Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Σχετικά έγγραφα
Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Εισαγωγή στην Επιστήμη των Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Περιεχόμενα. 1 Υπολογισιμότητα. Ιστορία - Εισαγωγή. Μαθηματικό Υπόβαθρο. LOOP: Μια απλή γλώσσα προγραμματισμού

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Εισαγωγή στην Επιστήμη των Υπολογιστών

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Κεφάλαιο 2: Τυπικές γλώσσες. Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος / 216

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Τα Θεμέλια της Πληροφορικής

Πεπερασμένα Αυτόματα και Κανονικές Παραστάσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι. Εαρινό Εξάμηνο Lec 05 & & 26 /02/2019 Διδάσκων: Γεώργιος Χρ.

Σειρά Προβλημάτων 4 Λύσεις

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Τυπικές Γραμματικές και Άλλα Αυτόματα

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 9: Αυτόματα Στοίβας (Pushdown Automata - PDA)

Σειρά Προβλημάτων 1 Λύσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σειρά Προβλημάτων 4 Λύσεις

Γλώσσες Χωρίς Συμφραζόμενα

Παραλλαγές και επεκτάσεις αυτομάτων I

Σειρά Προβλημάτων 4 Λύσεις

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση Ι. Εαρινό Εξάμηνο Lec /03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής

Σειρά Προβλημάτων 4 Λύσεις

Αλγόριθμοι για αυτόματα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Σειρά Προβλημάτων 4 Λύσεις

Φροντιστήριο 10 Λύσεις

Φροντιστήριο 9 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σειρά Προβλημάτων 4 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)

Σειρά Προβλημάτων 3 Λύσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Ασκήσεις από παλιές εξετάσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μεταγλωττιστές. Ενότητα 4: Τυπικές γλώσσες (Μέρος 3 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Σειρά Προβλημάτων 4 Λύσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

Γλώσσες Χωρίς Συμφραζόμενα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Σειρά Προβλημάτων 5 Λύσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Υπολογίσιμες Συναρτήσεις

Σειρά Προβλημάτων 3 Λύσεις

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Θέματα Μεταγλωττιστών

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

Θέματα Μεταγλωττιστών

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σειρά Προβλημάτων 3 Λύσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Σειρά Προβλημάτων 5 Λύσεις

Μηχανές Turing (T.M) I

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ

f(t) = (1 t)a + tb. f(n) =

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

Σειρά Προβλημάτων 1 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

HEAD INPUT. q0 q1 CONTROL UNIT

Transcript:

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνοσεμφε 4η ενότητα: Αυτόματα, τυπικές γλώσσες, γραμματικές Διδάσκοντες Θεωρία: Στάθης Ζάχος, Άρης Παγουρτζής Εργαστήριο: Δώρα Σούλιου Βοηθός διδασκαλίας: Θανάσης Λιανέας http://www.corelab.ece.ntua.gr/courses/focs 1

Μηχανές πεπερασμένων καταστάσεων (FSM) Τρόπος κωδικοποίησης αλγορίθμων Τρόπος περιγραφής συστημάτων πεπερασμένων καταστάσεων: Συστήματα που έχουν εσωτερικές καταστάσεις και προκαθορισμένο τρόπο μετάβασης από μία κατάσταση σε άλλη με βάση την τρέχουσα κατάσταση και την είσοδο (συνήθως ενέργεια κάποιου χρήστη). Μπορεί να έχουν και έξοδο. Εφαρμογές σε πλήθος επιστημονικών πεδίων 2

Παράδειγμα: μηχάνημα καφέ (i) Προδιαγραφές Δύοείδηκαφέ: ελληνικός ή φρέντο. Κόστος καφέ: 40 λεπτά. Επιτρέπονται κέρματα 10, 20, ή 50 λεπτών. 3

Παράδειγμα: μηχάνημα καφέ (ii) Σχεδίαση του συστήματος Εσωτερικές καταστάσεις: q 0, q 1, q 2, q 3, q 4, q 5 q i : έχουν δοθεί μέχρι στιγμής 10*i λεπτά Δυνατές είσοδοι (ενέργειες): P1, P2, P5, K1, K2 Ρ1, Ρ2, Ρ5: ρίψη κέρματος 10, 20, ή 50 λεπτών Κ1, Κ2: κουμπί 1 για ελληνικό καφέ, 2 για φρέντο Δυνατές έξοδοι: E1, E2, E3, E4, E5, ΕΛ, ΦΡ E i : επιστρέφονται 10*i λεπτά ΕΛ: παροχή ελληνικού καφέ ΦΡ: παροχή φρέντο 4

Παράδειγμα: μηχάνημα καφέ (iii) Πίνακας καταστάσεων: δείχνει ποια είναι η επόμενη κατάσταση και η έξοδος για κάθε συνδυασμό τρέχουσας κατάστασης και εισόδου. Αρχική κατάσταση: q0. Είσοδος Κατάστ. q 0 Ρ1 q 1, - Ρ2 q 2, - Ρ5 q 4, Ε1 Κ1 q 0, - Κ2 q 0, - q 1 q 2, - q 3, - q 4, E2 q 1, - q 1, - q 2 q 3, - q 4, - q 4, E3 q 2, - q 2, - q 3 q 4, - q 4, Ε1 q 4, E4 q 3, - q 3, - q 4 q 4, Ε1 q 4, E2 q 4, E5 q 0, ΕΛ q 0, ΦΡ 5

