9. Seismic Design of RETAINING STRUCTURES GRAVITY WALLS



Σχετικά έγγραφα
Αντισεισμικός Σχεδιασμός Τοίχων Αντιστήριξης & Κρηπιδοτοίχων

9. Aντισεισμικός Σχεδιασμός ΤΟΙΧΩΝ ΑΝΤΙΣΤΗΡΙΞΗΣ & ΚΡΗΠΙ ΟΤΟΙΧΩΝ

BEHAVIOR OF MASSIVE EARTH RETAINING WALLS UNDER EARTHQUAKE SHAKING Comparisons to EC-8 Provisions

CONSULTING Engineering Calculation Sheet

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

; +302 ; +313; +320,.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Homework 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6 BLM Answers

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Figure 1 - Plan of the Location of the Piles and in Situ Tests

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Table 2 Suggested prediction methods to use for a given set of available input parameters per each examined soil hydraulic property) a.

2 Composition. Invertible Mappings

Exercises to Statistics of Material Fatigue No. 5


Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Homework 8 Model Solution Section

5.0 DESIGN CALCULATIONS

Sampling Basics (1B) Young Won Lim 9/21/13

Math221: HW# 1 solutions

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Συντακτικές λειτουργίες

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Lecture 34 Bootstrap confidence intervals

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Section 7.6 Double and Half Angle Formulas

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Differentiation exercise show differential equation

ST5224: Advanced Statistical Theory II

Numerical Analysis FMN011

Inverse trigonometric functions & General Solution of Trigonometric Equations

ADVANCED STRUCTURAL MECHANICS

Example Sheet 3 Solutions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MECHANICAL PROPERTIES OF MATERIALS

Chapter 7 Transformations of Stress and Strain

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

Consolidated Drained

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Solution to Review Problems for Midterm III

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

Ηλεκτρονικοί Υπολογιστές IV

Concrete Mathematics Exercises from 30 September 2016

Lifting Entry (continued)

CRASH COURSE IN PRECALCULUS

NMBTC.COM /

Thin Film Chip Resistors

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

CORDIC Background (4A)

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

The Simply Typed Lambda Calculus

Χαρακτηριστικές Καµπύλες Εδάφους-Νερού Εδαφικών Υλικών από τον Ελλαδικό Χώρο

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Στέφανος ΧΑΡΑΛΑΜΠΟΥΣ 1, Ιωάννης ΚΑΛΟΓΕΡΑΣ 2, Ιωάννης ΣΤΡΑΤΑΚΟΣ 3, Μιχαήλ ΣΑΚΕΛΛΑΡΙΟΥ 4

Συστήματα Διαχείρισης Βάσεων Δεδομένων

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Μηχανική Μάθηση Hypothesis Testing

St. Louis County Masterplan


AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Approximation of distance between locations on earth given by latitude and longitude

Capacitors - Capacitance, Charge and Potential Difference

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

GREECE BULGARIA 6 th JOINT MONITORING

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Biodiesel quality and EN 14214:2012

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Transcript:

9. Seismic Design of RETAINING STRUCTURES Part A: GRAVITY WALLS G. BOUCKOVALAS Professor of NTUA October 009 CONTENTS 9.1 DYNAMIC EARTH PRESSURES for DRY SOIL 9. HYDRO-DYNAMIC PRESSURES 9.3. DYNAMIC PRESSURES for SATURATED SOILS 9.4 PSEUDO STATIC DESIGN 9.5 DISPLACEMENT based DESIGN (performance based design) Sggested Reading Steven Kramer: Capter 11 GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.1

9.1 DYNAMIC EARTH PRESSURES for DRY SOIL Te metod of ΜΟΝΟΝΟΒΕ - ΟΚΑΒΕ GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.

GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.3

9. HYDRO-DYNAMIC PRESSURES WESTERGAARD (1933) Hydro-STATIC pressures p (x) =γ x ws H application point: w 1 P = p (x)dx = γ H ws ws w 0 Η/3 from base Hydro-DYNAMIC pressures ± p wd (x) = kγwh x/h 8 ± P = k γ H =. k P 1 application point: ( 11 ) wd w ws 0.40Η from base ATTENTION! Te excess pore pressures are positive in front of te wall and negative beind it. Tus te total ydro-dynamic pressure acting on a submerged wall is twice tat given by te Westergard solution! REMARKS: Westergaard teory applies under te following assumptions: free water (no backfill) vertical wall face very large (teoretically infinite) extent of water basin GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.4

Effect of of tank tank widt ± p wd (x) = CnkγwH x / H 8 ± Pwd = CnkγwH 1 n ( = 11. C k P ) n ws όπου 4 L/H C n = < 10. 31+ L/H (C = 100. για L / H > 0. ) application point: 0.40Η from te base Effect of of wall wall inclination Zangar (1953) & Cwang (198) x x x x ± p wd (x, α ) = C m( α) k γwη ( ) + ( ) H H H H ή, or, προσε approximately γγιστικά ± p wd (x, α ) = C m( α) kγwη 8 x H Westergaard GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.5

Effect of of wall wall inclination ± p wd (x, α ) = Cmk γwη 8 x H και and ± Pwd = Cmk γwη 1 ( = 11. C k P ) m ws όπου were ο α C m 001. α( ) 0. π ( rad) application point: 0.40Η απότηνβάση GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.6

9.3 DYNAMIC PRESSURES for SATURATED FILL ± p wd (x,e,..) = CekγwH x / H 8 ± P wd (e,..) = CekγwH 1 ( 11. C k P ) ό were που C.. tan log με wit e ws πnγwh e 05 05 EwkT n =πορ porosity ώδες γ w w = ειδικ unit weigt ό βάρος of νερού water Η = βάθος water νερού dept Ε =Bulk =Μέτρο modulus συμπ. of νερού water (( 10 10 6 kpa) k = συντελεστής permeability διαπερατότητας coefficient Τ = δεσπόζουσα predominant περίοδος period of δόνησης saking 6 WATER Pysical analog (Matsuzawa et al. 1985) + FILL in oter words. Correction factor C e expresses te portion of pore water wic vibrates FREELY, i.e. independently from te soil skeleton. soil skeleton free water trapped water, wic vibrates togeter wit te soil skeleton Hence, Hence, dynamic eart eart pressures are are exerted by by te te soil soil skeleton AND ANDte trapped water water and and consequently (you (you may may prove prove it it easily) easily) te te Mononobe-Okabe relationsips apply apply for for :: γ* γ* * = γ ΞΗΡΟ C ΞΗΡΟ e +γ e +γ ΚΟΡ.(1-C ΚΟΡ e ) e ) GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.

EXAMPLE: n=40%, γ w =10 kn/m 3 E w = 106 kpa, T=0.30 sec H C e = 05. 05. tanlog 6 10 6 k Fill Material well graded gravel gravel coarse sand C e > 0.80 p wd Westergaard C e = 0.0 0.90 p wd Ce Westergaard fine sand silt Clayey sand & gravel C e < 0.0 p wd 0 EXAMPLE: n=40%, γ w =10 kn/m 3 E w = 106 kpa, T=0.30 sec H C e = 05. 05. tanlog 6 10 6 k Permeable fill: Cobbles, gravel, Coarse sand (Η<0m) Semi-permeable» fill: coarse sand (Η > 0m), fine sand (H < 0m) Impermeable fill: silt, clay, clayey or silty sand and gravel GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.8

SUMMARY of Hydrodynamic Pressures Hydrodynamic pressures on te sea-side of te wall p wd (x) = CmCnkγwΗ x / H 8 Pwd = CmCnkγwH 1 ( = 11. C C k P ) m n ws C m = effect of inclined wall C n = effect of water basin lengt Hydrodynamic pressures on te fill-side of te wall p wd (x) = CmCnCekγwH x / H 8 Pwd = CmCnCekγwH 1 ( = 11. C C C k P ) m C e = effect of filll n e ws application point: 0.40Η from base GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.9

