3D Reconstruction of Icosahedral Particles. NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Σχετικά έγγραφα
General principles of 3DR method - Fourier-Bessel mathematics - Common lines 500 Å

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2 Composition. Invertible Mappings

On a four-dimensional hyperbolic manifold with finite volume

Instruction Execution Times

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 9.2 Polar Equations and Graphs

Concrete Mathematics Exercises from 30 September 2016

CRASH COURSE IN PRECALCULUS

Other Test Constructions: Likelihood Ratio & Bayes Tests

derivation of the Laplacian from rectangular to spherical coordinates

6.3 Forecasting ARMA processes

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Numerical Analysis FMN011

Strain gauge and rosettes

EE512: Error Control Coding

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

[1] P Q. Fig. 3.1

Areas and Lengths in Polar Coordinates

The challenges of non-stable predicates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fractional Colorings and Zykov Products of graphs

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Solution Series 9. i=1 x i and i=1 x i.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Srednicki Chapter 55

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Μηχανική Μάθηση Hypothesis Testing

Reminders: linear functions

Matrices and Determinants

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Math 6 SL Probability Distributions Practice Test Mark Scheme

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Section 7.6 Double and Half Angle Formulas

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Math221: HW# 1 solutions

Example Sheet 3 Solutions

The Simply Typed Lambda Calculus

ECE 468: Digital Image Processing. Lecture 8

Homework 3 Solutions

Lecture 2. Soundness and completeness of propositional logic

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

C.S. 430 Assignment 6, Sample Solutions

Parametrized Surfaces

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Capacitors - Capacitance, Charge and Potential Difference

Assalamu `alaikum wr. wb.

Approximation of distance between locations on earth given by latitude and longitude

Second Order Partial Differential Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Notes on the Open Economy

5.4 The Poisson Distribution.

D Alembert s Solution to the Wave Equation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

New bounds for spherical two-distance sets and equiangular lines

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Section 8.3 Trigonometric Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

A Note on Intuitionistic Fuzzy. Equivalence Relation

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

PARTIAL NOTES for 6.1 Trigonometric Identities

TMA4115 Matematikk 3

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Bounding Nonsplitting Enumeration Degrees

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Solutions to Exercise Sheet 5

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 34 Bootstrap confidence intervals

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

Quadratic Expressions

Variational Wavefunction for the Helium Atom

Block Ciphers Modes. Ramki Thurimella

Every set of first-order formulas is equivalent to an independent set

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Code Breaker. TEACHER s NOTES

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Démographie spatiale/spatial Demography

Section 8.2 Graphs of Polar Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Transcript:

3D Reconstruction of Icosahedral Particles NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Outline - Background - References; examples; etc. - Symmetry - Icosahedral (532) point group symmetry - Triangulation symmetry ΞΨΖ ϑουρναλ ϖιρυσ χαυσεσοφ µυχη Digitize Micrograph Graphics Box G y x Determine Ιντερπρετ Ρεφινε Ιντερπαρτιχλε ετεχτ Νορµαλιζε θ Ξ Ψ Ζ φ ω Β ξψ Παρτιχλε Χοµπυτε αχκ Πυβλιση et ισπλαψ/ινσπεχτ/αναλψζε Ρανδ εφινε Ρεγυλαρ initial µορε out προϕεχτ παρτιχλε ιµαγε θ,φ and παρτιχλ θ,φ,ω,ξ,ψ στρυχτυρε 3 estimate ορ ιµαγε Ρεφινε ϖαλυεσ αρτιφαχτσ γριδ ρεχονστρυχτιον float περιση 3 οριεντατιον εοριγινσ µεανσ/ϖαριανχεσ στρυχτυρε οφ ιµαγεσ οριγινσ παραµετερσ θ,φ of (αστιγµατισµ, ρεφινεµεντ Ιχοσαηεδραλ 2 5 3 ασψµµετριχ υνιτ: παιν?αδδ συφφερινγ ιν µεν, ςιρυσ ωοµεν, ανδστρυχτυρε χηιλδρεν... Ινχρεασε micrograph display individual particle Χορρελατε δριφτ, Ρεµοϖε Ιµποσε (Χροσσ χορρελατε ετχ.) βαχκγρουνδ 3 centers ρεσολυτιον particle ανδ ωιτη στρυχτυρε 532 εστιµατε σψµµετρψ οτηερ (x,y γραδιεντσ (ε.γ. ιµαγεσ ρεσολυτιον βιοχηεµιχαλ, ωιτη ιν ετχ.) δατα οριεντατιον (Χοµπαρε ϖαλυεσ ιν ιµαγεσ ασψµµετριχ ωιτη προϕεχτεδ υνιτ Σηαδεδ τριανγλε βουνδεδ βψ 2 φολδ, images origins) Φουριερ προϕεχτεδ τρανσφορµσ ϖιεωσ οφ 3 ρεχονστρυχτιον) ανγλεσ ϖιεωσ (θ,φ,ω) οφ 3 ρεχονστρυχτιον) 3 φολδ, ανδ τωο αδϕαχεντ 5 φολδ αξεσ - Typical procedure (flow chart) - Digitization and boxing - Image preprocessing / CTF estimation - Initial particle orientation/origin search - Orientation/origin refinement - 3D reconstruction with CTF corrections - Validation (resolution assessment) - Current and future strategies NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles REFERENCES Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J. and Klug, A. (1970) Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421-425 First 3D reconstructions of negatively-stained, spherical viruses: Human wart virus Tomato bushy stunt 500 Å NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles REFERENCES Crowther, R. A., DeRosier, D. J. and Klug, A. (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. Lond. A 317:319-340 Crowther, R. A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Phil. Trans. R. Soc. Lond. B. 261:221-230 General principles of 3DR method - Fourier-Bessel mathematics - Common lines NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles REFERENCES - Reference list available as handout - For die-hards: Baker, T. S., N. H. Olson, and S. D. Fuller (1999) Adding the third dimension to virus life cycles: Three-Dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Molec. Biol. Reviews 63:862-922 NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Reovirus Rotavirus HSV NωV LA-1 NβV SpV-4 Polyoma φx174 CaMV FHV HRV-14 500 Å HPV Polio Ross River CPMV CCMV B19