Παράδειγμα: μηχάνημα καφέ (iv) Διάγραμμα καταστάσεων: παρέχει τις ίδιες πληροφορίες με τον πίνακα καταστάσεων με πιο εποπτικό τρόπο. Αρχική κατάσταση: q 0 (σημειώνεται με βέλος). Ρ1/- K1/- q 0 q K2/- 1 Ρ5/E2 K1/EΛ K2/ΦΡ Ρ5/E1 Ρ1/- Ρ1/E1 Ρ2/E2 Ρ5/E5 q 4 Ρ2/- q 3 q 2 K1/- K2/- 6

Παράδειγμα II: αριθμητική modulo Κατασκευή μηχανής που να κάνει την πράξη n mod 3 Πόσες καταστάσεις χρειαζόμαστε; Χρήση ιδιότητας: n mod 3 = (n 1 +...+n k ) mod 3, n i τα (δεκαδικά) ψηφία του n Αποδείξτε το! 0,3,6,9 / 0 1,4,7 / 1 q 0 q 1 2,5,8 / 0 0,3,6,9 / 1 1,4,7 / 0 2,5,8 / 2 1,4,7 / 2 2,5,8 / 1 0,3,6,9 / 2 q 2 7

Παράδειγμα II: αριθμητική modulo Απλοποίηση: αν ενδιαφέρει μόνο η διαιρετότητα με το 3 δεν χρειάζεται έξοδος Ορίζουμε καταστάσεις αποδοχής (διπλός κύκλος) 0,3,6,9 1,4,7 q 0 q 1 2,5,8 0,3,6,9 1,4,7 2,5,8 1,4,7 2,5,8 0,3,6,9 q 2 εκτέλεση με είσοδο 403: (q 0 )403 4(q 1 )03 40(q 1 )3 403(q 1 ) ΑΠΟΡΡΙΨΗ 8

Αυτόματα Μηχανές πεπερασμένων καταστάσεων χωρίς έξοδο: κάποιες καταστάσεις αποδέχονται, ενώ οι υπόλοιπες απορρίπτουν. Καταστάσειςαποδοχήςσυμβολίζονταιμε επιπλέον κύκλο. Ένα αυτόματο έχει κάποιες εσωτερικές καταστάσεις q 0, q 1, q 7, q 15,..., και μια συνάρτηση μετάβασης δ που καθορίζει την επόμενη κατάσταση του αυτομάτου με βάση την τρέχουσα κατάσταση και την συμβολοσειρά εισόδου. Αποδέχεται ή απορρίπτει τη συμβολοσειρά εισόδου. Αναγνωριστές γλωσσών (= προβλήματα απόφασης). 9

Αυτόματα και τυπικές γλώσσες Τυπικές γλώσσες: χρησιμοποιούνται για την περιγραφή υπολογιστικών προβλημάτων αλλά και γλωσσών προγραμματισμού. Π.χ. L = {x {0,1}* x κωδικοποίηση πρώτου αριθμού} Αυτόματα: χρησιμεύουν για την αναγνώριση τυπικών γλωσσών και για την κατάταξη της δυσκολίας των αντίστοιχων προβλημάτων: Κάθε αυτόματο αναγνωρίζει μια τυπική γλώσσα: το σύνολο των συμβολοσειρών που το οδηγούν σε κατάσταση αποδοχής. 10

Παράδειγμα: αναγνώριση περιττών 1 0 q 0 q 1 1 0 q 0 : τελευταίο ψηφίο διάφορο του 1 q 1 : τελευταίο ψηφίο ίσο με 1 η q 0 λέγεται αρχική κατάσταση ενώ η q 1 λέγεται κατάσταση αποδοχής (ή τελική) εκτέλεση με είσοδο 0110: (q 0 )0110 0(q 0 )110 01(q 1 )10 011(q 1 )0 0110(q 0 ) ΑΠΟΡΡΙΨΗ εκτέλεση με είσοδο 101: (q 0 )101 1(q 1 )01 10(q 0 )1 101(q 1 ) ΑΠΟΔΟΧΗ 11

Άλλα αυτόματα Μηχανισμοί: χωρίς είσοδο έξοδο: δ(q i ) = q j εκτέλεση: q 0 -> q j -> q k -> q m... Αυτόματα στοίβας (PDA, pushdown automata): έχουν πολύ περισσότερες δυνατότητες καθώς μπορούν να χρησιμοποιήσουν γραμμικά περιορισμένη (ως προς το μήκος της εισόδου) μνήμη (σε μορφή στοίβας). Μηχανές Turing (TM): έχουν ακόμη περισσότερες δυνατότητες καθώς έχουν απεριόριστη μνήμη (σε μορφή ταινίας, με δυνατότητα επιστροφής). Γραμμικά περιορισμένα αυτόματα (LBA): είναι ΤΜ με γραμμικά περιορισμένη μνήμη (σε μορφή ταινίας, με δυνατότητα επιστροφής). 12

Άλλες τυπικές γλώσσες L 1 = {w {a, b} w begins with a} L 2 = {w {1, 3} w contains even # of 1 s } L 1 = {w Σ w is a palindrome } 13

