Μάθηµα 4 ο : ορυφορικές τροχιές
|
|
- Ευτύχιος Ζερβός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης δορυφορικής τροχιάς Τις βασικές παραµέτρους µε τις οποίες περιγράφονται οι δορυφορικές τροχιές Να περιγράφει τη διαδικασία εγκατάστασης δορυφόρων σε γεωστατική τροχιά Τι κρατά το δορυφόρο σε τροχιά ; Ο δορυφόρος παραµένει σε τροχιά γύρω από τη γή ως αποτέλεσµα του συνδυασµού των δύο παρακάτω φαινοµένων: Βαρύτητα Τροχιά Ταχύτητα α) Ο δορυφόρος κινείται ευθύγραµµα λόγω της ταχύτητας που αποκτά µέσω των προωστικών πυραύλων. β) Ο δορυφόρος υφίσταται τη Νευτώνεια έλξη της γήινης σφαίρας. Μάθηµα 4 1
2 Σύµφωνα µε τη Νευτώνεια µηχανική και τους νόµους του Kepler οι τροχιές των δορυφόρων γύρω από τη γή είναι ελλείψεις, µε τη γη να καταλαµβάνει τη µια εστία της έλλειψης. H κυκλική τροχιά αποτελεί ειδική περίπτωση της ελλειπτικής και είναι η πλέον συνηθέστερη. ορυφόρος Το σηµείο όπου ο δορυφόρος πλησιάζει κοντύτερα τη γη ονοµάζεται περίγειο (perigee) και το σηµείο µέγιστης αποµάκρυνσης απόγειο (apogee). Περίγειο Γη Απόγειο Το σηµείο στο οποίο τέµνει την επιφάνεια της γης η ευθεία που ενώνει το δορυφόρο µε το κέντρο της γης καλείται υποδορυφορικό σηµείο (subsatellite point, SSP) Η ταχύτητα (υ) ενός δορυφόρου που κινείται σε ελλειπτική τροχιά (ως συνέπεια του δεύτερου νόµου του Kepler) µεταβάλλεται ανάλογα µε την απόσταση (r) του δορυφόρου από τη γή. H περίοδος περιστροφής (Τ) του δορυφόρου εξαρτάται από τον µεγάλο ηµιάξονα (α) της ελλειπτικής τροχιάς του. υ = µ [(2/r)-(1/a)] T = 2π (α 3 /µ) όπου: µ = GM = m 3 s -2 G η σταθερά της παγκόσµιας έλξης και Μ η µάζα της γης Μάθηµα 4 2
3 Τροχιά ορυφόρος Ύψος δορυφόρου Ακτίνα γης R E = 6378 Km Κάθετος στο επίπεδο της τροχιάς Γη Γωνία κλίσης Βόρειος πόλος Επίπεδο τροχιάς Ισηµερινό επίπεδο Γη Ύψος δορυφόρου Η γωνία κλίσης µιας δορυφορικής τροχιάς Ύψος, ακτίνα, περίοδος και ταχύτητα για µερικές περιπτώσεις κυκλικών τροχιών Ύψος (Κm) Ακτίνα (Km) Περίοδος (h:m:s) Ταχύτητα (Km/h) :34: :45: :47: :56: Μάθηµα 4 3
4 Κατηγορίες δορυφορικών τροχιών Κυκλικές τροχιές µικρού ύψους (low earth orbit, LEO) Το ύψος του δορυφόρου είναι σταθερό και ίσο µε µερικές εκατοντάδες χιλιόµετρα και η περίοδος περιστροφής είναι της τάξης των 100 min. Οι τροχιές αυτής της κατηγορίας µε γωνία κλίσης σχεδόν 90 ο χαρακτηρίζονται ως πολικές και εξασφαλίζουν στο δορυφόρο που τις ακολουθεί διέλευση πάνω από κάθε περιοχή της γης. Ο δορυφόρος που ακολουθεί µια τροχιά LEO παραµένει ορατός από έναν επίγειο σταθµό για πολύ µικρό χρονικό διάστηµα (10-15min). Αυτό έχει σα συνέπεια να απαιτείται ολόκληρος αστερισµός µερικών δεκάδων δορυφόρων LEO για παροχή παγκόσµιας τηλεπικοινωνιακής κάλυψης σε πραγµατικό χρόνο. Για περίπου το 1/3 της τροχιάς του ο