HSV NωV LA-1 NβV SpV-4 Polyoma φx174 PBCV-1 FHV HRV-14 500 Å Polio CPMV CCMV B19

HSV NωV LA-1 NβV SpV-4 Polyoma φx174 PBCV-1 FHV HRV-14 500 Å Polio CPMV CCMV B19

3D Reconstruction of Icosahedral Particles Outline - Background - References; examples; etc. - Symmetry - Icosahedral (532) point group symmetry - Triangulation symmetry - Typical procedure (flow chart) - Digitization and boxing - Image preprocessing / CTF estimation - Initial particle orientation/origin search - Orientation/origin refinement - 3D reconstruction with CTF corrections - Validation (resolution assessment) - Current and future strategies NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Symmetry 1. Icosahedral (532) point group symmetry 2. Triangulation symmetry NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Regular Polyhedra (Platonic Solids) There are just five platonic solids: From equilateral triangles you can make: with 3 faces at each vertex, a tetrahedron with 4 faces at each vertex, an octahedron with 5 faces at each vertex, an icosahedron From squares you can make: with 3 faces at each vertex, a cube From pentagons you can make: with 3 faces at each vertex, a dodecahedron

Icosahedral (532) Point Group Symmetry 12 vertices (5fold) NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Icosahedral (532) Point Group Symmetry 12 vertices (5fold) 20 faces (3fold) NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Icosahedral (532) Point Group Symmetry 12 vertices (5fold) 20 faces (330fold) edges (2fold) NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Icosahedron Dodecahedron 2 3 5 2 3 5 Different shapes, but both have 532 symmetry 12 vertices, 20 faces, 30 edges (6 5-folds, 10 3-folds, 15 2-folds) 20 vertices, 12 faces, 30 edges (10 3-folds, 6 5-folds, 15 2-folds) Asymmetric unit is 1/60th of whole object Object consists of 60 identical subunits arranged with icosahedral symmetry NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Icosahedral (532) Point Group Symmetry 30 dimers 20 trimers 12 pentamers From Eisenberg & Crothers, Table 16-3, p.767

3D Reconstruction of Icosahedral Particles Symmetry 1. Icosahedral (532) point group symmetry 2. Triangulation symmetry Purely mathematical concept (concerns lattices) Real objects (e.g. viruses) with 532 symmetry often consist of multiples of 60 subunits Subunits arranged such that additional, local or pseudosymmetries exist NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

T=13l T=13laevo T=16 Reovirus Rotavirus HSV T=4 T= 2 T=7d T=7 T=7dextro NωV LA-1 Polyoma CaMV HPV T=4 Ross River T=4 T=1 T=1 T=3 T=1 T=1 T=1 T=3 T=1 NβV SpV-4 φx174 FHV HRV-14 Polio CPMV 500 Å CCMV B19

T=16 T=169d HSV T=4 T= 2 T=7d NωV LA-1 Polyoma PBCV-1 T=4 T=1 T=1 T=3 T=1 T=1 T=1 T=3 T=1 NβV SpV-4 φx174 FHV HRV-14 Polio CPMV 500 Å CCMV B19

