Comm. Partial Differentail Equations 28 23) no [8] cattering theory for the elastic wave equation in perturbed half-spaces. Tran. Amer. Math. oc ) no [9] M. Kawashita and H. oga ingular support of the scattering kernel for the Rayleigh wave in perturbed half-spaces. Method Appl. Anal. 7 2) no. 47 [] K. Kikuchi Asymptotic behavior at infinity of the Green function of a class of systems including wave propagation in crystals. Osaka J. Math ) no [] 2. [2] ) [3] M. Matsumura Asymptotic behavior at infinity for Green s functions of first order systems with characteristics of nonuniform multiplicity. Publ. Res. Inst. Math. ci ) no [4] R.G.Newton Inverse chrödinger cattering in Three Dimensions. Text and Monographs in Physics pringer-verlag989. [5] R. Lewis Asymptotic theory of transients Electromagnetic wave theory URI ymposium Proceedings Delft Pergamon Press New York 967.
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at
Dispersive estimates for rotating fluids and stably stratified fluids
特別講演 17 : msjmeeting-17sep-5i4 Dispersive estimates for rotating fluids and stably stratified fluids ( ) 1. Navier-Stokes (1.1) Boussinesq (1.) t v + (v )v = v q t >, x R, v = t >, x R, t v + (v )v = v
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH DELAYED ARGUMENT
Electronic Journal of Differential Equations, Vol. 217 217, No. 14, pp. 1 12. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Part 4 RAYLEIGH AND LAMB WAVES
Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4
! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Surface Acoustic Wave Devices in Telecommunications
Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation Bearbeitet von Ken-Ya Hashimoto 1. Auflage 2000. Buch. xiii, 330 S. Hardcover ISBN 978 3 540 67232 6 Format (B x L): 15,6 x
: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00
: 2010 9 6 ( ) 9 10 : 1. 9/6( ) 10:20 12:40 GL(2) Hecke ( ) 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 16:45 18:15 GL(2) I ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 9/7( ) 7:00 9:00 9:15 10:30 GL(2)
Branching form of the resolvent at threshold for discrete Laplacians
Branching form of the resolvent at threshold for discrete Laplacians Kenichi ITO (Kobe University) joint work with Arne JENSEN (Aalborg University) 9 October 2016 Introduction: Discrete Laplacian 1 Thresholds
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Linearized Lifting Surface Theory Thin-Wing Theory
13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko
M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Orthogonal systems and semigroups
Orthogonal systems and semigroups José Luis Torrea Orthonet Logroño, 23 Febrero 213 () Orthogonal systems and semigroups Logroño, 23 Febrero 213 1 / 29 Jorge Betancor, Raquel Crescimbeni, Eleonor Harboure
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
[Note] Geodesic equation for scalar, vector and tensor perturbations
[Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element
High Current Chip Ferrite Bead MHC Series
High Current Chip Ferrite Bead MHC Series Features Combination of high frequency noise suppression with capability of handing high current. The current rating up to 6 Amps with low DC. Applications High
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
Η Ομάδα SL(2,C) και οι αναπαραστάσεις της
SL(2, C) SO(3, 1) D : Λ D(Λ) SO(3, 1) 2 1 D : ±A D(π(±A)) SL(2, C) SL(2, C) SO(3, 1) SL(2, C) SO(3, 1) ξ i (, ) K i x µ p µ J µν T µν A µ ψ α J i = J i, () K i = K i, ( ) K i M 0i = (iξ i K i ) A i = 1
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Computing the Macdonald function for complex orders
Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x
Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with
Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics (, Based on joint research with ( ( Contents 1. Physical background of the problem 2. Mathematical formulation
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
! # %& # () & +( (!,+!,. / #! (!
! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /
f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )
30 11 http://www.ozawa.phys.waseda.ac.jp/index2.html Ω C OΩ M Ω f M Ω Polf C PC RC 1 Ω C K C K Ω 1 K U Ω U f OU f n OΩ f f n ; L K 0n 2 K U Ω U f OU f n OΩ f f n ; L K 0n 3 z Ω \ K f OΩ f; L K < fz 4 K
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-
Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons 3 1 1989 E. Witten Chern-Simons 3 ( ) ([14]) Witten 3 Chern-Simons M. Kontsevich [5], S. Axerod I. M. Singer [2]
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography
Nonlinear Fourier transform for the conductivity equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki CoE in Analysis and Dynamics Research What is the non linear
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
1 Το φυσικό πρόβλημα και εξισώσεις
Αριθμητική επίλυση των εξισώσεων της ελαστοδυναμικής και μελέτη της κυματικής διάδοσης στα στερεά: επιμήκη κύματα(p-waves), εγκάρσια κύματα(s-waves) και επιφανειακά κύματα(rayleigh waves) Χρυσούλα Τσόγκα
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping
5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography
Nonlinear Fourier transform and the Beltrami equation Visibility and Invisibility in Impedance Tomography Kari Astala University of Helsinki Beltrami equation: z f(z) = µ(z) z f(z) non linear Fourier transform
Θαλής MATENVMED - ΜΙΣ Δράση Μέθοδοι Μετασχηματισμού Φωκά
Θαλής MATENVMED - ΜΙΣ 379416 Δράση 24 - Μέθοδοι Μετασχηματισμού Φωκά Ασβεστάς Μάριος 1, Μαντζαβίνος Διονύσιος 2, Παπαδομανωλάκη Μαριάννα 1, Παπαδοπούλου Έλενα 1, Σαριδάκης Γιάννης 1, Σηφαλάκης Τάσος 1,
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM
Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Mellin transforms and asymptotics: Harmonic sums
Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS
Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present
Current Sensing Metal Chip Resistor
eatures -SMD designed for automatic insertion -High power rating in small size -Low resistance resistor for current detection -Metal foil construction ensures high reliability and performance with very
< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α
# & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-
clearing a space (focusing) clearing a space, CS CS CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc- 133 ing experiencing 2009 experiencing Gendlin (1978) CS 2. CS
Trimmable Thick Film Chip Resistor
rimmable hick ilm Chip Resistor R Series rimmable hick ilm Chip Resistor Scope -his specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. eatures