δορυφόρος LEO βρίσκεται στη σκιά της γης µε αποτέλεσµα να µην εκµεταλλεύεται πλήρως την ηλιακή ενέργεια, πράγµα που οδηγεί στη µικρή διάρκεια ζωής του δορυφόρου (5-7 χρόνια). Κυκλικές τροχιές µέσου ύψους (medium earth orbit, MEO) Οι τροχιές αυτές έχουν ύψος ίσο περίπου µε Km, περίοδο περιστροφής ίση περίπου µε 6 ώρες και γωνία κλίσης γύρω στις 50 ο. Η περίοδος περιστροφής των τροχιών αυτών επιτρέπει στο δορυφόρο να είναι ορατός από έναν επίγειο σταθµό για περίπου 60 min. Εποµένως µε συστήµατα δορυφόρων, που κινούνται σε δύο επίπεδα µπορεί να επιτευχθεί παγκόσµια κάλυψη σε πραγµατικό χρόνο. Οι δορυφόροι ΜΕΟ έχουν µεγαλύτερη διάρκεια ζωής από τους LEO, αλλά απαιτούνται υψηλότερα επίπεδα ισχύος τόσο στο δορυφόρο όσο και στους επίγειους σταθµούς. Μάθηµα 4 4
5 Γεωστατικές τροχιές (geostationary earth orbit, GEO) Πρόκειται για κυκλικές τροχιές µηδενικής κλίσης (ισηµερινές τροχιές). Οι δορυφόροι περιστρέφονται µε την ίδια φορά και µε την ίδια περίοδο περιστροφής της γης σε ύψος Km. Οι δορυφόροι GEO παραµένουν ακίνητοι στην ουράνια σφαίρα σε σχέση µε τους επίγειους σταθµούς, οι οποίοι δε χρειάζονται ειδικά συστήµατα παρακολούθησης των. Ένας δορυφόρος GEO είναι ορατός πρακτικά από το 38% της γης. Εποµένως µε τρεις τέτοιους δορυφόρους µπορεί να εξασφαλισθεί παγκόσµια κάλυψη (εκτός των πολικών περιοχών). Οι τροχιές αυτές είναι οι δηµοφιλέστερες και χρησιµοποιούνται σε µεγάλο ποσοστό από τους τηλεπικοινωνιακούς δορυφόρους. Το βασικό µειονέκτηµα των γεωστατικών δορυφόρων σε σχέση µε τους δορυφόρους LEO και MEO είναι η µεγάλη χρονική καθυστέρηση του σήµατος κατά τη µετάδοσή του (238 ms για κατακόρυφη πορεία µετάδοσης). Στην τηλεφωνία αυτή η καθυστέρηση προκαλεί το ενοχλητικό φαινόµενο της ηχούς το οποίο απαιτεί ειδικά κυκλώµατα καταστολής. Ένα άλλο µειονέκτηµα των δορυφόρων GEO είναι ότι λόγω της µεγάλης απόστασής τους από τη γη απαιτείται υψηλή RF ισχύς, καθώς και κεραίες υψηλής κατευθυντικότητας, για τους δορυφόρους και τους επίγειους σταθµούς. Ελλειπτικές τροχιές µε µεγάλη γωνία κλίσης (64 ο ) Αυτός ο τύπος τροχιάς είναι ιδιαίτερα σταθερός όσον αφορά τις διακυµάνσεις του βαρυτικού δυναµικού, και λόγω της µεγάλης κλίσης, επιτρέπει στο δορυφόρο να καλύψει περιοχές µε µεγάλο γεωγραφικό πλάτος για µεγάλο κλάσµα της περιόδου της τροχιάς, καθώς αυτός περνά από το απόγειο. Οι δορυφόροι του συστήµατος MOLNIYA που χρησιµοποιούνται από τις χώρες της πρώην ΕΣΣ κινούνται σε τέτοιες τροχιές και εξασφαλίζουν συνεχή τοπική κάλυψη µε τρεις δορυφόρους που κινούνται σε διαφορετικές τροχιές. Η περίοδος περιστροφής τους είναι περίπου 12 ώρες Έχουν µικρό κόστος εκτόξευσης, αλλά απαιτούν πολύπλοκο σύστηµα ελέγχου και παρακολούθησης από τους σταθµούς ελέγχου. Μάθηµα 4 5