3D Reconstruction of Icosahedral Particles Triangulation Number Key Concept: T symmetry is NOT incorporated into or enforced by the 3D reconstruction algorithms Hence, T symmetry emerges as a result of a properly performed 3D reconstruction analysis NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Triangulation Number Key Concept: T symmetry is NOT incorporated into or enforced by the 3D reconstruction algorithms In other words: What you determine is the structure of one asymmetric unit of the object NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Two Basic Assumptions: - Specimen consists of stable particles with identical structures (else averaging is invalid) - Programs test for and assume presence of icosahedral (532) symmetry NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Outline - Background - References; examples; etc. - Symmetry - Icosahedral (532) point group symmetry - Triangulation symmetry ΞΨΖ ϑουρναλ ϖιρυσ χαυσεσοφ µυχη Digitize Micrograph Graphics Box G y x Determine Ιντερπρετ Ρεφινε Ιντερπαρτιχλε ετεχτ Νορµαλιζε θ Ξ Ψ Ζ φ ω Β ξψ Παρτιχλε Χοµπυτε αχκ Πυβλιση et ισπλαψ/ινσπεχτ/αναλψζε Ρανδ εφινε Ρεγυλαρ initial µορε out προϕεχτ παρτιχλε ιµαγε θ,φ and παρτιχλ θ,φ,ω,ξ,ψ στρυχτυρε 3 estimate ορ ιµαγε Ρεφινε ϖαλυεσ αρτιφαχτσ γριδ ρεχονστρυχτιον float περιση 3 οριεντατιον εοριγινσ µεανσ/ϖαριανχεσ στρυχτυρε οφ ιµαγεσ οριγινσ παραµετερσ θ,φ of (αστιγµατισµ, ρεφινεµεντ Ιχοσαηεδραλ 2 5 3 ασψµµετριχ υνιτ: παιν?αδδ συφφερινγ ιν µεν, ςιρυσ ωοµεν, ανδστρυχτυρε χηιλδρεν... Ινχρεασε micrograph display individual particle Χορρελατε δριφτ, Ρεµοϖε Ιµποσε (Χροσσ χορρελατε ετχ.) βαχκγρουνδ 3 centers ρεσολυτιον particle ανδ ωιτη στρυχτυρε 532 εστιµατε σψµµετρψ οτηερ (x,y γραδιεντσ (ε.γ. ιµαγεσ ρεσολυτιον βιοχηεµιχαλ, ωιτη ιν ετχ.) δατα οριεντατιον (Χοµπαρε ϖαλυεσ ιν ιµαγεσ ασψµµετριχ ωιτη προϕεχτεδ υνιτ Σηαδεδ τριανγλε βουνδεδ βψ 2 φολδ, images origins) Φουριερ προϕεχτεδ τρανσφορµσ ϖιεωσ οφ 3 ρεχονστρυχτιον) ανγλεσ ϖιεωσ (θ,φ,ω) οφ 3 ρεχονστρυχτιον) 3 φολδ, ανδ τωο αδϕαχεντ 5 φολδ αξεσ - Typical procedure (flow chart) - Digitization and boxing - Image preprocessing / CTF estimation - Initial particle orientation/origin search - Orientation/origin refinement - 3D reconstruction with CTF corrections - Validation (resolution assessment) - Current and future strategies NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Protocol Electron Cryo-Microscopy Sample : ~2-3 µl at 1-5 mg/ml Specimen support: holey carbon film (1-2 µm) 1 µm

3D Reconstruction of Icosahedral Particles Protocol Electron Cryo-Microscopy Sample : ~2-3 µl at 1-5 mg/ml Specimen support: holey carbon film (1-2 µm) 1 µm

3D Reconstruction of Icosahedral Particles Protocol Electron Cryo-Microscopy Sample : ~2-3 µl at 1-5 mg/ml Specimen support: holey carbon film (1-2 µm) 100 nm

3D Reconstruction of Icosahedral Particles Protocol Electron Cryo-Microscopy Sample : ~2-3 µl at 1-5 mg/ml Specimen support: holey carbon film (1-2 µm) Microscope: 200-300 kev with FEG I think I may have spotted something!