Ορισμός DFA Ντετερμινιστικό πεπερασμένο αυτόματο (Deterministic Finite Automaton, DFA): πεντάδα Μ = (Q,Σ,δ,q 0,F) Q : το σύνολο των καταστάσεων του Μ (πεπερασμένο), π.χ. Q = {q 0, q 1, q 7, q 15 } Σ : πεπερασμένο αλφάβητο εισόδου (Σ Q = ), π.χ. Σ = {0,1} δ : Q x Σ Q : συνάρτηση μετάβασης, π.χ. δ(q i,0) = q j q 0 Q : αρχική κατάσταση F Q: σύνολο τελικών καταστάσεων (αποδοχής), π.χ. F = {q 1, q 15 } 14

Παράδειγμα DFA L 1 = {w {a, b} w begins with a} εκτέλεση με είσοδο abba : (q 0 )abba a(q 1 )bba ab(q 1 )ba abb(q 1 )a abba(q 1 ) ΑΠΟΔΟΧΗ 15

Γλώσσα με DFA και γλώσσα χωρίς DFA 16

Αποδοχή DFA: τυπικοί ορισμοί Επέκταση συνάρτησης δ: Q x Σ* Q Η επεκτεταμένη δ δέχεται ως ορίσματα μια κατάσταση q και μια συμβολοσειρά u και δίνει την κατάσταση όπου θα βρεθεί το αυτόματο αν ξεκινήσει από την q και διαβάσει την u. Ορισμός επεκτεταμένης δ (σχήμα πρωταρχικής αναδρομής): δ(q, ε) =q δ(q, wa) =δ(δ(q, w),a) όπου w είναι συμβολοσειρά οποιουδήποτε μήκους, ενώ α απλό σύμβολο του αλφαβήτου 17

Αποδοχή DFA: τυπικοί ορισμοί Ένα DFA αποδέχεται μία συμβολοσειρά u ανν δ(q 0,u) F Ένα DFA M αποδέχεται τη γλώσσα L(M) = {w δ(q 0,w) F} Οι γλώσσες που γίνονται αποδεκτές από DFA λέγονται κανονικές 18

Μη ντετερμινιστικά αυτόματα Ντετερμινιστικά αυτόματα: για κάθε κατάσταση και σύμβολο εισόδου υπάρχει μοναδική επόμενη κατάσταση Μη-ντετερμινιστικά αυτόματα: για κάθε κατάσταση και σύμβολο εισόδου υπάρχει επιλογή από σύνολο δυνατών επόμενων κατάστασεων 19

Μη ντετερμινιστικά πεπερασμένα αυτόματα NFA (Non-deterministic Finite Automaton): για κάθε κατάσταση και σύμβολο εισόδου επιλέγεται μία από ένα σύνολο δυνατών επόμενων κατάστασεων. NFAε (NFA με ε-κινήσεις): μπορεί να αλλάζει κατάσταση χωρίς ανάγνωση επόμενου συμβόλου. 20

Παράδειγμα NFA 21

Παράδειγμα NFA Δένδρο υπολογισμού για είσοδο aabaa ΑΠΟΔΟΧΗ 22

Τυπικός ορισμός NFA πεντάδα Μ = (Q,Σ,δ,q 0,F) Q : το σύνολο των καταστάσεων του Μ (πεπερασμένο) Σ : πεπερασμένο αλφάβητο εισόδου (Σ Q = ) δ : Q x Σ Pow(Q) : συνάρτηση μετάβασης, π.χ. δ(q i,1) = {q j, q k, q m } q 0 Q : αρχική κατάσταση F Q: σύνολο τελικών καταστάσεων (αποδοχής) Σημείωση: αν για κάποιο συνδυασμό κατάστασης και συμβόλου εισόδου η συνάρτηση μετάβασης δίνει κενό σύνολο τότε το NFA απορρίπτει την συμβολοσειρά εισόδου. 23

Αποδοχή NFA: τυπικοί ορισμοί Ένα ΝFA αποδέχεται συμβολοσειρά w αν δ(q 0,w) F Ένα DFA M αποδέχεται τη γλώσσα L(M) = {w δ(q 0,w) F } Σημείωση: η συνάρτηση δ είναι επεκτεταμένη ώστε να δέχεται σαν ορίσματα μια κατάσταση q και μια συμβολοσειρά w και να δίνει το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το αυτόματο αν ξεκινήσει από την q και διαβάσει την w 24

Ισοδυναμία DFA και NFA (i) Θεώρημα Rabin-Scott: για κάθε NFA υπάρχει ένα DFA που αποδέχεται την ίδια γλώσσα. Επομένως τα DFA και τα NFA αναγνωρίζουν ακριβώς την ίδια κλάση γλωσσών (κανονικές γλώσσες). 25

Ισοδυναμία DFA και NFA (ii) Έστω το NFA Μ = (Q,Σ,q 0,F,δ). Ένα ισοδύναμο DFA M'= (Q',Σ,q ' 0,F',δ'), ορίζεται ως εξής: Q' = Pow(Q), δηλαδή οι καταστάσεις του Μ είναι όλα τα υποσύνολα καταστάσεων του Μ. q ' 0 = {q 0 }, F' = {R Q' R F }, δηλαδή μια κατάσταση του Μ είναι τελική αν περιέχει μια τελική κατάσταση του Μ. δ'(r, a) = {q Q q δ(r, a) για r R}, δηλαδή δ'(r, a) είναι το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το Μ ξεκινώντας από οποιαδήποτε κατάσταση του R και διαβάζοντας a. 26

