Προτεινόμενες ασκήσεις για μελέτη ΘΕΜΑ 2 2860 (3 α) Αφού ΑΒΓ ισοσκελές θα είναι ˆ ˆ ˆ ˆ Β Γ Β=Γ = Β ˆ ˆ 1 =Γ 1.Αρα το τρίγωνο ΒΙΓ είναι 2 2 ισοσκελές.επομένως ΒΙ=ΙΓ. β) Συγκρίνω τα τρίγωνα ΑΒΙ και ΑΓΙ.Αυτά έχουν: ΑΒ = ΒΓ ΑΙ κοινή ΠΠΠ ΒΙ = ΙΓ από α) είναι ίσα, επομένως θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα. ΑΙΒ ˆ = ΑΙΓ ˆ γ) Αφού ΑΒ=ΑΓ, το Α είναι σημείο της μεσοκαθέτου του ΒΓ ( 3.4 Πόρισμα ΙΙ). Αφού ΙΒ=ΙΓ και το Ι είναι σημείο της μεσοκαθέτου του ΒΓ ( 3.4 Πόρισμα ΙΙ). Αρα η ΑΙ είναι η μεσοκάθετος (αφού από δύο διαφορετικά σημεία διέρχεται μοναδική ευθεία 2). Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 1
ΘΕΜΑ 2_2816 κύκλος Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του κύκλου αντίστοιχα. α) Να αποδείξετε ότι: i. τα τρίγωνα ΚΒΣ και ΚΔΣ είναι ίσα. (Μονάδες 10) ii. ΚΛ=ΚΜ. (Μονάδες 10) β) Να αιτιολογήσετε γιατί οι χορδές ΑΒ και ΓΔ είναι ίσες. (Μονάδες 5) α) Τα τρίγωνα ΚΒΣ και ΚΔΣ έχουν: ΣΚ κοινή ΣΒ = Σ από τα δεδομένα κριτήριο ΠΠΠ είναι ίσα, επομένως Β ˆ = ˆ. ΚΒ = Κ ως ακτίνες κύκλου Τα ορθογώνια τρίγωνα ΛΒΚ και ΜΔΚ έχουν: Β= ˆ ˆ (όπως δείξαμε πιο πάνω) κριτήριο ισότητας ορθογωνίων τριγώνων ( 3.6 Θ.I) είναι ίσα. ΚΒ = Κ ως ακτίνες του ίδιου κύκλου Επομένως θα έχουν ΚΛ=ΚΜ. β) Από ( 3.6 Θ.ΙΙI) αφού τα δύο αποστήματα ΚΛ και ΚΜ του κύκλου είναι ίσα και οι χορδές τους θα είναι ίσες δηλαδή ΑΒ=ΓΔ. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 2
ΘΕΜΑ 2_5127 κύκλος Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθυγράμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα τρίγωνα ΡΑΜ και PMB είναι ίσα. (Μονάδες 12) β) οι γωνίες ΜΑΟ και ΜΒΟ είναι ίσες. (Μονάδες 13) α) Γνωρίζουμε ότι τα εφαπτόμενα τμήματα κύκλου, που άγονται από σημείο εκτός αυτού είναι ίσα μεταξύ τους ( 3.15 Θεώρημα II) επομένως ΡΑ=ΡΒ. Γνωρίζουμε επίσης ότι η διακεντρική ευθεία PO του σημείου Ρ διχοτομεί την γωνία των εφαπτομένων τμημάτων. ( 3.15 Πόρισμα (ii)), επομένως ˆ ˆ ΑΡΜ = ΜΡΒ. Τα τρίγωνα ΡΑΜ και ΡΜΒ έχουν: ΡΑ = ΡΒ ˆ ˆ Π Γ Π ΑΡΜ = ΜΡΒ είναι ίσα. ΡΜ κοινή β) Από την ισότητα των τριγώνων παίρνουμε ότι ΜΑΡ = ΜΒΡ ΜΑΡ = ΜΒΡ ΑΜ = ΜΒ ΡΜΑ = ΡΜΒ Γνωρίζουμε ( 3.14) ότι η ακτίνα που καταλήγει στο σημείο επαφής είναι κάθετη στην εφαπτομένη οπότε ΡΑΟ = ΡΒΟ = 90 Πλέον ΜΑΟ = ΡΑΟ ΜΑΡ = ΡΒΟ ΜΒΡ = ΜΒΟ. Σημείωση: Kάποια μαθήτρια Αλ.Τσ. πρότεινε να συγκρίνουμε τα τρίγωνα ΟΑΜ και ΟΒΜ που είναι μια άλλη (ίσως πιο απλή) λύση επίσης. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 3