3D Reconstruction of Icosahedral Particles Protocol Electron Cryo-Microscopy Sample : ~2-3 µl at 1-5 mg/ml Specimen support: holey carbon film (1-2 µm) Microscope: 200-300 kev with FEG Defocus range: 1-3 µm underfocus Dose: 10-20 e-/å2 Film: SO-163 (12 min, full strength) Micrographs: 50-100-->1000s(?) Particles: 103-104 -->105 ----> 106 (?) Target resolution: 10-6 Å --> 4Å (?) FEI Tecnai F30 Polara

100 nm

3D Reconstruction of Icosahedral Particles Outline - Background - References; examples; etc. - Symmetry - Icosahedral (532) point group symmetry - Triangulation symmetry ΞΨΖ ϑουρναλ ϖιρυσ χαυσεσοφ µυχη Digitize Micrograph Graphics Box G y x Determine Ιντερπρετ Ρεφινε Ιντερπαρτιχλε ετεχτ Νορµαλιζε θ Ξ Ψ Ζ φ ω Β ξψ Παρτιχλε Χοµπυτε αχκ Πυβλιση et ισπλαψ/ινσπεχτ/αναλψζε Ρανδ εφινε Ρεγυλαρ initial µορε out προϕεχτ παρτιχλε ιµαγε θ,φ and παρτιχλ θ,φ,ω,ξ,ψ στρυχτυρε 3 estimate ορ ιµαγε Ρεφινε ϖαλυεσ αρτιφαχτσ γριδ ρεχονστρυχτιον float περιση 3 οριεντατιον εοριγινσ µεανσ/ϖαριανχεσ στρυχτυρε οφ ιµαγεσ οριγινσ παραµετερσ θ,φ of (αστιγµατισµ, ρεφινεµεντ Ιχοσαηεδραλ 2 5 3 ασψµµετριχ υνιτ: παιν?αδδ συφφερινγ ιν µεν, ςιρυσ ωοµεν, ανδστρυχτυρε χηιλδρεν... Ινχρεασε micrograph display individual particle Χορρελατε δριφτ, Ρεµοϖε Ιµποσε (Χροσσ χορρελατε ετχ.) βαχκγρουνδ 3 centers ρεσολυτιον particle ανδ ωιτη στρυχτυρε 532 εστιµατε σψµµετρψ οτηερ (x,y γραδιεντσ (ε.γ. ιµαγεσ ρεσολυτιον βιοχηεµιχαλ, ωιτη ιν ετχ.) δατα οριεντατιον (Χοµπαρε ϖαλυεσ ιν ιµαγεσ ασψµµετριχ ωιτη προϕεχτεδ υνιτ Σηαδεδ τριανγλε βουνδεδ βψ 2 φολδ, images origins) Φουριερ προϕεχτεδ τρανσφορµσ ϖιεωσ οφ 3 ρεχονστρυχτιον) ανγλεσ ϖιεωσ (θ,φ,ω) οφ 3 ρεχονστρυχτιον) 3 φολδ, ανδ τωο αδϕαχεντ 5 φολδ αξεσ - Typical procedure (flow chart) - Digitization and boxing - Image preprocessing / CTF estimation - Initial particle orientation/origin search - Orientation/origin refinement - 3D reconstruction with CTF corrections - Validation (resolution assessment) - Current and future strategies NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Icosahedral Particle Image Reconstruction Scheme? Black Box

Icosahedral Particle Image Reconstruction Scheme Digitize Micrograph Graphics Box G y x Determine Ιντερπρετ Ρεφινε Ιντερπαρτιχλε ετεχτ Νορµαλιζε θ Ξ Ψ Ζ φ ω Β ξψ Παρτιχλε Χοµπυτε αχκ Πυβλιση et ισπλαψ/ινσπεχτ/αναλψζε Ρ Ρεγυλαρ εφινε initial µορε out προϕεχτ παρτιχλε ιµαγε θ,φ and παρτιχλ θ,φ,ω,ξ,ψ στρυχτυρε 3 estimate ορ ιµαγε Ρεφινε ϖαλυεσ αρτιφαχτσ γριδ ρεχονστρυχτιον float περιση 3 οριεντατιον εοριγινσ µεανσ/ϖαριανχεσ στρυχτυρε οφ ιµαγεσ οριγινσ παραµετερσ θ,φ of (αστιγµατισµ, ρεφινεµεντ Ιχοσαηεδραλ 2 5 3 ασψµµετριχ υνιτ:?αδδ ΞΨΖ ϑουρναλ ϖιρυσ χαυσεσοφ µυχη παιν ανδ συφφερινγ ιν µεν, ςιρυσ ωοµεν, ανδστρυχτυρε χηιλδρεν... Ινχρεασε micrograph display individual particle Χορρελατε δριφτ, Ρεµοϖε Ιµποσε (Χροσσ χορρελατε ετχ.) βαχκγρουνδ 3 centers ρεσολυτιον particle ανδ στρυχτυρε ωιτη 532 σψµµετρψ εστιµατε οτηερ (x,y γραδιεντσ (ε.γ. ιµαγεσ ρεσολυτιον βιοχηεµιχαλ, ωιτη ιν ετχ.) δατα οριεντατιον (Χοµπαρε ϖαλυεσ ιν ιµαγεσ ασψµµετριχ ωιτη προϕεχτεδ υνιτ Σηαδεδ τριανγλε βουνδεδ βψ 2 φολδ, images origins) Φουριερ προϕεχτεδ τρανσφορµσ ϖιεωσ οφ 3 ρεχονστρυχτιον) ανγλεσ ϖιεωσ (θ,φ,ω) οφ 3 ρεχονστρυχτιον) 3 φολδ, ανδ τωο αδϕαχεντ 5 φολδ αξεσ