6 Παράγοντες που καθορίζουν την επιλογή δορυφορικής τροχιάς Η έκταση και το γεωγραφικό πλάτος της περιοχής που πρόκειται να καλυφθεί από το δορυφόρο Η γωνία ανύψωσης του δορυφόρου ως προς τους επίγειους σταθµούς της υπό κάλυψη περιοχής Ο χρόνος µετάδοσης του σήµατος µεταξύ των επίγειων σταθµών Το επίπεδο των παρεµβολών στις ραδιοζεύξεις Η απόδοση του οχήµατος εκτόξευσης ορυφορικές τροχιές LEO και GEO Μάθηµα 4 6
7 Θέση του δορυφόρου Ουράνια σφαίρα Βορράς ύση Αζιµούθιο Ανύψωση Ανατολή Νότος Ορίζοντας Για την ανίχνευση του δορυφόρου στην ουράνια σφαίρα χρησιµοποιούντα οι γωνίες ανύψωσης και αζιµουθίου (elevation and azimuth angles). H γωνία ανύψωσης είναι η γωνία που σχηµατίζουν οι ευθείες που ενώνουν την κεραία του επίγειου σταθµού µε το δορυφόρο και τον ορίζοντα (η γωνία µετριέται στο επίπεδο που ορίζεται από την κεραία του σταθµού, το δορυφόρο και το κέντρο της γης) Η γωνία αζιµουθίου είναι η γωνία που που µετράµε στο επίπεδο της τοποθεσίας του δορυφορικού σταθµού, µεταξύ του τοπικού µεσηµβρινού επιπέδου και του επιπέδου που ορίζεται από το δορυφόρο και την κατακόρυφο του τόπου Μάθηµα 4 7
8 Εκτόξευση και τοποθέτηση δορυφόρου σε γεωστατική τροχιά ορυφόρος έτοιµος για λειτουργία Γεωστατική τροχιά 2 ο στάδιο αποχωρισµού φορέα Μικροδιορθώσεις της θέσης και της τροχιάς Προώθηση σε σχεδόν γεωστατική τροχιά Τροχιά στάθµευσης Προώθηση στη τροχιά µεταφοράς 1 ο στάδιο αποχωρισµού φορέα Ανάπτυξη των συστοιχιών ηλιακών κυψελίδων Προσανατολισµός κεραιών και ηλιακών κυψελίδων Μάθηµα 4 8
ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Διδάσκων: Δρ. Εμμανουήλ Θ. Μιχαηλίδης Ασκήσεις #1 Δορυφορικές Τροχιές Άσκηση 1 2
Δορυφορικές Επικοινωνίες
Δορυφορικές Επικοινωνίες Διάλεξη #3 Μηχανική των Τροχιών - 2 ο Μέρος Διδάσκων: Αθανάσιος Κανάτας Καθηγητής Πανεπιστηµίου Πειραιώς Περιεχόμενα Διάλεξης #3 Παρεκκλίσεις Τροχιών Τροχιές Σύγχρονες στον Ήλιο
ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ
ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή
ΔΟΡΥΦΟΡΟΙ. Παπαδοπούλου Σοφιάννα. Περίληψη
ΔΟΡΥΦΟΡΟΙ Παπαδοπούλου Σοφιάννα Περίληψη Οι δορυφόροι είναι ουράνια σώματα τα οποία μπορεί να μεταφέρουν είτε μια εικόνα ή οτιδήποτε άλλο. Το παρακάτω κείμενο έχει γραφτεί για να εξηγήσει σε τι περίπου
ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Διδάσκων: Δρ. Εμμανουήλ Θ. Μιχαηλίδης Διάλεξη #3 Δορυφορικές Τροχιές (β) Περιεχόμενα
Κεφάλαιο 5. 5 Συστήματα συντεταγμένων
Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού
Η Γεωστατική Τροχιά. 3.1 Εισαγωγή. 3.2 Παράμετροι της γεωστατικής τροχιάς
Η Γεωστατική Τροχιά Σύνοψη Σε αυτό το κεφάλαιο αναλύεται, η πλέον διαδεδομένη, γεωστατική τροχιά. Προσδιορίζεται ο προσανατολισμός των κεραιών, οι παράμετροι και η γεωμετρία της τροχιάς, μαζί με την ανάλυση
ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,
ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο
Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται
Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια
Δορυφορικές Επικοινωνίες
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Ενότητα 2 η Δορυφορικές Τροχιές Επίκουρος Καθηγητής Νικόλαος Χ. Σαγιάς Webpage: http://eclass.uop.g/couses/tst207 e-mail: nsagias@uop.g Περιεχόμενα
ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ
ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος
Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών
Μέθοδος Hohmann αλλαγής τροχιάς δορυφόρου και σχεδιασμός διαπλανητικών τροχιών Διονύσης Στεφανάτος Ειδικός Επιστήμονας, Στρατιωτική Σχολή Ευελπίδων 1. Εισαγωγή Σε αυτήν την ενότητα παρουσιάζουμε μια απλή
Μάθηµα 2 ο : ορυφόρος και δορυφορική διαστηµική πλατφόρµα
Μάθηµα 2 ο : ορυφόρος και δορυφορική διαστηµική πλατφόρµα Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Τη δοµή ενός τηλεπικοινωνιακού δορυφόρου καθώς και το έργο που επιτελεί Την οργάνωσης
Β.Π. Ουράνιος Ισηµερινός Ν.Π.
Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός
τεχνολογία Card ορυφορική splitter v3 σκόπευση
Card ορυφορική splitter v3 σκόπευση Η «δύσκολη σχέση» του αζιµούθιου και της ανύψωσης µε τις γεωγραφικές συντεταγµένες «Ένας δορυφόρος τοποθετηµένος πάνω από τον Ισηµερινό σε ύψος 36.000 χιλιόµετρα, έχει
15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο
15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και
Δορυφορικές Τροχιές. 2.1 Εισαγωγή
Δορυφορικές Τροχιές Σύνοψη Σ αυτό το κεφάλαιο γίνεται μία αναλυτική περιγραφή των διαφορετικών ειδών δορυφορικών τροχιών, ξεκινώντας από τα γεωμετρικά στοιχεία της κίνησης των δορυφόρων. Αυτά περιλαμβάνουν
ΤΕΧΝΗΤΟΙ ΔΟΡΥΦΟΡΟΙ. The Voyagers
ΤΕΧΝΗΤΟΙ ΔΟΡΥΦΟΡΟΙ The Voyagers Ιστορική Αναδρομή και Εξέλιξη Δορυφόρων Βασικά Ερωτήματα 1. Πως τίθενται και πως παραμένουν σε τροχιά; 2. Ποιοι είναι οι σημαντικότεροι δορυφόροι; Πηγές 1. Διαδικτυακές
Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει:
Ο µαθητής που έχει µελετήσει το κεφάλαιο νόµος παγκόσµιας έλξης, πεδίο βαρύτητας πρέπει: Να µπορεί να διατυπώσει τον Νόµο της παγκόσµιας έλξης. Να γνωρίζει την έννοια βαρυτικό πεδίο και τι ισχύει για αυτό.
2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.
2.1.. 2.1.. Ομάδα Β. 2.1.Σχέσεις μεταξύ γραμμικών και γωνιακών μεγεθών στην ΟΚΚ. Κινητό κινείται σε περιφέρεια κύκλου ακτίνας 40m με ταχύτητα μέτρου 4m/s. i) Ποια είναι η περίοδος και ποια η συχνότητά
Δορυφορικές τροχιές. Θεωρία-Βασικές Αρχές. Κανονική Τροχιακή Κίνηση. Σύστημα Αναφοράς Τροχιακών Συντεταγμένων. 1ος Νόμος του Kepler...