Μετατροπή NFA σε DFA (i) NFA για τη γλώσσα L 4 ("2 συνεχόμενα a ") DFA για τη γλώσσα L 4 27

Μετατροπή NFA σε DFA (ii) NFA για τη γλώσσα L 4 DFA για τη γλώσσα L 4 28

Μετατροπή NFA σε DFA (iii) NFA για τη γλώσσα L 4 DFA για τη γλώσσα L 4 29

Μετατροπή NFA σε DFA (iv) NFA για τη γλώσσα L 4 DFA για τη γλώσσα L 4 30

Μετατροπή NFA σε DFA (v) NFA για τη γλώσσα L 4 DFA για τη γλώσσα L 4 31

Μετατροπή NFA σε DFA (vi) NFA για τη γλώσσα L 4 DFA για τη γλώσσα L 4 32

Αυτόματα με ε-κινήσεις: NFA ε Επιτρέπουν μεταβάσεις χωρίς να διαβάζεται σύμβολο (ισοδύναμα: με είσοδο το κενό string ε). Αποδέχονται τις συμβολοσειρές που μπορούν να οδηγήσουν σε τελική κατάσταση, χρησιμοποιώντας ενδεχομένως και ε-κινήσεις. 33

Τυπικός ορισμός NFA ε πεντάδα Μ = (Q,Σ,δ,q 0,F) Q : το σύνολο των καταστάσεων του Μ (πεπερασμένο) Σ : πεπερασμένο αλφάβητο εισόδου (Σ Q = ) δ : Q x (Σ {ε}) Pow(Q) : συνάρτηση μετάβασης, π.χ. δ(q i,1) = {q j, q k, q m }, δ(q i,ε) = {q k, q n } q 0 Q : αρχική κατάσταση F Q: σύνολο τελικών καταστάσεων (αποδοχής) 34

Αποδοχή NFA ε : τυπικοί ορισμοί Ένα ΝFA αποδέχεται συμβολοσειρά w ανν δ(q 0,w) F Ένα DFA M αποδέχεται τη γλώσσα L(M) = {w δ(q 0,w) F } Σημείωση: η συνάρτηση δ είναι επεκτεταμένη ώστε να δέχεται σαν ορίσματα μια κατάσταση q και μια συμβολοσειρά w και να δίνει το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το αυτόματο αν ξεκινήσει από την q και διαβάσει την w, χρησιμοποιώντας ενδεχομένως και ε-κινήσεις όπου αυτό επιτρέπεται. 35

Συνάρτηση ε-κλείσιμο ΓιαναορίσουμετυπικάτηναποδοχήσεNFAε, αλλά και για να κάνουμε μετατροπή NFAε σε NFA ή DFA (ισοδυναμία), χρειαζόμαστε την έννοια του ε-κλεισίματος μιας κατάστασης q, που είναι το σύνολο των καταστάσεων στις οποίες μπορεί να φτάσει το αυτόματο ξεκινώντας από την q και χρησιμοποιώντας μόνο ε-κινήσεις Ορισμός. Ως ε-κλείσιμο: Q Pow(Q) ορίζουμε τη συνάρτηση ε-κλείσιμο(q) = {p p προσβάσιμο από q μόνο με ε-κινήσεις} 36

Ισοδυναμία NFA ε με DFA Έστω το NFA ε Μ = (Q,Σ,q 0,F,δ). Ένα ισοδύναμο DFA M'= (Q',Σ,q ' 0,F',δ'), ορίζεται ως εξής: Q' = Pow(Q), δηλαδή οι καταστάσεις του Μ είναι όλα τα υποσύνολα καταστάσεων του Μ. q ' 0 = ε-κλείσιμο(q 0 ), F' = {R Q' R F }, δηλαδή μια κατάσταση του Μ είναι τελική αν περιέχει μια τελική κατάσταση του Μ. δ'(r,a) = {q Q q ε-κλείσιμο(δ(r,a)) για r R}, δηλαδή δ'(r,a) είναι το σύνολο των καταστάσεων όπου μπορεί να βρεθεί το Μ ξεκινώντας από οποιαδήποτε κατάσταση του R και διαβάζοντας a και χρησιμοποιώντας στη συνέχεια ε-κινήσεις. 37

Παράδειγμα ισοδυναμίας NFA ε με DFA 38

Ισοδυναμία NFA ε με NFA (i) Έστω το NFA ε Μ = (Q,Σ,q 0,F,δ). Ένα ισοδύναμο NFA M'= (Q,Σ,q 0,F',δ'), ορίζεται ως εξής: οι καταστάσεις, το αλφάβητο, και η αρχική κατάσταση του Μ' είναι ίδια με τα αντίστοιχα του Μ. F' = F {q 0 }, εάν ε-κλείσιμο(q 0 ) F, αλλιώς F' = F. δ'(q,a) = {p p ε-κλείσιμο(δ(r,a)) για r ε-κλείσιμο(q)}, δηλαδή δ'(q,a) είναι οι καταστάσεις που μπορεί να βρεθεί το Μ ξεκινώντας από την κατάσταση q και διαβάζοντας a και χρησιμοποιώντας ενδεχομένως πριν και μετά οσεσδήποτε ε-κινήσεις. 39

Ελαχιστοποίηση DFA (i) Δύο καταστάσεις μπορούν να συγχωνευτούν σε μία (είναι ισοδύναμες) αν: οδηγούν με τις ίδιες συμβολοσειρές στο ίδιο αποτέλεσμα x 1 x 2 x k q i 0 0, 1 q 0 1 q 1 1 y 1 y 2 y n q m 0 41