Icosahedral Particle Image Reconstruction Scheme Black Box

Expand Data Set Y N Digitize Micrograph PSC, PhotoScan Uniconv RobEM Box Particles RobEM Pre-Process Images RobEM AutoPP Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox PFTSEARCH, OOR, PO2R Select Images Select Compute 3DR EM3DR, P3DR Monitor Data Quality Y Refine? Initial 3D Model Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF N PROGRAM(S) N RobEM, PCUT, PSF CUTSHELL MAPFFT, EMRES Done? Y Visualize & Interpret 3D Structure Archive Data RobEM, O, Chimera, Explorer, EMfit, Situs, PIF2ASC, Uniconv MAPMAN Etc.

Expand Data Set Digitize Micrograph Box Particles Y N Pre-Process Images Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox Determine Origin and Orientation (θ,φ,ω,x,y) PFTSEARCH, OOR, PO2R Select Images Select Compute 3DR EM3DR, P3DR Refine CTF Monitor Data Quality Y N Refine? Initial 3D Model N Done? Y Visualize & Interpret 3D Structure Archive Data RobEM, PCUT, PSF CUTSHELL MAPFFT, EMRES

Expand Data Set Digitize Micrograph Box Particles Y N Pre-Process Images Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y N Initial 3D Model Refine? N Done? Y Visualize & Interpret 3D Structure Archive Data AUTO3DEM

Expand Data Set Digitize Micrograph Box Particles Y N Pre-Process Images Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y N Refine? N Done? Y Visualize & Interpret 3D Structure Archive Data Initial 3D Model

Digitize Micrograph

Digitize Micrograph Box Particles

Digitize Micrograph Box Particles Extracted

Digitize Micrograph Box Particles Masked

Digitize Micrograph Box Particles Floated

Digitize Micrograph Box Particles Apodized

Digitize Micrograph Box Particles Square mask; unfloated

Digitize Micrograph Box Particles Circular mask; unfloated

Digitize Micrograph Box Particles Circular mask; floated

Digitize Micrograph Box Particles Circular mask; floated & apodized

Digitize Micrograph Box Particles

Digitize Micrograph Box Particles Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files Gradient removed

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files Gradient not removed

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files Extracted Masked Floated Apodized

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Pre-Process Images Remove blemish, Remove Gradient Normalize means/variances, Apodize Determine CTF parameters Create Initial Parameter Files

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y)

Determine Origin and Orientation (θ,φ,ω,x,y) Goal: determine phase origin and view orientation for each boxed particle MOST IMPORTANT STEP? Garbage in ------> garbage out

Determine Origin and Orientation (θ,φ,ω,x,y) People who don t know which end is up

Specifying Direction of View: (θ,φ,ω) Orientation Z (0,0) Standard Setting θ 3 5 ω φ (80,-15) X (90,0) 5 Y (90,90)

BPV Projections: Icosahedral ASU Z 3 5 θ θ 3 φ X 5 Y 5 2 φ 5

BPV Projections: 1/2 Icosahedral ASU 69 72 75 78 81 84 87 90 30 27 24 21 18 15 12 9 6 3 0 θ φ

Initial 3D Model Determine Origin and Orientation (θ,φ,ω,x,y) How do we determine the (θ, φ, ω, x, y) parameters? Two methods: 1. Common lines New or unknown structure 2. Model-based (template) matching General features of structure are known or a crude model can be generated

Determine Origin and Orientation (θ,φ,ω,x,y) How do we determine the (θ, φ, ω, x, y) parameters? Two methods: 1. Ab initio (e.g. Common lines) New or unknown structure 2. By guess and by golly

Initial 3D Model Determine Origin and Orientation (θ,φ,ω,x,y) How do we determine the (θ, φ, ω, x, y) parameters? Two methods: 1. Ab initio (e.g. Common lines) New or unknown structure 2. Model-based (template) matching General features of structure are known or a crude model can be generated ( or, sometimes, even a lousy model will work)

Determine Origin and Orientation (θ,φ,ω,x,y) Common Lines The gospel according to Tony Crowther (Phil. Trans. R. Soc. Lond. B.(1971) 261:221-230) [Common lines] arise as follows: An observed section of the transform intersects an identical symmetry-related section in a line, along which the transform must have the same value in both sections The common line lies in the original section. However, regarded as lying in the symmetry-related section it must have been generated by the symmetry operation from some other line in the original section.

