ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες

Σχετικά έγγραφα
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.

Σειρά Προβλημάτων 3 Λύσεις

Φροντιστήριο 7 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Γλώσσες Χωρίς Συμφραζόμενα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)

Σειρά Προβλημάτων 3 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

Σειρά Προβλημάτων 3 Λύσεις

Γλώσσες Χωρίς Συμφραζόμενα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Σειρά Προβλημάτων 4 Λύσεις

Αλγόριθμοι για αυτόματα

Σειρά Προβλημάτων 4 Λύσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σειρά Προβλημάτων 1 Λύσεις

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Σειρά Προβλημάτων 4 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Μη γράφετε στο πίσω μέρος της σελίδας

Σειρά Προβλημάτων 4 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 9: Αυτόματα Στοίβας (Pushdown Automata - PDA)

Θεωρία Υπολογισμού και Πολυπλοκότητα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Ασκήσεις από παλιές εξετάσεις

Τεχνητή Νοημοσύνη. 2η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Πληροφορικής»

f(t) = (1 t)a + tb. f(n) =

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις

Μη γράφετε στο πίσω μέρος της σελίδας

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Περιεχόμενα Τι περιγράφει ένα ΣΔ ΣΔ και παραγωγές Θεωρία Υπολογισμού Ενότητα 15: Συντακτικά Δέντρα Επ. Καθ. Π. Κατσαρός Τμήμα Πληροφορικής Επ. Καθ. Π.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας

Θεωρία Γραφημάτων 6η Διάλεξη

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ

Κεφάλαιο 2: Τυπικές γλώσσες

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0.

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

H mèjodoc Sturm. Mˆjhma AkoloujÐec Sturm

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

Προγραμματισμός Ι (ΗΥ120)

f(x) = και στην συνέχεια

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Μη γράφετε στο πίσω μέρος της σελίδας

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Θεωρία Υπολογισμού και Πολυπλοκότητα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

EukleÐdeiec emfuteôseic: ˆnw frˆgmata

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ

Κεφάλαιο 8 Μέθοδοι ανάλυσης κυκλωμάτων

Transcript:

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες

Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1

Πότε μια γλώσσα δεν είναι ασυμφραστική; Έστω γλώσσα Β={a κ b κ c κ κ 0} Υπάρχει ασυμφραστική γραμματική ή αυτόματο στοίβας που να την αναγνωρίζει; ΟΧΙ Δεν μπορούμε να κάνουμε περισσότερες από μια αντικαταστάσεις σε μια ασυμφραστική γραμματική Με μια στοίβα μπορούμε να υπολογίσουμε τις εμφανίσεις του b με το a αλλά δεν θα μείνουν σύμβολα στη στοίβα για να μετρήσουμε για το c 2

Λήμμα της Άντλησης Πως αποδεικνύουμε ότι μια γλώσσα ΔΕΝ είναι ασυμφραστική; ΛΗΜΜΑ ΑΝΤΛΗΣΗΣ Λήμμα της Άντλησης για ασυμφραστικές γλώσσες: Για κάθε ασυμφραστική γλώσσα Α, υπάρχει αριθμός p (το μήκος της άντλησης αυτής) τέτοιος ώστε κάθε λέξη w με μήκος μεγαλύτερο ή ίσο του p να μπορεί να χωριστεί σε πέντε τμήματα, w = uvxyz, που να ικανοποιούν τις εξής συνθήκες: 1. για κάθε i 0, uv i xy i z 2 A 2. vy > 0, και 3. vxy p. 3

Απόδειξη Λήμματος Άντλησης Έστω G μια ασυμφραστική γραμματική που παράγει την Α Θέλουμε να δείξουμε: Κάθε λέξη της Α με μήκος μεγαλύτερο ή ίσο του p μπορεί να χωριστεί σε πέντε μέρη uvxyz που να ικανοποιούν τις συνθήκες του λήμματος Έστω b το μέγιστο πλήθος συμβόλων στο δεξί μέλος κάθε κανόνα της G Θεωρούμε ότι b 2 Για οποιοδήποτε συντακτικό δέντρο της G κάθε κόμβος έχει b θυγατρικούς κόμβους 4

Απόδειξη Λήμματος Άντλησης Σε απόσταση 1 από την εναρκτήρια μεταβλητή => το πολύ b φύλλα Σε απόσταση 2 από την εναρκτήρια μεταβλητή => το πολύ b 2 φύλλα Σε απόσταση h από την εναρκτήρια μεταβλητή => το πολύ b h φύλλα Εάν το ύψος του συντακτικού δέντρου h Μήκος της παραγόμενης λέξης b h Εάν το μήκος της λέξης b h+1 Ύψος κάθε δέντρου που παράγει την λέξη h+1 5