9.4 PSEUDO STATIC DESIGN Genera Case... P a = ενεργητική active eart ώθηση pressure γαιών = k a (( γγ ΚΟΡ SA T - γ W )H 1 PW = γwh Δ P = P = ΔP W Wd ΑΕ =dynamic = δυναμικές eart ωθήσεις pressures γαιών = ( k ) γ * Η με γ * = C γ + ( 1 C ) γ wit γ* = Ce e ΞΗΡΟ γ DRY υδροδυναμικές ydrodynamic ωθήσεις pressures (κατά τα προηγού μενα) + (1-Ce)γ e SAT ΚΟΡ 1 1 3 4 ATTENTION! P a computation requires (γ κορ -γ w ) wile Ρ ΑΕ computation requires γ*. Tus, wen it is necessary to compute bot P a and Ρ ΑΕ wit a common unit weigt (e.g. ΕΑΚ 00) you must use: te buoyant unit wegt (γ κορ -γ w ) a modified seismic coefficient k * = k γ κορ γ * γ w P a = ενεργητική active eart ώθηση pressure γαιών = k a (( γγ ΚΟΡ SA T - γ W )H 1 PW = γwh Δ P = P = ΔP W Wd ΑΕ =dynamic = δυναμικές eart ωθήσεις pressures γαιών = ( k ) γ * Η με γ * = C γ + ( 1 C ) γ wit γ* = Ce e ΞΗΡΟ γ DRY υδροδυναμικές ydrodynamic ωθήσεις pressures (κατά τα προηγού μενα) + (1-Ce)γ e SAT ΚΟΡ 1 1 3 4 GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.10

Special Special case: case «IMPERMEABLE» fill fill P a = ενεργητική active eart ώθηση pressure γαιών = k a (( γγ ΚΟΡ SA T - γ W )H 1 PW = γwh Δ P = P = ΔP W Wd υδροδυναμικές ydrodynamic ωθήσεις pressures (κατά τα προηγού μενα) ΑΕ =dynamic = δυναμικές eart ωθήσεις pressures γαιών = ( k ) γ * Η 1 1 3 4 με γ * = C γ + ((Ce=0) 1 C ) γ wit γ* = e γξηρο SAT e ΚΟΡ Clayey sand Clayey silt Silty sand Clayey or silty gravel Special Special case: case «IMPERMEABLE» fill fill Δ P = P = ΔP ήor W Wd = υδροδυναμικές ydrodynamic ωθήσεις pressures = = 0 1 3 ΑΕ = dynamic δυναμικές eart ωθήσεις pressures γαιών = ( k ) γ 4 γ ΚΟΡ ΔP ΑΕ = = (k )( γ γ ) Η ΚΟΡ W 8 γ γ ΚΟΡ W 3 0 ΚΟΡ Η k *. k Clayey sand Clayey silt Silty sand Clayey or silty gravel GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.11

Special Special case: case «PERMEABLE» fill fill 1 P a = ενεργητική active eart ώθηση pressure γαιών = k a ( γ γ )H ΚΟΡ W 1 PW = γwh Δ P = P = ydrodynamic υδροδυναμικές pressure ωθήσεις 0 ΔP W Wd ΑΕ = δυναμικές dynamic eart ωθήσεις pressure γαιών = ( k ) γ* Η 1 3 4 γ * = γ wit γ* = ΞΗΡ γ DRY. με (C = 1) e sand sand & gravel cobbles ballast Special Special case: case «PERMEABLE» fill fill Δ P = P = ΔP ήor W Wd = ydrodynamic υδροδυναμικές pressure ωθήσεις 0 1 3 ΑΕ = dynamic δυναμικές eart ωθήσεις pressure γαιών = ( k ) γ 4 γ ΞΗΡ ΔP ΑΕ = = (k )( γ γ ) Η ΚΟΡ W 8 γ γ ΚΟΡ W 3 ΞΗΡ Η k * 1.6 k sand sand & gravel cobbles ballast GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.1