Ελαχιστοποίηση DFA (ii) Αρχικό DFA x 1 x 2 x k q 0 1 q 1 y 1 y 2 y n q i 0 0 0, 1 1 q m Συγχώνευση qi, qm x 1 x 2 x k 0, 1 0 q 0 q im q 1 y 1 y 2 y n 1 42

Ελαχιστοποίηση DFA: παράδ/μα Αρχικό DFA: Ελάχιστο DFA: 43

Μέθοδος ελαχιστοποίησης DFA Εξαλείφουμε τις απρόσιτες καταστάσεις Για να βρούμε ποιες είναι ισοδύναμες, σημειώνουμε τις μη ισοδύναμες (= διακρίσιμες) καταστάσεις, με τα εξής κριτήρια: η μία είναι τελική ενώ η άλλη όχι, ή οδηγούν με ένα ή περισσότερα σύμβολα σε διακρίσιμες καταστάσεις Επαναλαμβάνουμε τη διαδικασία ώσπου να μην βρίσκουμε άλλες διακρίσιμες καταστάσεις Συγχωνεύουμε ισοδύναμες (= μη διακρίσιμες) καταστάσεις 44

Η μέθοδος πιο αναλυτικά Κατασκευάζουμε πίνακα για να συγκρίνουμε κάθε ζεύγος καταστάσεων. Γράφουμε X στην αντίστοιχη θέση του πίνακα κάθε φορά που ανακαλύπτουμε ότι δύο καταστάσεις είναι διακρίσιμες. Αρχικά γράφουμε X σε όλα τα ζεύγη που προφανώς διακρίνονται γιατί η μία είναι τελική και η άλλη δεν είναι. Στη συνέχεια γράφουμε Χ σε ζεύγη καταστάσεων αν από αυτές με κάποιο σύμβολο a οδηγούμαστε σε διακρίσιμες καταστάσεις. Επαναλαμβάνουμε την πιο πάνω προσπάθεια ώσπου να μην προστίθεται κανένα X πια στον πίνακα. Τα υπόλοιπα ζεύγη είναι μη διακρίσιμα, δηλαδή ισοδύναμα (και επομένως συγχωνεύονται). 45

Παράδειγμα εφαρμογής της μεθόδου 46

Παράδειγμα εφαρμογής της μεθόδου 47

2 ο παράδειγμα ελαχιστοποίησης DFA DFA για τη γλώσσα L 4 = { w є {a,b}* w περιέχει 2 συνεχόμενα a }: 48

Γλώσσες, αυτόματα, γραμματικές Τυπικές γλώσσες: χρησιμοποιούνται για την περιγραφή υπολογιστικών προβλημάτων αλλά και γλωσσών προγραμματισμού. Αυτόματα: χρησιμεύουν για την αναγνώριση τυπικών γλωσσών και για την κατάταξη της δυσκολίας των αντίστοιχων προβλημάτων. Tυπικές γραμματικές: άλλοςτρόποςπεριγραφής τυπικών γλωσσών. Κάθε τυπική γραμματική παράγει μια τυπική γλώσσα. 49

Τυπικές γλώσσες Πρωταρχικές έννοιες: σύμβολα, παράθεση. Αλφάβητο: πεπερασμένο σύνολο συμβόλων. Π.χ. {0,1}, {x,y,z}, {a,b}. Λέξη (ή συμβολοσειρά, ή πρόταση) ενός αλφαβήτου: πεπερασμένου μήκους ακολουθία συμβόλων του αλφαβήτου. Π.χ. 011001, abbbab. w = μήκος λέξης w. ε = κενή λέξη, ε = 0. Άλλες έννοιες: πρόθεμα (prefix), κατάληξη (suffix), υποσυμβολοσειρά (substring), αντίστροφη (reversal), παλινδρομική ή καρκινική (palindrome). 50

Τυπικές γλώσσες (συν.) vw = παράθεση λέξεων v και w. Ισχύει: εx = xε = x, για κάθε συμβολοσειρά x. ορισμός x n με πρωταρχική αναδρομή: x 0 = ε x k+1 = x k x Σ*: το σύνολο όλων των λέξεων του αλφαβήτου Σ. Γλώσσα απότοαλφάβητοσ: κάθε σύνολο συμβολοσειρών L Σ*. 51

Παράδειγμα γραμματικής για την γλώσσα των περιττών αριθμών S A 1 A A 0 A A 1 A ε S: το αρχικό σύμβολο A: μη τερματικό σύμβολο 0,1: τερματικά σύμβολα ε: η κενή συμβολοσειρά Τα S και A αντικαθίστανται με βάση τους κανόνες Κάθε περιττός προκύπτει από το S με κάποια σειρά έγκυρων αντικαταστάσεων Κανονική παράσταση: (0+1)*1 52

Τυπικές γραμματικές (i) Μια τυπική γραμματική G αποτελείται από: ένα αλφάβητο V από μη τερματικά σύμβολα (μεταβλητές), ένα αλφάβητο T από τερματικά σύμβολα (σταθερές), τ.ω. V T =, ένα πεπερασμένο σύνολο P από κανόνες παραγωγής, δηλαδή διατεταγμένα ζεύγη (α,β), όπου α,β (V T)* και α ε (σύμβαση: γράφουμε α β αντί για (α,β)), ένα αρχικό σύμβολο (ή αξίωμα) S V. 53