Απόδειξη Λήμματος Άντλησης Επιλέγουμε ως μήκος άντλησης την τιμή p=b V +1 V : πλήθος μεταβλητών(μη- τερματικών) της G Υποθέτουμε ότι έχουμε μια λέξη s 2 A τ.ω. s = n και n p Κάθε συντακτικό δέντρο της s έχει ύψος V +1 Έστω Δ ένα συντακτικό δέντρο που παράγει την s Ύψος Δ V +1 Άρα το Δ περιέχει κάποια διαδρομή μήκους V +1 από την ρίζα στα φύλλα Πόσοι κόμβοι εμφανίζονται στην διαδρομή; V +2: ένα τερματικό σύμβολο και V +1 μεταβλητές 6

Απόδειξη Λήμματος Άντλησης Άρα στην διαδρομή περιέχονται V +1 μεταβλητές Αφού η G περιέχει V μεταβλητές Αρχή του Περιστερώνα: Υπάρχει μια μεταβλητή R που εμφανίζεται περισσότερες από μια φορές στη διαδρομή 7

Απόδειξη Λήμματος Άντλησης Έστω ότι η μεταβλητή που επαναλαμβάνεται είναι η R Μπορούμε να χωρίσουμε την s σε πέντε μέρη uvxyz Πρώτη εμφάνιση της R παράγει την vxy Δεύτερη εμφάνιση της R παράγει μόνο την x Τ R R 8 u v x y z

Απόδειξη Συνθήκης 1!" #"!" Τ R!" $" %" '" &" u $" #" %" Αφού τα δύο υποδέντρα προκύπτουν από την ίδια μεταβλητή μπορούμε να αντικαταστήσουμε το ένα με το άλλο Αριστερά: Αντικαθιστούμε μικρό με μεγάλο υποδέντρο Παίρνουμε λέξη uv 2 xy 2 z Δεξιά: Αντικαθιστούμε μεγάλο με μικρό υποδέντρο Παίρνουμε λέξη uxz x z 9

Απόδειξη Συνθηκών 2 και 3 Συνθήκη 2: vy > 0 Οι λέξεις v και y δεν είναι ταυτόχρονα κενές Εάν και οι δύο ήταν κενές τότε αντικαθιστώντας το μεγάλο με το μικρό υποδέντρο το δέντρο θα παρήγαγε την s αλλά θα είχε λιγότερους κόμβους από το Δ Αδύνατον αφού αρχικά επιλέξαμε το ελάχιστο δέντρο για την s Συνθήκη 3: vxy p Η vxy παράγεται από το ψηλότερο R Οι δυο εμφανίσεις τις R εμφανίζονται στις πρώτες V +1 μεταβλητές Άρα το υποδέντρο στο οποίο η R παράγει την vxy έχει ύψος το πολύ V +1 Επομένως παράγει λέξη μήκους το πολύ b V +1 =p 10

Βήματα Απόδειξης Μη Ασυμφραστικότητας Δοθέντος μιας γλώσσας Β πως δείχνουμε ότι δεν είναι ασυμφραστική; Βήμα 1: Υποθέτουμε ότι η Β είναι ασυμφραστική Βήμα 2: Θεωρούμε ότι η Β περιέχει λέξεις μήκους μεγαλύτερο ή ίσο με κάποιο p (μήκος άντλησης) Βήμα 3: Βρίσκουμε μια λέξη w της Β δεν επιδέχεται άντληση Βήμα 4: Μελετούμε όλες τις δυνατές διαιρέσεις της w στα τμήματα u v x y z και να δείχνουμε ότι η υπάρχει τιμή για το i τέτοια ώστε uv i xy i z62b => ΑΤΟΠΟ 11

Παράδειγμα 1 Έστω Β={a κ b κ c κ κ 0} Βήμα 1: Υποθέτουμε ότι Β είναι ασυμφραστική Βήμα 2: Έστω p το μήκος της άντλησης Βήμα 3: Επιλέγουμε την λέξη w=a p b p c p Από το λήμμα της άντλησης w=uvxyz και για i 0, uv i xy i z 2 B 12

Παράδειγμα 1 Βήμα 4: 1. Αμφότερες οι λέξεις v και y μόνο ένα είδος συμβόλων Τότε η λέξη uv 2 xy 2 z δεν περιέχει το ίδιο πλήθος a,b,c => άτοπο 2. Κάποια από τις v και y περιέχει περισσότερα από ένα είδος συμβόλων Τότε η λέξη uv 2 xy 2 z μπορεί να περιέχει το ίδιο πλήθος a,b,c αλλά σε λανθασμένη σειρά=> άτοπο Όλες οι περιπτώσεις μας οδηγούν σε άτοπο Δεν μπορούμε να εφαρμόσουμε άντληση στη λέξη a p b p c p Η Β δεν είναι ασυμφραστική 13

Ερωτήσεις; 14