Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

(Mechanical Properties)


Properties of Nikon i-line Glass Series

OWA-60E series IP67. 60W Single Output Moistureproof Adaptor. moistureproof. File Name:OWA-60E-SPEC

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

LUMINAIRE PHOTOMETRIC TEST REPORT

Injection Molded Plastic Self-lubricating Bearings

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

MECHANICAL PROPERTIES OF MATERIALS

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

Chapter 7 Transformations of Stress and Strain

SHENZHEN BRILLOOP LIGHTING CO.,LTD Page 1 Of 13. LED Floodlight 24W(COB)

LUMINAIRE PHOTOMETRIC TEST REPORT

MnPAVE Validation: Comparison of MnROAD HMA Modulus Values

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

6.4 Superposition of Linear Plane Progressive Waves

Linearized Lifting Surface Theory Thin-Wing Theory

60W AC-DC High Reliability Slim Wall-mounted Adaptor. SGA60E series. File Name:SGA60E-SPEC

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 13 ROYAL PACIFIC LTD. LUMINAIRE PHOTOMETRIC TEST REPORT TYPE:LED DIM.: SUR.

FP series Anti-Bend (Soft termination) capacitor series

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

Current Sensing Chip Resistor

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT


# % % % % % # % % & %

LUMINAIRE PHOTOMETRIC TEST REPORT

Current Sensing Metal Chip Resistor

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

AXDR Double-Row Angular Contact Roller Bearings

LUMINAIRE PHOTOMETRIC TEST REPORT

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

LUMINAIRE PHOTOMETRIC TEST REPORT


Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

LUMINAIRE PHOTOMETRIC TEST REPORT

Trimmable Thick Film Chip Resistor

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

DETERMINATION OF FRICTION COEFFICIENT

Shenzhen XXX OPTO Co.,Ltd

LUMINAIRE PHOTOMETRIC TEST REPORT

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

CONSULTING Engineering Calculation Sheet

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

Temperature: 25.5 CRH: 65% Spectrum Range: nm Scan Step: 5 nm. Spectral Distribution CIE1931 Chromaticity Diagram

Temperature: 25.5 CRH: 65% Spectrum Range: nm Scan Step: 5 nm. Spectral Distribution CIE1931 Chromaticity Diagram

Hydrologic Process in Wetland

LPFH-60 series. 60W Constant Voltage + Constant Current LED Driver IP67. File Name:LPFH-60-SPEC

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Cross sectional area, square inches or square millimeters

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 12 LUMINAIRE PHOTOMETRIC TEST REPORT

Microwave Sintering of Electronic Ceramics

Thin Film Precision Chip Resistor-AR Series

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 14 LED LUMINAIRE PHOTOMETRIC TEST REPORT

Exercises in Electromagnetic Field

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

RSDW08 & RDDW08 series

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

P10. Specifications. True Spectrum /60Hz UL Standard Output Voltage-Less than 48V DC. Illumination (3feet):

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

LUMINAIRE PHOTOMETRIC TEST REPORT

Ceramic PTC Thermistor Overload Protection

PhysicsAndMathsTutor.com

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

ENSINGER High-temperature plastics. Material standard values.

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

Transcript:

ω

α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω

µ υ ρ α

Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 Normal Load (N) 1.00 0.00 0 0.1 0.2 0.3 0.4 0.5 0.6 Sliding velocity (m/s)

= P F adh v F pl = + = τ + τ τ

Metal Transfer Metal Transfer $ ) $ ) $ ) $ % $ ), +- $ ), - $ ) 6. %, &-. 8 ;

= =

ρ ρ = =

ρ ρ ρ µ µ

100 2.5 80 2 60 1.5 f = 0.85 k > 10-4 40 20 f = 0.4 f = 0.4 k < 10-6 f = 0.6 k < 10-6 k < 10-6 1 0.5 0 0 0 200 400 600 800 1000 Temperature (oc) ( C) Contact load (N) Contact Pressure (GPa)