Δορυφορικές τροχιές Θεωρία-Βασικές Αρχές Σύστημα Αναφοράς Τροχιακών Συντεταγμένων Η μελέτη της τροχιάς ενός δορυφόρου, αφορά τον προσδιορισμό της διαδρομής που ακολουθεί στο διάστημα. Εφαρμόζονται αρχές
ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017
ΦΥΣ. 111 Κατ οίκον εργασία # 8 - Επιστροφή Πέµπτη 09/11/2017 Οι ασκήσεις 1-10 στηρίζονται στα κεφάλαια 8 και 9 και των βιβλίων των Young και Serway και οι ασκήσεις 11-17 στο νόµο της παγκόσµιας έλξης κεφάλαιο
Κίνηση πλανητών Νόµοι του Kepler
ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα
ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης
ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά
ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης
ΔΥΝΑΜΙΚΗ 3 Νίκος Κανδεράκης Νόμος της βαρύτητας ή της παγκόσμιας έλξης Δύο σώματα αλληλεπιδρούν με βαρυτικές δυνάμεις Η δύναμη στο καθένα από αυτά: Είναι ανάλογη με τη μάζα του m Είναι ανάλογη με τη μάζα
Κινητά Δίκτυα Επικοινωνιών
Κινητά Δίκτυα Επικοινωνιών Καθ. Εμμανουήλ Βαρβαρίγος Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τις βασικότερες έννοιες των δορυφορικών επικοινωνιών
Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}
Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.
10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,
ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής
ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Άσκηση ετοιμότητας για το Ενδιάμεσο Διαγώνισμα
Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης
Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση
ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μάζα που κινείται
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 8 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 014 Ώρα: 10:00-13:00 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ 1: (Μονάδες 4) Τα σώματα Α και Β ολισθαίνουν κατά μήκος των δύο κεκλιμένων
ΕΝΟΤΗΤΑ ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ
ΕΝΟΤΗΤΑ 10 10.0 ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ Το σύστημα GPS επιτρέπει τον ακριβή προσδιορισμό των γεωγραφικών συντεταγμένων μιας οποιασδήποτε θέσης,
Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.
Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται
ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής
ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του
7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ
63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του
Δορυφορικές τροχιές. Μετατροπές δορυφορικών συντεταγμένων. Εξίσωση του Kepler. Εξίσωση του Kepler Μ = Ε e sine, M E
Δορυφορικές τροχιές Μετατροπές δορυφορικών συντεταγμένων Εξίσωση του Kepler Η Μέση Ανωμαλία Μ, για μη κυκλικές τροχιές δεν τιστοιχεί σε κάποια υλοποιήσιμη γωνία, καθώς δεν αφέρεται στο πραγματικό σώμα,
Δορυφορικές τροχιές. Θεωρία-Βασικές Αρχές. στη συνέχεια. Δορυφορικές Τροχιές
Δορυφορικές τροχιές Στο προηγούμενο μάθημα Αναφερθήκαμε στη χρήση των ουρανογραφικών συντεταγμένων ενός δορυφόρου Θεωρία-Βασικές Αρχές στη συνέχεια Δορυφορικές Τροχιές Γιατί η γνώση τους είναι απαραίτητη;
ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής
ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε
όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!
Είναι γνωστό ότι, όταν ένα σώµα κινείται µέσα στο βαρυτικό πεδίο της Γης υπό την επίδραση µόνο της Νευτώνειας έλξεως, η τροχιά που διαγράφει το κέντρο µάζας του είναι επίπεδη και µάλιστα το επίπεδό της
Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3
Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Yπενθύμιση: Ισημερινές συντεταγμένες Βασικός κύκλος: ο ουράνιος ισημερινός Πρώτος κάθετος: o μεσημβρινός
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Σφαιρικό Τρίγωνο Σφαιρικό τρίγωνο λέγεται το μέρος της σφαίρας, το οποίο περικλείεται μεταξύ των τόξων τριών μέγιστων κύκλων, με την προϋπόθεση
4.4 Τύποι ραδιοζεύξεων Εφαρμογές ραδιοφωνίας