Determine Origin and Orientation (θ,φ,ω,x,y) Common Lines The gospel continued: We therefore have a pair of lines in the original transform plane along which the transform must have identical values A similar pair of lines will be generated by each possible choice of pairs of symmetry operations The angular positions of these lines are dependent on the orientation of the particle.

Orientation Determination by Common Lines 3D Object 2D Projection (θ,φ,ω) 2D Fourier Transform

Orientation Determination by Common Lines Simple example: object with single three-fold axis of symmetry X B 1 C ABCD = 2D transform of image from particle not viewed along an axis of symmetry A A 2 Z Y Let Z-direction coincide with 3-fold axis of symmetry D 3-fold operation generates two additional FT sections (only A B C D is shown) D 3 B C Adapted from Moody (1990) Fig. 7.68, Both planes have common values along the line (1,2,3) of their intersection

Orientation Determination by Common Lines X A B 1 C B A B 1 1 A 2 2 A 2 3 3 Z Y D C D C AA BB 1 D 3 B 1 2 C 3 CC Adapted from Moody (1990) Fig. 7.68, D 3 DD Adapted from Moody (1990) Fig. 7.69, p.246

Orientation Determination by Common Lines 1 1 2 3 2 3 Original Transform Plane

Orientation Determination by Common Lines 1 1 1 2 2 3 Symmetry-Related Transform Plane 3 3

Orientation Determination by Common Lines Ok, that s easy (simple object with single 3-fold axis) What about an object with 532 symmetry? For a general view, icosahedral symmetry generates: 5-folds: 12 x 2 = 12 pairs 2 3-folds: 20 x 1 = 10 pairs 2 2-folds: 30 x 1 = 15 real lines 2 37 common lines

Orientation Determination by Common Lines (80,11) (69,0) (89,-1)

Orientation Determination by Common Lines (80,11)

Orientation Determination by Common Lines (80,11) What is (θ,φ,ω) for this particle?

Orientation Determination by Common Lines 1 2 2 1 ω (80,11,0)

Orientation Determination by Common Lines 1 2 2 1 ω (80,11,5)

Orientation Determination by Common Lines 1 2 2 1 ω (80,11,10)

Orientation Determination by Common Lines 1 2 1 2 ω (80,11,30)

1 1 2 Orientation Determination by Common Lines 2 ω (80,11,90)

Orientation Determination by Common Lines 1 2 ω 2 (80,11,180) 1

Orientation Determination by Common Lines 1 2 2 (80,11,ω) 1 Metric: Identify ω that gives lowest phase residual

Orientation Determination by Common Lines 1 2 2 1 Repeat process for all possible (θ,φ,ω) combinations

Orientation Determination by Common Lines 1 2 2 1 > 250,000 combinations for 1 angular search intervals

Determine Origin and Orientation (θ,φ,ω,x,y) Common Lines The (θ, φ, ω) that results in the lowest phase residual is selected as the best estimate for the particle view orientation The common lines procedure is similarly used to determine the particle phase origin (x, y) Not to worry.. I ll spare you the details!!!

Initial 3D Model Determine Origin and Orientation (θ,φ,ω,x,y) Recall: two methods to determine (θ, φ, ω, x, y): 1. Common lines 2. Model-based (template) matching Bulk of structures now solved this way Details discussed in practical session

PFTSEARCH Program Flowchart Project Model (m views) Interpolate Projections m Projections 3D Model Polar PRJs (θ,φ)j Projection (θ,φ,0)j Select best images Compute 3DR Rotate by ωj Sum average all projections (θ,φ,ω,,) ωj Projection (θ,φ,ω)j j=1,n Cross-correlate --> (x,y)j Circular Average j j n Images (j=1,n) ( 0, ) 0 j m Polar FTs (θ, φ )j Polar PRJ (θ, φ,0)j Invert γ Polar PRJ (θ, φ,0)j (θ,φ,ω)j (,) Cross-correlate --> (xo,yo)j m 1-D FFT Rotationally correlate --> (φ,ω)j (θ, φ )j Correlate --> (θ, φ )j j Interpolat e Imagej 1-D FFT Polar imagej Polar FTj

Initial 3D Model Determine Origin and Orientation (θ,φ,ω,x,y) ID θ φ ω x y

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Initial 3D Model

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Initial 3D Model

Select Images Goal: weed out bad particle images before computing 3D reconstruction

Select Images ID θ φ ω x y

Select Images PRJ CC PFT CC CMP CC 0.784 0.567? 0.775 0.548?