α

α

Ξ

σ π σ

2b 2a Circular contact Elliptical contact Line contact σ + σ = + π

σ σ f f f σ = ( ) ( ) ( ) = ( ) > = >

σ : [( + ) ] σ = = ( + ) ( + ) = ( + ) ( + ) σ σ = σ + σ σ σ = σ ( ) σ = +

= ( ) 0.4 0.35 0.3 = 0.25 0.2 0.15 0.1 0.05 0 Circular contact (a = b) 0.0001 0.001 0.01 0.1 1 10 100 1000 = Line contact Line contact σ = =

Μ = ( + ) π Μ Circular contact Line contact (a/b) 0 + σ = π = ( π ) ( + ) = π Μ Μ = Line contact (a/b)

= ( θ ) θ = + θ θ { ( )} θ θ = θ φ + φ θ = θ = ρ = θ = θ =

ρ θ θ = ρ α σ = α ( ) α π ( ) = + α π απ Γ Γ = Ξ = Ξ

σ π { + σ } π σ α ( + ) + π + Γ π π + α + π π + Ξ π π

Ξ [9] + Ξ

α µ µ ρ α

ω P ω

Light source Spectral filter Aperture stop Field stop CCD Camera Beam splitter PZT movement Eyepiece Microscope objective Surface being measured Wear Track Mild Wear Wear Track Severe Wear

Specific Wear Rate (mm 3 N -1 m -1 ) S c,m 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 ω Zirconia disc Alumina disc 1.E-08 0 5 10 15 20 25 30 35 10 1 2.7 S c,m + 6 Ξ 0.1 0.01 0.1 1 10 100 Ξ

S c,m 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 Ξ

Coefficient of Friction 1 0.8 0.6 0.4 0.2 Normal Load (N) 50 f =0.7 Zirconia Silicon Carbide 0 0 10 20 30 40 50 60 Normal Load (N) f = 0.2 Alumina Silicon Nitride 100 Al 2 O 3 ZrO 2 0 0 0.01 0.1 1 10 Sliding Velocity (m/s) P V 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 Mean Contact Pressure (GPa)

α

α α µ

Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.25 0.2 0.15 0.1 0.05 3Y-TZP + 5% wt CuO (Sintered at 1550 C) 3Y-TZP + 5% wt CuO (Sintered at 1500 C) Pure 3Y-TZP Sliding Velocity (m/s) 3Y-TZP + 5% wt CuO (Sintered at 1550 C) 3Y-TZP + 5% wt CuO (Sintered at 1500 C) Pure 3Y-TZP 0 0 0.05 0.1 0.15 0.2 0.25 Sliding Velocity (m/s)

' > ## # & 5@ ' $ ( ) 3 0 # 2 1 7 (a) 1 6 1 5 (c) 1 4 (b) 1 3 1! 1 1 (a) 1 2 1 1 311 2111 2311 * (c) (b) 5@ $ ) $ ) $ + &9) $ ) $ + 29) G ' 9/ + D 5@ $ ( &) 8 5@ 5 $ ( () # 3 9;

a b c d

Wear Track

Counts/s 20 10 Zr_hr96_1mmstep_I3_C13 Strongest peak of Cu 2 O Inside the wear track 0 20 Zr_hr96_1mmstep_I3_C15 10 Outside the wear track (Bulk) 0 20 30 40 50 60 70 80 90 Position [ 2Theta]

α

β = η φ +ω = πη βσ φ +ω = η β σ φ = + φ = π η σ σ, ω ω ω = β

ω ω = σ β = σ ω ω = ω ω = ω = πη βσ +ω ω ω + φ +ω ω ω ω ω

+ω ω = πη βσ +ω ω ω ω ω + φ ω ω ω ω Elastic Elastic-plastic Fully plastic ω πβω ω πβω ω = πη βσ φ ω = πη βσ φ ω = + + = + +

β

ω ω = d Mean plane z 1 z 4 z 3 z i z 2 ω ω ω β 1 β 2 β 3 β 4 β i ( ω ) ω <ω ( ω ) ( ω ) ω ( ω ) < ω <ω ( ω ) ( ω ) = ( ω ) ω( ω ) < ω ( ) = πβω ω ( ) ω ω ω ω + ω = πβω ω ω ω ω ( ) = πβω ω