4.4 Τύποι ραδιοζεύξεων 4.4.1 Εφαρμογές ραδιοφωνίας 1 / 27 Στις εφαρμογές της ραδιοφωνίας το σήμα απευθύνεται σε πολλούς δέκτες, οι οποίοι ως προς το σύστημα εκπομπής έχουν τυχαία θέση. 2 / 27 Πρέπει λοιπόν
7. To GPS και άλλα συστήµατα GNSS
7. To GPS και άλλα συστήµατα GNSS 7.1 GPS και άλλα συστήµατα προσδιορισµού θέσης GNSS Παράλληλα µε το GPS η πρώην Σοβιετική Ένωση προχώρησε στη δηµιουργία ενός παρόµοιου συστήµατος προσδιορισµού θέσης
Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 25 Μάη 2018 Μηχανική - Ηλεκτρικό/Βαρυτικό Πεδίο
Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 25 Μάη 2018 Μηχανική - Ηλεκτρικό/Βαρυτικό Πεδίο Σύνολο Σελίδων: επτά 7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: ιαβάστε µε ΠΡΟΣΟΧΗ τις εκφωνήσεις
v r T, 2 T, a r = a r (t) = 4π2 r
Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που
Μάθηµα 7 ο : Παράµετροι δορυφορικής ζεύξης & δορυφορικές υπηρεσίες
Μάθηµα 7 ο : Παράµετροι δορυφορικής ζεύξης & δορυφορικές υπηρεσίες Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Ποιες είναι οι ζώνες συχνοτήτων που χρησιµοποιούνται στις δορυφορικές
4/11/2018 ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ. ΘΕΜΑ 1 ο
ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ 4/11/2018 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι
ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -
ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την
Βαρύτητα Βαρύτητα Κεφ. 12
Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)
3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα
Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε
ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. Ηρακλή, καθώς και στην κίνηση του γαλαξία
Sfaelos Ioannis 1. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΗΣ Η Γη είναι ο τρίτος στη σειρά πλανήτης του ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. έ θ Η μέση απόστασή της από τον Ήλιο είναι 149.600.000 km.
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ Ενότητα 9: Προβολικά Συστήματα (Μέρος 1 ο ) Νικολακόπουλος Κωνσταντίνος, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση
Β) Κυκλική κίνηση 1) Υπολογισμοί στην ομαλή κυκλική κίνηση. Μια μικρή σφαίρα, μάζας 2kg, εκτελεί ομαλή κυκλική κίνηση, σε κύκλο κέντρου Ο και ακτίνας 0,5m, όπως στο σχήμα. Τη χρονική στιγμή t=0 η σφαίρα
Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:
ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής
Ασκήσεις υναµικής 2 η ενότητα: Κινητική σωµατιδίου: 2 ος νόµος Νεύτωνα
Ασκήσεις υναµικής 2 η ενότητα: Κινητική σωµατιδίου: 2 ος νόµος Νεύτωνα 1. Εάν οι συντελεστές στατικής και κινητικής τριβής µεταξύ του µπλοκ A, µάζας 20 kgr και του αµαξιδίου Β, µάζας100 kgr έχουν τιµή
Σφαιρικά σώµατα και βαρύτητα
ΦΥΣ 131 - Διαλ.28 1 Σφαιρικά σώµατα και βαρύτητα q Χρησιµοποιήσαµε τις εκφράσεις F() =! GMm που ισχύουν για σηµειακές µάζες Μ και m. 2 και V () =! GMm q Ένα χαρακτηριστικό γεγονός, που κάνει τους υπολογισµούς
1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ
3 1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 1.1 Βασικές έννοιες Για τις εφαρμογές της Γεωδαιτικής Αστρονομίας είναι απαραίτητος ο ορισμός συστημάτων συντεταγμένων, στα οποία περιγράφονται οι θέσεις και
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
Να το πάρει το ποτάµι;
Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής
1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης
1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει
Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση
Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : NOEMΒΡΙΟΣ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΤΜΗΜΑ: Β1 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : NOEMΒΡΙΟΣ 016 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης
Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού. Οριζόντια βολή Κυκλικές κινήσεις
Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού Οριζόντια βολή Κυκλικές κινήσεις ~~Διάρκεια 2 ώρες~~ Θέμα Α 1) Δύο μαθητές παρακολουθούν το μάθημα της Φυσικής από τα έδρανα του εργαστηρίου του σχολείου τους.
ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ
ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την
ΑΣΚΗΣΕΙΣ για το µάθηµα των ΟΡΥΦΟΡΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
ΑΣΚΗΣΕΙΣ για το µάθηµα των ΟΡΥΦΟΡΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΗ Η βαθµίδα εισόδου του επίγειου σταθµού ενός συστήµατος δορυφορικών επικοινωνιών που εξυπηρετεί υπηρεσίες εύρους 50ΚΗz φαίνεται στο σχήµα που ακολουθεί:
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3
Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο
1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Οκτωβρίου-2011
1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 15-Οκτωβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά
Ο χώρος. 1.Μονοδιάστατη κίνηση
Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
Καθορισμός του μηχανισμού γένεσης
Καθορισμός του μηχανισμού γένεσης Σκοπός Σκοπός της άσκησης αυτής είναι ο καθορισμός του μηχανισμού γένεσης ενός σεισμού με βάση τις πρώτες αποκλίσεις των επιμήκων κυμάτων όπως αυτές καταγράφονται στους
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να μεταφέρετε στο τετράδιο την επιλογή που συμπληρώνει σωστά τις παρακάτω προτάσεις. Α1) Τέσσερα σώματα Α, Β, Γ και Δ έχουν μάζες ½ kg, 2 kg, 3 kg, 4 kg αντίστοιχα.
Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ
Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ. Μάζα που κινείται οριζόντια µε ορµή µέτρου 0 Kg m/s προσπίπτει σε κατακόρυφο τοίχο και ανακλάται οριζόντια µε ορµή ίδιου µέτρου. Το
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ. Ενδεικτικές Λύσεις. Θέµα Α
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 4 εκέµβρη 2016 Φυσική Προσανατολισµού - Μηχανική - ΙΙ Ενδεικτικές Λύσεις Θέµα Α Α.1 Σώµα εκτελεί οριζόντια ϐολή, Η επιτάχυνση που δέχεται το σώµα µέχρι να ϕτάσει
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.
Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο
Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε
ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εµµανουήλ Λέκτορας Τηλεανίχνευσης
ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εµµανουήλ Λέκτορας Τηλεανίχνευσης Διακριτική ικανότητα δεδοµένων τηλεπισκόπησης Χωρική (Spatial resolution) πόσα µέτρα? Χρονική (Temporal resolution) πόσος χρόνος?
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια
ΦΥΣ 111 Γενική Φυσική Ι 4 η Εργασία Επιστροφή: Ένα κιβώτιο µάζας 20kg το οποίο είναι συνδεδεµένο µε µία τροχαλία κινείται κατά µήκος µίας
ΦΥΣ 111 Γενική Φυσική Ι 4 η Εργασία Επιστροφή: 11.10.18 1. Ένα κιβώτιο µάζας 20kg το οποίο είναι συνδεδεµένο µε µία τροχαλία κινείται κατά µήκος µίας λείας επιφάνειας. Το κιβώτιο είναι συνδεδεµένο µέσω
7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ
61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του
ΕΙΚΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
ΤΟΠΟΘΕΤΗΣΗ ΠΥΡΑΥΛΟΥ ΣΕ ΤΡΟΧΙΑ ΠΡΟΣΠΑΘΗΣΤΕ ΝΑ ΘΕΣΕΤΕ ΤΟΝ ΠΥΡΑΥΛΟ ΣΕ ΤΡΟΧΙΑ ΕΙΚΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Βασίλης Βογιατζής Φυσικός Ρ/Η Κατσάρας Γιώργος Φυσικός Ρ/Η ΕΙΚΟΝΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΚΟΠΟΣ
περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5
15958 Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R1= 0,2 m και R2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται
ΦΥΣ Τελική Εξέταση: 16-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).
ΦΥΣ. 111 Τελική Εξέταση: 16-Δεκεµβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση έχει
ΦΥΣ Τελική Εξέταση: 16-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).
ΦΥΣ. 111 Τελική Εξέταση: 16-Δεκεµβρίου-2018 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση έχει
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Το Ηλιακό Σύστημα Το Ηλιακό Σύστημα αποτελείται κυρίως από τον Ήλιο και τους πλανήτες που περιφέρονται γύρω από αυτόν. Πολλά και διάφορα ουράνια
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΡΥΦΟΡΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΟΥΣ ΕΡΑΣΙΤΕΧΝΙΚΟΥΣ ΟΡΥΦΟΡΟΥΣ ΜΕΣΩ DSP
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ί ΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΡΥΦΟΡΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΟΥΣ ΕΡΑΣΙΤΕΧΝΙΚΟΥΣ ΟΡΥΦΟΡΟΥΣ ΜΕΣΩ DSP ΣΠΟΥ ΑΣΤΕΣ: ΡΟΥΣΣΟΣ ΣΤΑΘΗΣ ΕΠΟΠΤΕΥΩΝ ΚΑΘΗΓΗΤΗΣ