Select Images PFT Coefficient 0.679 ± 0.075

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Initial 3D Model

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Compute 3DR Initial 3D Model

Compute 3DR Goal: combine only good particle images to compute a 3D density map

Compute 3DR In theory In practice From Lake (1972), p.174

Compute 3DR g ρ G Overall scheme: F

Compute 3DR Steps: Z 1. Compute 2D FFT of each particle image Φ 2. Combine all 2D FFTs to build up 3D Fourier-Bessel transform R Central section F(R,Φ,Z) Crowther, DeRosier and Klug, 1970, p.329 Adapted from Crowther (1971) Fig. 4, p.223

g ρ G Compute 3DR F Steps: 1. Compute 2D FFT of each particle image 2. Combine all 2D FFTs to build up 3D Fourier-Bessel transform -1 3. Compute Gn s on each annulus G = ( B B) B F 4. Compute gn s from Gn s (Fourier-Bessel transform) 5. Compute polar density map (ρ(r,φ,z)) from gn s 6. Convert from polar to Cartesian map ( ρ(r,φ,z) --> ρ(x,y,z) )

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Initial 3D Model Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Compute 3DR Option: correct for CTF effects in particle FFTs before FFTs are merged to form the 3D FFT

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Compute 3DR Monitor Data Quality Initial 3D Model

Monitor Data Quality Goal: assess resolution of 3D density map to determine what to do next

Select Images Compute 3DR Monitor Data Quality

Select Images Even Images Odd Images Compute Even 3DR Compute Odd 3DR Mask Even 3DR (r1-r2) Mask Odd 3DR (r1-r2) Unmasked Reovirus

Select Images Even Images Odd Images Compute Even 3DR Compute Odd 3DR Mask Even 3DR (r1-r2) Mask Odd 3DR (r1-r2) Masked Reovirus

Select Images Even Images Odd Images Compute Even 3DR Compute Odd 3DR Mask Even 3DR (r1-r2) Mask Odd 3DR (r1-r2) FT Even SFs FT Odd SFs

Select Images Even Images Odd Images Compute Even 3DR Compute Odd 3DR Mask Even 3DR (r1-r2) Mask Odd 3DR (r1-r2) FT Even SFs FT Odd SFs Compute and plot phase differences and correlation coefficients as function of spatial frequency

Correlation Coefficient Monitor Data Quality Spatial Frequency (1/Å) 8.7Å 6.9Å Unmasked Reovirus Masked Reovirus

Monitor Data Quality Note: quality of 3D density map is not identical everywhere in the map

Resolution Monitor Data Quality 7Å Reovirus Radius r1 = 245 r2 = 363

Resolution Monitor Data Quality 8Å Reovirus Radius r1 = 235 r2 = 380

Resolution Monitor Data Quality 9Å Reovirus Radius r1 = 232 r2 = 405

Monitor Data Quality

Monitor Data Quality

Monitor Data Quality

Monitor Data Quality

Monitor Data Quality

Monitor Data Quality

Monitor Data Quality

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Compute 3DR Monitor Data Quality Initial 3D Model

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Compute 3DR Monitor Data Quality Done? Initial 3D Model

Digitize Micrograph Box Particles Pre-Process Images Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Select Images Compute 3DR Monitor Data Quality Refine? N Done? Initial 3D Model

Digitize Micrograph Box Particles Pre-Process Images Refinement Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y Refine? N Done? Initial 3D Model

Digitize Micrograph Box Particles More Data? Pre-Process Images Refinement Establish Refinement Criteria: Resolution Limits Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y N Refine? N Done?

Expand Data Set Digitize Micrograph Box Particles Y N Pre-Process Images Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y N Refine? N Done?

Expand Data Set Digitize Micrograph Box Particles Y N Pre-Process Images Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y N Refine? N Done? Y Visualize & Interpret 3D Structure

Expand Data Set Digitize Micrograph Box Particles Y N Pre-Process Images Establish Refinement Criteria: Resolution Limits Refinement More Data? Resample Rebox Determine Origin and Orientation (θ,φ,ω,x,y) Refine CTF Select Images Compute 3DR Monitor Data Quality Y N Refine? N Done? Y Visualize & Interpret 3D Structure Archive Data