Τυπικές γραμματικές (ii) Σύμβαση για τη χρήση γραμμάτων: a, b, c, d,... T : πεζά λατινικά, τα αρχικά του αλφαβήτου, συμβολίζουν τερματικά A, B, C, D,... V : κεφαλαία λατινικά συμβολίζουν μη τερματικά u, v, w, x, y, z... T* : πεζά λατινικά, τα τελευταία του αλφαβήτου, συμβολίζουν συμβολοσειρές τερματικών α, β, γ, δ,... (V T)* : ελληνικά συμβολίζουν οποιεσδήποτε συμβολοσειρές (τερματικών και μη) 54

Τυπικές γραμματικές (iii) Ορισμοί για τις παραγωγές: Λέμε ότι γ 1 αγ 2 παράγει γ 1 βγ 2,και συμβολίζουμε με γ 1 αγ 2 γ 1 βγ 2, αν ο α β είναι κανόνας παραγωγής (δηλαδή (α,β) P). Συμβολίζουμε με * το ανακλαστικό, μεταβατικό κλείσιμο του, δηλαδή, α * β («το α παράγει το β») σημαίνει ότι υπάρχει μια ακολουθία: α α 1 α 2... α k β. Γλώσσα που παράγεται από τη γραμματική G: L(G):= {w T* S * w }. γραμματικές G 1, G 2 ισοδύναμες αν L(G 1 ) = L(G 2 ). 55

Παράδειγμα τυπικής γραμματικής S ε αsb: σύντμηση των S ε και S αsb Μία δυνατή ακολουθία παραγωγής: Γλώσσα που παράγεται: 56

Ιεραρχία Γραμματικών Chomsky 57

Ιεραρχία Chomsky: μια εκπληκτική σύμπτωση (;) τύπου 0 ΤΜ (μηχανές Turing) τύπου 1 LBA (γραμμικά περιορισμένα αυτόματα) τύπου 2 PDA (pushdown automata) τύπου 3 DFA (και NFA) 58

Κανονικές Γραμματικές Οι κανονικές γραμματικές είναι γραμματικές όπου όλοι οι κανόνες είναι της μορφής: Δεξιογραμμικοί (right linear) A wb ή A w Αριστερογραμμικοί (left linear) A Bw ή A w (όπου w είναι μια ακολουθία από τερματικά σύμβολα της γλώσσας) Θεώρημα: οι κανονικές γλώσσες είναι οι γλώσσες που παράγονται από κανονικές γραμματικές 59

Ισοδυναμία κανονικών γραμματικών και DFA Χρησιμοποιούμε τη δεξιογραμμική μορφή: A wb αντιστοιχεί με Α w Β A w αντιστοιχεί με Α w S αντιστοιχεί με q 0 60

Μία ακόμη ισοδυναμία! Θεώρημα: οι κανονικές γλώσσες είναι οι γλώσσες που περιγράφονται από κανονικές παραστάσεις 61

Κανονικές παραστάσεις (regular expressions) 62

Ορισμός κανονικών παραστάσεων Κανονικές παραστάσεις: παριστάνουν γλώσσες που προκύπτουν από απλά σύμβολα ενός αλφαβήτου με τις πράξεις παράθεση, ένωση, και άστρο του Kleene. : παριστάνει κενή γλώσσα ε : παριστάνει {ε} α : παριστάνει {α}, α Σ (r+s) : παριστάνει R U S, R = L(r), S = L(s) (rs) : παριστάνει RS, R = L(r), S = L(s) (r*) : παριστάνει R*, R = L(r) όπου L(t) η γλώσσα που παριστάνεται από καν. παρ. t 63

Παραδείγματα κανονικών παραστάσεων Προτεραιότητα τελεστών: άστρο Kleene παράθεση ένωση 64

Ισοδυναμία κανονικών παραστάσεων και αυτομάτων Θεώρημα: Μια γλώσσα L μπορεί να παρασταθεί με κανονική παράσταση ανν είναι κανονική (δηλαδή L=L(M) για κάποιο πεπερασμένο αυτόματο M) Ιδέα απόδειξης: => : Επαγωγή στη δομή της κανονικής παράστασης r : 65

2. Επαγωγικό βήμα. Έστω ότι για r 1, r 2 έχουμε αυτόματα Μ 1, Μ 2, με τελικές καταστάσεις f 1, f 2 : 66

Ισοδυναμία κανονικών παραστάσεων και αυτομάτων (συν.) <= : Κατασκευή κανονικής παράστασης από FA. Απαλείφουμε ενδιάμεσες καταστάσεις σύμφωνα με το σχήμα: 67

Παράδειγμα κατασκευής κανονικής παράστασης από FA 68

Παράδειγμα κατασκευής κανονικής παράστασης από FA 69

Είναι όλες οι γλώσσες κανονικές; Ηαπάντησηείναι«όχι» Για να το αποδείξουμε χρησιμοποιούμε ένα σημαντικό θεώρημα που λέγεται Pumping Lemma (Λήμμα Άντλησης) 70