EXAMPLE: Wat do I do wen I am not sure about te permeability of te fill material? Vertical & smoot wall Basin of infinite lengt C m = C n = 0 Fill: γ ΞΗΡΟ =16 kn/m 3 γ ΚΟΡ. = 0 kn/m 3 C e = 0 1.0 Δ PW = PWd = kγwh 1 1 3 * ΔP ΑΕ = ( k )( γκορ γw) Η 4 C eγ + ( 1 C e) γ ΞΗΡΟ με k * = γ γ κορ w ΚΟΡ k Total Total orizontal trust: ΣF ΣF d = d Ρ Ρ ΑΕ +Ρ ΑΕ +Ρ wd +C wd +C e P e wd wd impermeable fill permeable fill Total Total overturning moment: ΣΜ ΣΜ d =0.60H d Ρ Ρ ΑΕ +0.40Η ΑΕ (1+C (1+C e ) e ) Ρ wd wd GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.13

9.5 DISPLACEMENT based DESIGN (or performance based design ) RICHARDS-ELMS METHOD δ: friction angle between wall side and fill φ ο : friction angle between wall base and ground Performance based design: o o ( AE A ) N = W+ Δ P + P tanδ F= Ntanϕο ολ Ntanϕ F.S. = P P P P k W ο o o A +Δ AE + w +Δ w + Even toug F.S. oλ < 1.0 (sliding failure) tere is no collapse of te wall (!!), but development of limited displacements, wic may be tolerable.. SLIDING FAILURE OF GRAVITY WALLS α cr =Ng : critical seismic acceleration leading to F.S. oλ =1.00 GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.14

Εναλλακτικά: δ= 0. 013 f t με: α cr Νg = α 115. V 1 αcr α 630. έδαφος f = 50. βράχος α ( 1 α ) cr cr Computation of Relative Sliding. NEWMARK (1965) (1965)... V ( 1 acr) δ = 0.50 a acr δ 0.50 a acr V 1 RICHARDS & ELMS ELMS (199) (199) V 1 δ 008. a a 4 CR E.M.Π. (1990) (1990) V (1 a CR ) 1 1.15 δ 0.080 t 1 acr a GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 acr 9A.15

Comparison wit numerical predictions for actual eartquakes by Franklin & Cang (19).... PERMANENT DISPLACEMENT (in) άνω άνωόριο για γιαδιάφορα Μ Newmark - I (1965) Newmark II (1965) Ricards & Elms (199) Ε.Μ.Π. (1990) a CR /a Seismic failure & downslope sliding Relative Velocity Relative Sliding δ d 4 V a 0.08 a a CR = min V a 0.50 a a CR GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.16

for EXAMPLE...... PEAK SEISMIC ACCELERATION a = 0.50g PEAK SEISMIC VELOCITY V = 1.00 m/s (T e 0.80 sec) CRITICAL or YIELD ACCELERATION a CR = 0.33g (=/3 a ) Relative Sliding δ d 4 V a 0.08 a a CR = min V a 0.50 a a CR 9 cm! THUS,if we can tolerate some small down-slope displacements, te pseudo static analysis is NOT performed for te peak seismic acceleration a, but for te.... EFFECTIVE seismic acceleration a E = (0.50 0.80) a New design pilosopy: * 4 V k δ= 008. k DISPLACEMENT BASED DESIGN (or performance based design) α * * α V k = = k 0. 08 g αδ 14 / Instead of designing te wall for k =a /g,i coose a lower k * (< k ) wic is a function of te allowable wall displacement δ. In tat case, te required factor of safety is F.S.=1.00 alternatively: k k * = qw με: q = 1 w / 14 V 0. 08 α δ GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.1

In accordance wit tis design pilosopy, ΕΑΚ requests tat: k α= = α α γ q w g n k k * = qw γ n =importance coefficient.00 δ(mm)=300a 1.50 δ(mm)=00a q w = 1.5 δ(mm)=100a (τοίχοι από Ο.Σ.) 1.00 ancored flexible walls 0.5 basement walls, etc GEORGE BOUCKOVALAS, National Tecnical University of Ates, Greece, 011 9A.18