3D Reconstruction of Icosahedral Particles Outline - Background - References; examples; etc. - Symmetry - Icosahedral (532) point group symmetry - Triangulation symmetry ΞΨΖ ϑουρναλ ϖιρυσ χαυσεσοφ µυχη Digitize Micrograph Graphics Box G y x Determine Ιντερπρετ Ρεφινε Ιντερπαρτιχλε ετεχτ Νορµαλιζε θ Ξ Ψ Ζ φ ω Β ξψ Παρτιχλε Χοµπυτε αχκ Πυβλιση et ισπλαψ/ινσπεχτ/αναλψζε Ρανδ εφινε Ρεγυλαρ initial µορε out προϕεχτ παρτιχλε ιµαγε θ,φ and παρτιχλ θ,φ,ω,ξ,ψ στρυχτυρε 3 estimate ορ ιµαγε Ρεφινε ϖαλυεσ αρτιφαχτσ γριδ ρεχονστρυχτιον float περιση 3 οριεντατιον εοριγινσ µεανσ/ϖαριανχεσ στρυχτυρε οφ ιµαγεσ οριγινσ παραµετερσ θ,φ of (αστιγµατισµ, ρεφινεµεντ Ιχοσαηεδραλ 2 5 3 ασψµµετριχ υνιτ: παιν?αδδ συφφερινγ ιν µεν, ςιρυσ ωοµεν, ανδστρυχτυρε χηιλδρεν... Ινχρεασε micrograph display individual particle Χορρελατε δριφτ, Ρεµοϖε Ιµποσε (Χροσσ χορρελατε ετχ.) βαχκγρουνδ 3 centers ρεσολυτιον particle ανδ ωιτη στρυχτυρε 532 εστιµατε σψµµετρψ οτηερ (x,y γραδιεντσ (ε.γ. ιµαγεσ ρεσολυτιον βιοχηεµιχαλ, ωιτη ιν ετχ.) δατα οριεντατιον (Χοµπαρε ϖαλυεσ ιν ιµαγεσ ασψµµετριχ ωιτη προϕεχτεδ υνιτ Σηαδεδ τριανγλε βουνδεδ βψ 2 φολδ, images origins) Φουριερ προϕεχτεδ τρανσφορµσ ϖιεωσ οφ 3 ρεχονστρυχτιον) ανγλεσ ϖιεωσ (θ,φ,ω) οφ 3 ρεχονστρυχτιον) 3 φολδ, ανδ τωο αδϕαχεντ 5 φολδ αξεσ - Typical procedure (flow chart) - Digitization and boxing - Image preprocessing / CTF estimation - Initial particle orientation/origin search - Orientation/origin refinement - 3D reconstruction with CTF corrections - Validation (resolution assessment) - Current and future strategies NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Outline - Background - References; examples; etc. - Symmetry - Icosahedral (532) point group symmetry - Triangulation symmetry - Typical procedure (flow chart) - Digitization and boxing - Image preprocessing / CTF estimation - Initial particle orientation/origin search - Orientation/origin refinement - 3D reconstruction with CTF corrections - Validation (resolution assessment) - Current and future strategies NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Current and Future Strategies - Parallelization and new algorithms - Parallel versions of EM3DR, PFTSEARCH, OOR - EM3DR ---> P3DR - OOR -------> PO2R - Automation - Semi-auto boxing (RobEM) - Automated origin/orientation refinement (AUTO3DEM) - Split data set processing - Divide image data at very beginning and refine even and odd data independently. - Minimizes (eliminates?) bias in resolution assessment - Combine independent reconstructions to obtain final 3DR with highest S/N NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Structure Determination Flow Chart Initial model A Boxed particles Initial model B Search (θ,φ,ω,x,y) Split Search (θ,φ,ω,x,y) Select particles Search Select particles Compute new model A Compute new model B Check resolution N Search Done? N Y Refine Refine (θ,φ,ω,x,y) Refine (θ,φ,ω,x,y) Select particles Select particles Compute new model A Compute new model B Check resolution N Refine Done? N Y Compute final map NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

Digitize micrographs Data Flow for Split Data Set Processing Box particles Pre-process images odd even Initial 3D Model Orientation Search Orientation Search Select Select Compute odd map Compute even map Check resolution N Done searching? SEARCH Initial 3D Model N Refine (θ,φ,ω,x,y) NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)

3D Reconstruction of Icosahedral Particles Current and Future Strategies - Data selection Trying to improve resolution by substantially increasing the number of images averaged ad infinitum may prove less beneficial than simply applying more rigorous quality control measures to weed out bad data. Borgnia, M. J., D. Shi, P. Zhang and J. L. Milne (2004) Visualization of α-helical features in a density map constructed using 9 molecular images of the 1.8 MDa icosahedral core of pyruvate dehydrogenase. J. Struct. Biol. 147:136-145. 139 44 9 Worst 138 of 963 NRAMM Workshop, La Jolla, CA (Nov 2-10, 2005)