Πράγματι τα τρίγωνα αυτά έχουν: ΟΑ = ΟΒ ως ακτίνες κύκλου ΠΠΠ ΟΜ κοινή είναι ίσα ΑΜ = ΜΒ από α) Αρα θα έχουν και τα υπόλοιπα στοιχεία τους ίσα. ΘΕΜΑ 2_2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα είναι ˆ ˆ ˆ 180 Β 180 50 130 1 =Ε 1 = = = = 65 2 2 2 Επειδή ΓΕ=ΓΖ θα είναι ˆ ˆ ˆ 180 Γ 180 50 130 Ζ 1 =Ε 2 = = = = 65 2 2 2 β) ΕΖ= 180 Εˆ ˆ 1 Ε 2 = 180 65 65 = 50 Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 4
ΘΕΜΑ 2 6593 α) Συγκρίνω τα ορθογώνια τρίγωνα ΖΒΔ και ΗΓΕ.Αυτά έχουν Ζ=Η= ˆ ˆ 90 ˆ ˆ Β=Γ ΑΒ ΑΓ Β = = = ΕΓ 2 2 ( 3.6 Θεώρημα I) είναι ίσα οπότε θα έχουν και ΔΖ=ΕΖ δηλαδή τα μέσα των πλευρών ΑΒ και ΑΓ ισαπέχουν από την βάση ΒΓ. β) Είναι Β=Γ ˆ ˆ και Α= ˆ 75 +Β ˆ οπότε αντικαθιστώντας στην Α+Β+Γ= ˆ ˆ ˆ 180 75 +Β+Β+Β= ˆ ˆ ˆ 180 75 + 3Β= ˆ 180 3Β= ˆ 180 75 3Β= ˆ 105 ˆ 105 Β= Β= ˆ 35 3 Aρα Β=Γ= ˆ ˆ 35 και Α= ˆ 75 + 35 = 110. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 5
ΘΕΜΑ 2 6595 α) Από το τρίγωνο ΑΒΓ έχουμε: Α+Β+Γ= ˆ ˆ ˆ 180 Α+ ˆ 70 + 40 = 180 Α= ˆ 180 70 40 Α= ˆ 70. Επειδή Α=Β ˆ ˆ το τρίγωνο ΑΒΓ είναι ισοσκελές. β) Από το τρίγωνο ΕΑΔ έχουμε: ΑΕ ˆ + Α ˆ + ˆ = 180 ΑΕ ˆ + 70 + 20 = 180 ΑΕ ˆ = 180 70 20 = 90. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 6
ΘΕΜΑ 2 2827 Τα τρίγωνα ΑΔΕ και ΓΒΖ έχουν Ε=Ζ= ˆ ˆ 90 Α = ΒΓ Β ˆ = ˆ 1 1 ως απέναντι πλευρές παραλληλογράμμου ως εντός εναλλάξ Αρα από 3.6 Θεώρημα Ι είναι ίσα. β) Από την ισότητα των τριγώνων παίρνουμε ΑΕ=ΓΖ. Επιπλέον ΑΕ//ΓΖ ως κάθετες στην ΒΓ ( 4.6 Πόρισμα Ι). Αρα είναι ΑΕ=//ΓΖ οπότε από γνωστό κριτήριο (ii) το ΑΕΓΖ είναι παραλληλόγραμμο. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 7
ΘΕΜΑ 2 3411 (5.2) α) Αφού ΜΔ διάμεσος, Δ μέσο του ΑΓ οπότε ΑΔ=ΔΓ.Επιπλέον ΜΔ=ΜΕ, οπότε στο τετράπλευρο ΑΜΓΕ οι διαγώνιοί του διχοτομούνται οπότε σύμφωνα με γνωστό κριτήριο είναι παραλληλόγραμμο. β) Αφού ΑΜΓΕ παραλληλόγραμμο θα είναι ΑΕ//=ΜΓ.Αρα αφού ΜΓ=ΒΜ θα είναι και ΑΕ//=ΒΜ. Επομένως και το ΑΕΜΒ παραλληλόγραμμο αφού έχει δύο απέναντι πλευρές ίσες και παράλληλες. Συνεπώς οι διαγώνιοί του ΑΜ και ΒΕ διχοτομούνται δηλαδή η ΒΕ διέρχεται από το μέσο Ζ της ΑΜ. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 8