Pumping Lemma (διαίσθηση) Αν μια γλώσσα L είναι κανονική τότε την αποδέχεται ένα DFA με πεπερασμένο αριθμό καταστάσεων, έστω n. Έστω λέξη z με z >n που ανήκει στη γλώσσα, άρα γίνεται αποδεκτή από το αυτόματο. Καθώς επεξεργαζόμαστε το z, το αυτόματο πρέπει να περάσει ξανά από κάποια κατάσταση (αρχή περιστερώνα): Αφού z=uvw L θα πρέπει και uv i w L, για κάθε i N 71

Pumping Lemma (διατύπωση) Έστω κανονική γλώσσα L. Τότε: 72

Pumping Lemma (με λόγια) Έστω κανονική γλώσσα L. Τότε: υπάρχει ένας φυσικός n (= πλήθος καταστάσεων του DFA) ώστε: για κάθε z L με μήκος z n υπάρχει «σπάσιμο» του z σε u, v, w, δηλαδή z = uvw, με uv n και v >0 ώστε για κάθε i = 0, 1, 2,... : uv i w L 73

Απόδειξη ότι μια γλώσσα δεν είναι κανονική Χρήση του Pumping Lemma για να δείξουμε ότι μια (μη πεπερασμένη) γλώσσα L δεν είναι κανονική: αν η L ήταν κανονική τότε: το PL λέει ότι υπάρχει n εμείς επιλέγουμε z L με μήκος z n το PL λέει ότι υπάρχει «σπάσιμο» z = uvw, με uv n και v >0 εμείς επιλέγουμε i ώστε η λέξη uv i w να μην είναι στη γλώσσα L ΑΤΟΠΟ 74

Παράδειγμα χρήσης Pumping Lemma (i) Θεώρημα. Η γλώσσα L = {z z έχει το ίδιο πλήθος 0 και 1} δεν είναι κανονική. Απόδειξη: το PL λέει ότι υπάρχει n εμείς επιλέγουμε z = 0 n 1 n L με μήκος z = 2n n z = 000000000 0111111111 1 n n το PL λέει ότι υπάρχει «σπάσιμο» z = uvw, με uv n και v >0 75

Παράδειγμα χρήσης Pumping Lemma (ii) Υπάρχει μία μόνο (ουσιαστικά) περίπτωση: w = 0...00...00 0111111111 1 u v w Η επανάληψη του v δίνει λέξεις που δεν είναι στη γλώσσα L: π.χ. εμείς επιλέγουμε i=2, και παρατηρούμε ότι uv 2 w δεν ανήκει στην L. ΑΤΟΠΟ Επομένως η L δεν είναι κανονική. 76

Δεύτερο παράδειγμα χρήσης PL (i) Θεώρημα. Η γλώσσα L = {z z=0 i 1 j, i > j} δεν είναι κανονική. Απόδειξη: το PL λέει ότι υπάρχει n εμείς επιλέγουμε z = 0 n+1 1 n L με μήκος z = 2n+1 n z = 000000000 01111111 1 n+1 n το PL λέει ότι υπάρχει «σπάσιμο» z = uvw, με uv n και v > 0. 77

Δεύτερο παράδειγμα χρήσης PL (ii) Υπάρχει μία μόνο (ουσιαστικά) περίπτωση: z = 0...00...00 0111111111 1 u v w η επανάληψη του v δίνει λέξεις της γλώσσας από πρώτη άποψη αυτό φαίνεται προβληματικό το λήμμα ορίζει ότι θα πρέπει για κάθε i 0, uv i w L εμείς επιλέγουμε i=0: ηλέξηuv 0 w δεν είναι στην L. ΑΤΟΠΟ Επομένως η L δεν είναι κανονική. 78

Το Pumping Lemma με επιχείρημα αντιπάλου (adversary argument) 79

Παράδειγμα χρήσης Pumping Lemma με επιχείρημα αντιπάλου ΑΤΟΠΟ 80

Ισχυρότερη μορφή του PL Έστω κανονική γλώσσα L. Τότε: υπάρχει ένας φυσικός n (= πλήθος καταστάσεων του DFA) ώστε: για κάθε z L με μήκος z n, και κάθε substring z του z (έστω z = xz y) με μήκος z n υπάρχει «σπάσιμο» του z σε u, v, w, δηλαδή z = uvw, με uv n και v >0 ώστε για κάθε i = 0, 1, 2,... : xuv i wy L Χρήση: απλοποίηση αποδείξεων, απόδειξη για περισσότερες γλώσσες ότι δεν είναι κανονικές 81

Προσοχή στη χρήση του PL! το Pumping Lemma είναι αναγκαία αλλά όχι και ικανή συνθήκη για να είναι μια γλώσσα κανονική υπάρχουν μη κανονικές γλώσσες που ικανοποιούν τις συνθήκες του! επομένως χρησιμεύει μόνο για απόδειξη μη κανονικότητας 82

Γραμματικές για μη κανονικές γλώσσες Χωρίς συμφραζόμενα (context free, CF): τύπου 2, αντιστοιχία με αυτόματα στοίβας (pushdown automata, PDA) Με συμφραζόμενα (context sensitive, CS): τύπου 1, αντιστοιχία με γραμμικά περιορισμένα αυτόματα (linear bounded automata, LBA) Γενικές (general): τύπου 0, αντιστοιχία με μηχανές Turing (Turing machines, TM) 83

Γραμματικές χωρίς συμφραζόμενα (Context Free) (i) Μορφή κανόνων: Α α, Α μη τερματικό Παράδειγμα: Δυνατή ακολουθία παραγωγής: Γλώσσα που παράγεται: 84

