ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

Σχετικά έγγραφα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD)

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

Σφαιρικό σύστημα αναφοράς

Γεωδαιτική Αστρονομία

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

4/11/2018 ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ. ΘΕΜΑ 1 ο

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number)

Να το πάρει το ποτάµι;

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Μετρήσεις. Η διαδικασία να μπορούμε να ποσοτικοποιήσουμε εκείνο για το οποίο μιλάμε και να το εκφράσουμε με αριθμούς ονομάζεται μέτρηση.

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

Τεύχος B - Διδακτικών Σημειώσεων

Θεωρητική Εξέταση. 23 ος Πανελλήνιος Διαγωνισμός Αστρονομίας και Διαστημικής η φάση: «ΠΤΟΛΕΜΑΙΟΣ»

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

Κεφάλαιο 1: Κινηματική των Ταλαντώσεων

ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ

Εισαγωγή στην αστρονοµία Αστρικά πτώµατα (Λευκοί Νάνοι, αστέρες νε. µαύρες τρύπες) Η ϕυσική σε ακρέες καταστάσεις

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

Εισαγωγή στην Αστρονομία

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις.

Κεφάλαιο 4 ο : Ταλαντώσεις

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

Εφαρμογές μεγάλης και μικρής κλίμακας στην «ομαλή» κυκλική κίνηση

Φύλλο Εργασίας 2 2. Μετρήσεις χρόνου Η ακρίβεια

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

Κινηματική της περιστροφικής κίνησης

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

Θεωρητική Εξέταση - Σύντοµες Ερωτήσεις

ΜΑΘΗΜΑ ΩΚΕΑΝΟΓΡΑΦΙΑΣ Ε ΕΞΑΜΗΝΟ

Φυσική Α Τάξης Φ.Ε. 1: Μετρήσεις χρόνου - Η ακρίβεια

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

Β. ΘΕΜΑΤΑ ΑΣΤΡΟΝΟΜΙΑΣ

Μάθηµα 4 ο : ορυφορικές τροχιές

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

2. Ένα μπαλάκι το δένουμε στην άκρη ενός νήματος και το περιστρέφουμε. Αν το μπαλάκι

18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ»

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση)

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

β. ίιος πλανήτης γ. Ζωδιακό φως δ. ορυφόρος ε. Μετεωρίτης στ. Μεσοπλανητική ύλη ζ. Αστεροειδής η. Μετέωρο

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου.

1.2: D R r (1.1) 1.3: (1.2)

Ασκήσεις στο βαρυτικό πεδίο

Έκλειψη Ηλίου 20ης Μαρτίου 2015

ΤΟ ΚΕΝΤΡΟ ΤΟΥ ΓΑΛΑΞΙΑ

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ

ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. Ηρακλή, καθώς και στην κίνηση του γαλαξία

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( ( videos/bulletproof-balloons) n=0

ΤΟ ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ

1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ Γενικά

ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ

Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει:

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

ΓΙΑΤΙ ΚΟΥΡΑΖΟΜΑΣΤΕ ΌΤΑΝ ΚΛΑΙΜΕ ΕΡΓΑΣΙΑ ΤΟΥ ΜΑΘΗΤΑΡΑ ΣΤΕΦΑΝΟΥ ΧΑΤΖΗΝΙΚΗΤΑ Γ3

v r T, 2 T, a r = a r (t) = 4π2 r

Δορυφορικές Επικοινωνίες

Transcript:

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας

Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός χρόνος (ST, siderial time) (β) Μέσος Ηλιακός χρόνος (mean solar time). Ο μ.η.χ. στο Greenwich ονομάζεται Παγκόσμιος χρόνος (UT, universal time) (γ) Δυναμικός χρόνος ή χρόνος των Εφημερίδων (TDT, TDB, ET, dynamical time, ephemeris time) (δ) Διεθνής Ατομικός χρόνος (TAI, international atomic time)

ΑΣΤΡIΚΟΣ ΧΡΟΝΟΣ (ST) Αστρικός χρόνος ενός τόπου (ST) = ωριαία γωνία του εαρινού ισημερινού σημείου γ Για δυο τόπους σε γεωγραφικά μήκη λ 1 και λ 2 : ST 1 - ST 2 = λ 2 - λ 1 Σχέση με ορθή αναφορά α και ωριαία γωνία Η: ST = α + H Αστρική μέρα = χρονικό διάστημα μεταξύ δυο διαδοχικών άνω μεσουρανήσεων του γ Αστρικό έτος = χρονικό διάστημα μεταξύ δυο διαδοχικών διελεύσεων του Ήλιου από το ίδιο σημείο της εκλειπτικής.

Ν δ ΑΣΤΡΙΚΟΣ ΧΡΟΝΟΣ: ST = α + Η Ζ ν Β Π φ α γ Η ST Ν Π

ΜΕΤΑΠΤΩΣΗ ΚΑΙ ΚΛΟΝΗΣΗ Μετάπτωση του άξονα της Γης γύρω από την κάθετο στη εκλειπτική (±23.5 ο ) με περίοδο 25,800 έτη. Κλόνηση του συστήματος Γης-Σελήνης με περίοδο 18.6 έτη Η κλόνηση έχει μικρή, περιοδική επίπτωση στις φαινόμενες θέσεις των αστέρων -> ορισμός μέσης θέσης

ΜΕΣΟΣ ΑΣΤΡΙΚΟΣ ΧΡΟΝΟΣ Απαλείφοντας την επίπτωση της κλόνησης στη φαινόμενη θέση του εαρινού ισημερινού σημείου γ, ορίζουμε ένα μέσο εαρινό σημείο γ1, το οποίο κινείται ομαλά πάνω στην εκλειπτική. Μέσος αστρικός χρόνος = ST(γ 1 ) Λόγω της μετάπτωσης, το γ 1 κινείται ανάδρομα πάνω στην εκλειπτική κατά 50. 3 ανά έτος -> οι ουρανογραφικές συντεταγμένες μεταβάλλονται! Από μια χρονική στιγμή t1 σε μια άλλη t2: (Y=έτη)

ΤΡΟΠΙΚΟ ΕΤΟΣ Τροπικό έτος = το μέσο χρονικό διάστημα που χρειάζεται ο Ήλιος για να διαγράψει μια πλήρη περιφορά πάνω στην εκλειπτική, ως προς το εαρινό ισημερινό σημείο γ. Το τροπικό έτος είναι περίπου 20 λεπτά της ώρας μικρότερο από το αστρικό έτος, διότι το γ 1 κινείται ανάδρομα.