( ω ) ω <ω ( ω ) ( ω ) = ( ω ) ω ( ω ) < ω <ω( ω ) ( ω ) ω( ω ) < ω = β ω ω ω = ω ω = = = β σ

β σ η 0.4 0.3 0.2 Measured Gaussian 0.1 0-5 0 σ 5 σ 0.5 0.4 0.3 Measured Gaussian 0.2 0.1 0-5 0 σ 5 σ β β σ ββ ββ

σ σ 3 2.5 2 1.5 1 0.5 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 3 2.5 2 1.5 1 0.5 0 Deterministic Model Statistical Model [3] Ε Deterministic Model Statistical Model [3] Statistical Model [7] 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 Ε

ω

ω ω ω ω ξ Normal approach ω P FP Elayer, Hlayer, Esubstrate, Hsubstrate, Layer Thickness (t) layer substrate ω = + ξω Normal approach ω FP P Eeff (ω) Heff(ω) eff (ω) ξω = ( ξω) + π π ω ( ω) + ξω ξω ξω ξω + ξω ξω = ω ω = β ω

βω ( ) ( ξ( ω) ) ω = + ξω = π ξω π + ξω ( ξω) + ξω ω ω ω ω ω = ω + ω ω = πβω ω = ωβ ω ω ( ) σ ω ω = + σ

( ) ( ) ( )( ) ω ω = + σ σ σ ω ω = πβω ω = ωω ω ω ω ω ω = β ω ω ω ω = ω ω ω ω ω ω ω ω + ω = πβω ωω ωω ωω ωω

ωω ω ω = ω ω ω ωω ωω µ

Indentation Depth (µm) 7 6 5 4 3 2 1 0 β = 1.59 mm t = 6 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) Contact Radius ( µm) 140 120 100 80 60 40 20 0 β = 1.59 mm t = 6 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N)

µ Indentation Depth ( x 0.0245 mm) 100 80 60 40 20 0 φ = 12.7 mm t = 1.2 µm Measured [13] Sherbiney's Model [13] Present model 0.1 1 10 100 Load ( x 0.453 Kg)

(Normal Load (N)) 2/3 Mean contact pressure (GPa) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 12 10 8 6 4 2 0 β =100 µm t = 5 µm H layer /H substrate = 2 3 0 0.2 0.4 0.6 0.8 1 Indentation depth (µm) FEM Present Model FEM Present Model 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω/t

β ω = + +

= + + + = + d Asperities mean plane z 1 z 4 z 3 z i z 2 Layer Thickness (t) E layer ; H layer ; v layer E substrate ; H substrate ; v substrate d Asperities mean plane z 1 z 4 z 3 z i z 2 E eff (ω i ) H eff (ω i ) v eff (ω i ) β 1 β 1 β 2 β 2 β 3 β 3 σ β 4 β 4 β i β i

Contact area Ratio (A tot /A nom ) Dimensionless separation (d/σ) 3 2.5 2 1.5 1 0.5 1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 Case-1 t = t = t = t = t= 0 µm 0.1 µm 0.25 µm 0.5 µm µm 0 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 Dimensionless load (P tot /(E * t=0a nom )) Case-1 1.E-05 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 t = t = t = t = t = Dimensionless load (P tot /(E * t=0a nom )) 0 µm 0.1 µm 0.25 µm 0.5 µm µm σ

Contact area Ratio (A tot /A nom ) Dimensionless separation (d/σ) 3 2.5 2 1.5 1 0.5 Case-2 t = t = t = t = t = 0 µm 0.25 µm 0.5 µm 1 µm µm 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E+00 1.E-01 1.E-02 Dimensionless load (P tot /(E * t=0a nom )) 1.E-03 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 Dimensionless load (P tot /(E * t=0a nom )) Case-2 t = t = 0.25 µm t = t = t = 0 µm 0.5 µm 1 µm µm σ