Γραμματικές χωρίς συμφραζόμενα (Context Free) (ii) 2 ο παράδειγμα: G 2 :, Δυνατές ακολουθίες παραγωγής: S 3, S S+S 3+S 3+S*S 3+4*7 85

Γραμματικές χωρίς συμφραζόμενα (Context Free) (iii) 3 ο παράδειγμα: G 3 :, και P περιέχει: Δυνατή ακολουθία παραγωγής: Γλώσσα που παράγεται (όχι προφανές): 86

Συντακτικά Δένδρα (parse trees) (i) Φύλλωμα (leafstring): αααbbb και αbbα αντίστοιχα. 87

Συντακτικά Δένδρα (parse trees) (ii) 88

Συντακτικά Δένδρα (parse trees) (iii) 89

Διφορούμενες γραμματικές Μια γραμματική G ονομάζεται διφορούμενη (ambiguous) αν υπάρχουν δύο συντακτικά δένδρα με το ίδιο φύλλωμα w L(G) Παράδειγμα: G 2 :,, και P περιέχει: 90

Εγγενώς διφορούμενες γραμματικές Για την γλώσσα του προηγούμενου παραδείγματος υπάρχει και μη διφορούμενη γραμματική που την παράγει (άσκηση). Υπάρχουν όμως και γλώσσες χωρίς συμφραζόμενα για τις οποίες όλες οι γραμματικές που τις παράγουν είναι διφορούμενες. Μια τέτοια γλώσσα (καθώς και κάθε γραμματική που την παράγει) λέγεται εγγενώς διφορούμενη (inherently ambiguous). Παράδειγμα: 91

Απλοποίηση CF γραμματικών Εξάλειψη μη τερματικών που δεν παράγουν τερματικά. Εξάλειψη κανόνων μορφής Α Β (unit productions). Εξάλειψη κανόνων μορφής Α ε (ε-productions) αν το ε δεν ανήκει στη γλώσσα. 92

Κανονικές μορφές CF γραμματικών 93

Αλγόριθμος αναγνώρισης για CF γραμματικές: CYK Με εξαντλητικό τρόπο μπορούμε να αποφασίσουμε αν μια συμβολοσειρά x παράγεται από μια γραμματική CF (χωρίς συμφραζόμενα) σε εκθετικό όμως χρόνο. Οι ιδιότητες της κανονικής μορφής Chomsky επιτρέπουν ταχύτερη αναγνώριση μιας συμβολοσειράς. Αλγόριθμος CYK (Cocke, Younger, Kasami): αποφασίζει αν μια συμβολοσειρά x παράγεται από μια γραμματική σε χρόνο O( x 3 ), αρκεί η γραμματική να δίνεται σε Chomsky Normal Form. 94

Αυτόματα Στοίβας (PDA) (i) Έχουνταινίαεισόδουμιαςκατεύθυνσης(όπως και τα FA) αλλά επιπλέον μνήμη υπό μορφή στοίβας. Πρόσβαση μόνο στην κορυφή της στοίβας με τις λειτουργίες: push: τοποθετεί στοιχείο στην κορυφή της στοίβας pop: διαβάζει και αφαιρεί στοιχείο από την κορυφή της στοίβας 95

Αυτόματα Στοίβας (PDA) (ii) Παράδειγμα: PDA για αναγνώριση της γλώσσας 96

Αυτόματα Στοίβας (PDA) (iii) 97

Αυτόματα Στοίβας (PDA) (iv) 98

Αυτόματα Στοίβας (PDA) (v) Γιαναγίνειαποδεκτήηγλώσσα χωρίς δηλαδή ειδικό μεσαίο σύμβολο c χρειαζόμαστε απαραίτητα μη ντετερμινιστικό PDA. Τα μη ντετερμινιστικά PDA είναι γνησίως πιο ισχυρά από τα ντετερμινιστικά. Με τον όρο PDA αναφερόμαστε συνήθως στα μηντετερμινιστικά PDA. 99

Ισοδυναμία CF γραμματικών και PDA Θεώρημα. Τα παρακάτω είναι ισοδύναμα για μια γλώσσα L: 100

Γενικές Γραμματικές (i) 101

Γενικές Γραμματικές (ii) 102

Μηχανές Turing Αυτόματα με απεριόριστη ταινία. Η είσοδος είναι αρχικά γραμμένη στην ταινία, η κεφαλή μπορεί να κινείται αριστεράδεξιά, καθώς και να αλλάζει το σύμβολο που διαβάζει. Παράδειγμα συνάρτησης μετάβασης: s 0, 1, s 0,» s 0, 0, s 1, 1 s 1, 1, s 1, «s 1, 0, s 2,» 103

Γραμματικές με Συμφραζόμενα (context sensitive) (i) 104

Γραμματικές με Συμφραζόμενα (context sensitive) (ii) 105

Ισοδυναμία γραμματικών CS και LBA 106

Iεραρχία κλάσεων γλωσσών 107

Θεωρία γλωσσών και γραμματικών Εφαρμογές σε: Ψηφιακή Σχεδίαση, Γλώσσες Προγραμματισμού, Μεταγλωττιστές, Τεχνητή Νοημοσύνη, Θεωρία Πολυπλοκότητας Ιστορικά σημαντικοί ερευνητές: Chomsky, Backus, Rabin, Scott, Kleene, Greibach, κ.α. 108