ΜΕΣΗ ΗΛΙΑΚΗ ΗΜΕΡΑ Αληθής Ηλιακός χρόνος = Η + 12 h Αληθής Ηλιακή ημέρα = ω Γ = γωνιακή ταχύτητα περιστροφής της Γης ω Η = γων. ταχ. της προβολής του 'Ηλιου πάνω στον ισημερινό Όμως, ω Η σταθ. Και ορίζουμε τη μέση γων. ταχ. ω Μ του μέσου Ήλιου Μέση Ηλιακή ημέρα = Μέσος Ηλιακός χρόνος (πολιτικός χρόνος) = Η Μ + 12 h

ΔΙΑΦΟΡΑ Μ.Η. ΗΜΕΡΑΣ ΑΠΟ ΑΣΤΡΙΚΗ ΗΜΕΡΑ Επειδή το έτος διαρκεί ~ 365 ημέρες, η φαινόμενη θέση του 'Ηλιου στην ουράνια σφαίρα μετακινείται κατά 360 ο /365 ~ 1 ο /ημέρα, καθώς η Γη ολοκληρώνει μια πλήρη περιφορά γύρω από τον Ήλιο. 'Ετσι, η Γη περιστρέφεται κατά ~ 360 ο + 1 ο = 361 ο κατά τη διάρκεια μιας μέσης ηλιακής ημέρας και κατά ~ 360 ο κατά τη διάρκεια μιας αστρικής ημέρας. Άρα, η αστρική ημέρα είναι περίπου (1 ο /365 ο )24 h = 4 min μικρότερη από την μέση ηλιακή ημέρα.

ΠΑΓΚΟΣΜΙΟΣ ΧΡΟΝΟΣ (UT) Παγκόσμιος χρόνος = πολιτικός χρόνος στο Greenwich Στην πράξη υπολογίζουμε τον παγκόσμιο χρόνο UT0 από τη σχέση 365.2422 ηλιακές ημέρες = 366.2422 αστρικές ημέρες (μέσω της αστρικής ημέρες λαμβάνονται υπόψη η μετάπτωση και η κλόνηση του άξονα της Γης) UT1 = βελτίωση του UT0, λαμβάνοντας υπόψη μετακινήσεις πάγων, αέριων μαζών και μαζών στο εσωτερικό της Γης. UTC = συντονισμένος παγκόσμιος χρόνος (διορθωμένος για όλους τους άλλους παράγοντες)

ΔΙΟΡΘΩΣΗ ΤΟΥ UTC Ο παγκόσμιος χρόνος UTC διορθώνεται κάθε λίγα έτη, προσαυξάνοντας κάθε φορά ένα δευτερόλεπτο, έτσι ώστε ο Ήλιος να περνά από τον μεσημβρινό του Greenwich πάντα στις 12:00:00 +- 0.9sec UTC Από το 1972 μέχρι το 2009 έχουν προστεθεί συνολικά 34 δευτερόλεπτα στον UTC.

ΕΠΙΣΗΜΟΣ ΧΡΟΝΟΣ ΕΝΟΣ ΚΡΑΤΟΥΣ Για την Ελλάδα: E = UT + 2 h Τοπικός αστρικός χρόνος LST = ST G λ ST G = αστρικός χρόνος Greenwich = ST 0 + (365.2422/366.2422) UT ST 0 = αστρικός χρόνος του μέσου μεσονυκτίου στο Greenwich (δίνεται στις αστρονομικές εφημερίδες) λ = γεωγραφικό μήκος

ΔΥΝΑΜΙΚΟΣ ΧΡΟΝΟΣ Χρόνος των εφημερίδων (ΕΤ) : προκύπτει από την αντιστροφή των νόμων του Νεύτωνα για την κίνηση σωμάτων στο Ηλιακό σύστημα, οπότε είναι ανεξάρτητος της περιστροφής της Γης. Γήινος Δυναμικός χρόνος (TDT) και Βαρυκεντρικός Δυναμικός χρόνος (TDB) : λαμβάνουν υπόψη σχετικιστικές διορθώσεις λόγω του βαρυτικού πεδίου του Ήλιου και της ταχύτητας περιφοράς της Γης. Ο TDB αναφέρεται στο κέντρο μάζας του Ηλιακού συστήματος.

ΔΙΕΘΝΗΣ ΑΤΟΜΙΚΟΣ ΧΡΟΝΟΣ (TAI) 1 sec (TAI) = 9,192,631,770 ταλαντώσεις μιας φασματικής γραμμής της υπέρλεπτης υφής του στοιχείου Καίσιου. Προκύπτει ως μέσος όρος από περίπου 300 ατομικά ρολόγια. ΧΡΟΝΟΣ ΜΕ ΒΑΣΗ ΤΑ PULSAR Για τον PSR 1937+214: dp/dt = 1.3 10 10-19 s/s Χάνει μόνο 1s σε 3 103 11 έτη (> ηλικία του Σύμπαντος)!