Contact with substrate Contact with layer

τ = + τ + τ = + β β

πβω πβω ω ω ω = ω = ω = πβ ω ω = ω Contact area Elastic Elastic-Plasitic Plastic Elastic Elastic-Plasitic Plastic Static Moving static ω c1 2πβ i ω i static ω c2 dynamic ω c2 πβ i ω i (Moving asperity) (Static asperity) Indentation depth (ω)

ω = β ω ωω ω ω = ω ω ωω ωω ω = ω ω ( ω ) = ( ω ) + ( ω ) + ( ω ) = P tot = Surface Properties Given P Guess d P ie + P iep + ie iep P tot = P No P tot > P ip No Yes P ip Yes Stop Reduce the value of d Increase the value of d

ω ω ω t i ω is Layer Substrate 2a il 2a is = = = = = =

ω ω = + ω ω = β ω ω ω ω = ω ω ω ω ω ω πβ ω + ω ω ω ω ω = πβω = + ω = β ω = ω = = = πβω

= ω > ω ω ω ω < ω ω ω < ω = = πβω ω > ω ω ω ω = + + + = + + = + τ τ τ = τ + τ + τ + + τ + τ + τ + τ

v β i θ i ω i θ θ θ θ = π θ θ θ = ω β ω β ω π ω < β ω β

θ θ θ = χω π θ χω ω > ω ω χω = ω < ω < ω ω ω < ω = + = =

β µσ µη ηβσ η ηβσ

0.5 1 0.45 0.9 0.4 0.8 0.35 Measured [3] 0.7 0.3 0.6 Halling's Model 0.25 0.5 0.2 Present Model 0.4 0.15 Ratio of fully plastic to 0.3 total contact area 0.1 0.2 Present model 0.05 0.1 0 0 0.0001 0.001 0.01 0.1 1 10 100 Layer Thickness (µm) Coefficient of friction Plastic Contact Area Total Contact Area

Coefficient of friction 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 Measured [3] Halling's Model Present Model Ratio of fully plastic to total contact area Present model 0 0 0.0001 0.001 0.01 0.1 1 10 100 Layer Thickness (µm) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Plastic Contact Area Total Contact Area µ

µ

µ µ ψ σβ

µ - µ

τ = = =

-

Wear Track ±

µ Indentation load (N) 0.6 0.5 0.4 0.3 0.2 0.1 0 0.0 0.5 1.0 1.5 2.0 2.5 Indentation depth (µm)

γ γ

β β σβ µσµ

γ µ γ γ γ γ γ γ γ γ γ γ

$ ) (+ &9 &+ 9 + 9 + + + + + ++ + ++ ++ ++ βdβ $ % $ < 9 ) 0 ' 0 γ # 3 < ; $ & 5@ 0 ' + D 5N 2 8N

γ

R 1 R 1 a R 2 R 2 = υ υ = +

= + + + = + δ) δ = = π = Z R x1 R y1 b a Y R y2 R x2 X δ)

= α = β δ = γ = + + + α κ π ( ) γ κ β κ π π ( ) π ( ) ( ) π ( ) + ( ) π( )

π ( ) + ( ) π ( λ) ( ) κ + + ( λ) λ = κ λ = < λ = π = R 1 R 2 b

π = π = =

= = ( ) = ( )

π = ( ) α = αα = ε ε ε ε ε ν = ν =

Indentation Depth (µm) 3.5 3 2.5 2 1.5 1 0.5 0 β = 3.7 mm t = 0 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) Contact Radius ( µm) 120 100 80 60 40 20 0 β = 3.7 mm t = 0 µm µ El-Shafei et al. Present Model 0 20 40 60 Normal Load (N)

Indentation Depth (µm) Indentation Depth (µm) Indentation Depth (µm) 3.5 3 2.5 2 1.5 1 0.5 0 4 3.5 3 2.5 2 1.5 1 0.5 0 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 β = 3.7 mm t = 1.5 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 3.7 mm t = 3 µm 0 20 40 60 Normal Load (N) β = 1.59 mm t = 0 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) El-Shafei et al. Present Model Contact Radius ( µm) Contact Radius ( µm) Contact Radius ( µm) 160 140 120 100 80 60 40 20 0 160 140 120 100 80 60 40 20 0 120 100 80 60 40 20 0 β = 3.7 mm t = 1.5 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 3.7 mm t = 3 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 1.59 mm t = 0 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N)

Indentation Depth (µm) Indentation Depth (µm) Indentation Depth (µm) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 β = 1.59 mm t = 1.5 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 1.59 mm t = 3 µm 0 20 40 60 Normal Load (N) β = 1.59 mm t = 6 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) El-Shafei et al. Present Model Contact Radius ( µm) Contact Radius ( µm) Contact Radius ( µm) 120 100 80 60 40 20 0 120 100 80 60 40 20 0 140 120 100 80 60 40 20 0 β = 1.59 mm t = 1.5 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 1.59 mm t = 3 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 1.59 mm t = 6 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N)

Indentation Depth (µm) Indentation Depth (µm) 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 β = 1.59 mm t = 9 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 1.59 mm t = 12 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) Contact Radius ( µm) Contact Radius ( µm) 160 140 120 100 80 60 40 20 0 160 140 120 100 80 60 40 20 0 β = 1.59 mm t = 9 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) β = 1.59 mm t = 12 µm El-Shafei et al. Present Model 0 20 40 60 Normal Load (N) µ

Indentation Depth ( x 0.0245 mm) Indentation Depth ( x 0.0245 mm) 100 80 60 40 20 0 100 80 60 40 20 0 φ = 12.7 mm t = 1.2 µm Measured [13] Sherbiney's Model [13] Present model 0.1 1 10 100 Load ( x 0.453 Kg) φ = 25.4 mm t = 1.2 µm Measured [13] Sherbiney's Model [13] Present model 0.1 1 10 100 Load ( x 0.453 Kg)

Indentation Depth ( x 0.0245 mm) Indentation Depth ( x 0.0245 mm) 100 80 60 40 20 0 120 100 80 60 40 20 0 φ = 12.7 mm t = 15 µm Measured [13] Sherbiney's Model [13] Present model 0.1 1 10 Load ( x 0.453 Kg) φ = 25.4 mm t = 15 µm Measured [13] Sherbiney's Model [13] Present model 0.1 1 10 100 Load ( x 0.453 Kg)

µ µ µ βµ µ βµ µ µ µ

µ µ µ βµ βµ µ βµ µ µ

µ µ µ βµ β β µ µ µ

µ µ µ µ β β µ µ

(Normal Load (N)) 2/3 (Normal Load (N)) 2/3 (Normal Load (N)) 2/3 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 β =100 µm t = 1 µm H layer /H substrate = 2 3 0 0.2 0.4 0.6 0.8 1 β =100 µm t = 2 µm H layer /H substrate = 2 3 Indentation depth (µm) FEM Present Model 0 0.2 0.4 0.6 0.8 1 β =100 µm t = 5 µm H layer /H substrate = 2 3 Indentation depth (µm) FEM Present Model 0 0.2 0.4 0.6 0.8 1 Indentation depth (µm) FEM Present Model

(Normal Load (N)) 2/3 Mean contact pressure (GPa) 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Mean contact pressure (GPa) 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 β =100 µm t = 10 µm H layer /H substrate = 2 FEM Present Model 0 0.2 0.4 0.6 0.8 1 1.2 Indentation depth (µm) β µ µ 0 1 2 3 4 β µ µ ω/t FEM Present Model 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ω/t FEM Present Model

Mean contact pressure (GPa) Mean contact pressure (GPa) Mean contact pressure (GPa) 9 8 7 6 5 4 3 2 1 0 12 10 12 10 8 6 4 2 0 8 6 4 2 0 β µ µ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 β µ µ ω/t 0 0.1 0.2 0.3 0.4 β µ µ ω/t FEM Present Model FEM Present Model 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω/t FEM Present Model

Mean contact pressure (GPa) Mean contact pressure (GPa) 12 10 8 6 4 2 0 14 12 10 8 6 4 2 0 β µ µ β µ µ FEM Present Model 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω/t FEM Present Model 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ω/t