Το Πρόβλημα Routing and Path Coloring και οι εφαρμογές του σε πλήρως οπτικά δίκτυα

Σχετικά έγγραφα
Το Πρόβληµα Routing and Path Coloring και οι εφαρµογές του σε πλήρως οπτικά δίκτυα

Αλγόριθμοι Δικτύων και Πολυπλοκότητα

Το Πρόβλημα Routing and Path Coloring και οι εφαρμογές του σε πλήρως οπτικά δίκτυα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Fractional Colorings and Zykov Products of graphs

EE512: Error Control Coding

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Abstract Storage Devices

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

C.S. 430 Assignment 6, Sample Solutions

Finite Field Problems: Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partition of weighted sets (problems with numbers)

Approximation of distance between locations on earth given by latitude and longitude

The Simply Typed Lambda Calculus

2 Composition. Invertible Mappings

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ST5224: Advanced Statistical Theory II

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

Statistical Inference I Locally most powerful tests

Minimum Spanning Tree: Prim's Algorithm

Section 8.3 Trigonometric Equations

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Αλγόριθμοι και πολυπλοκότητα Depth-First Search

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Capacitors - Capacitance, Charge and Potential Difference

Σχέσεις, Ιδιότητες, Κλειστότητες

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Reminders: linear functions

derivation of the Laplacian from rectangular to spherical coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order RLC Filters

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

A Hierarchy of Theta Bodies for Polynomial Systems

Strain gauge and rosettes

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

[1] P Q. Fig. 3.1

Concrete Mathematics Exercises from 30 September 2016

Numerical Analysis FMN011

New bounds for spherical two-distance sets and equiangular lines

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Αλγόριθμοι και πολυπλοκότητα NP-Completeness

Models for Probabilistic Programs with an Adversary

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Distances in Sierpiński Triangle Graphs

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Matrices and Determinants

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Bounding Nonsplitting Enumeration Degrees

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Math 6 SL Probability Distributions Practice Test Mark Scheme

Solutions to Exercise Sheet 5

Cyclic or elementary abelian Covers of K 4

Homework 8 Model Solution Section

Αλγόριθμοι και πολυπλοκότητα Graphs

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Every set of first-order formulas is equivalent to an independent set

Srednicki Chapter 55

Lecture 34 Bootstrap confidence intervals

6.3 Forecasting ARMA processes

The challenges of non-stable predicates

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Section 8.2 Graphs of Polar Equations

Lecture 2. Soundness and completeness of propositional logic

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Elements of Information Theory

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

( y) Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Uniform Convergence of Fourier Series Michael Taylor

Quick Installation Guide

About these lecture notes. Simply Typed λ-calculus. Types

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

(C) 2010 Pearson Education, Inc. All rights reserved.

the total number of electrons passing through the lamp.

Transcript:

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική και Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) Το Πρόβλημα Routing and Path Coloring και οι εφαρμογές του σε πλήρως οπτικά δίκτυα Άρης Παγουρτζής Ευχαριστίες: οι διαφάνειες αυτές βασίστηκαν εν μέρει στην παρουσίαση της διπλωματικής εργασίας του Στρατή Ιωαννίδη (Εθνικό Μετσόβιο Πολυτεχνείο, 2002)

Optical Fibers High transmission rate Low bit error rate The bottleneck lies in converting an electronic signal to optical and vice versa All-Optical Networks All physical connections are optical Multiplexing is achieved through wavelength division multiplexing (WDM): in each fiber multiple colors are used Switching on routers is done passively and thus more effectively (no conversion from electrical to optical) Two network nodes communicate using one light beam: a single wavelength is used for each connection ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 2

Graph Representation All physical links are represented as graph edges Communication among nodes is indicated by paths Paths are assigned colors (wavelengths) Overlapping paths (i.e. sharing at least one edge) are assigned different colors ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 3

Graph Topologies ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 4

Graph Coloring (GC) Input: Graph G Feasible solution: Coloring of V using different colors for adjacent vertices Goal: Minimize the number of colors used, i.e. find chromatic number χ(g) NP-hard There is no approximation algorithm of ratio n ε for some ε > 0 (polyapx-hard) Lower bound for χ(g): order (size) ω of maximum clique of G ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 5

Edge Coloring (EC) Input: Graph G Feasible solution: Coloring of E using different colors for adjacent edges Goal: Minimize the number of colors used, i.e. find chromatic index χ (G) Lower bound for χ (G): maximum degree Δ(G) [Vizing 64]: between Δ(G) and Δ(G)+1 (simple graphs) between Δ(G) and 3Δ(G)/2 (multigraphs) [Holyer 80]: NP-complete whether Δ(G) or Δ(G)+1 4/3 -approximable in simple graphs and multigraphs Best possible approximation unless P=NP ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 6

Input: Graph G, set of paths P Path Coloring (PC) Feasible solution: Coloring of paths s.t. overlapping paths are not assigned the same color Goal: Minimize the number of colors used Lower bound: maximum load L We can reduce it to GC by representing paths as vertices and overlapping paths as edges (conflict graph) Improved lower bound: order ω of the maximum clique of the conflict graph ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 7

Path Coloring (PC) Corresponding decision problem is NP-complete In general topologies the problem is poly-apx-hard Proof: Reduction of GC to PC in meshes [Nomikos 96] ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 8

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 9

Chain PC Solved optimally in polynomial time with exactly L colors Ring PC Also known as Arc Coloring NP-complete [GJMP 80] Easily obtained appr. factor 2: Remove edge e and color resulting chain. Color all remaining paths that pass through e with new colors (one for each path) SOLC L SOL SOL ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 10 C + L 2 OPT W. K. Shih, W. L. Hsu: appr. factor 5/3 I. Karapetian: appr. factor 3/2 Idea: Use of maximum clique of conflict graph

Ring PC V. Kumar: With high probability appr. factor 1.36 Idea: Use of multicommodity flow problem ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 11

Star PC NP-completeness: Reduction of EC to Star PC Approximation ratio: at least 4/3 ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 12

Star PC: Approximability Reduction of Star PC to EC in multigraphs Approximation ratio: 4/3 ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 13

Tree PC Recursive Algorithm if tree is a star then color it approximately else Subdivide the tree by breaking one of its internal edges Color the resulting subtrees Join sub-instances by rearranging colors ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 14

Tree PC (ii) Approximation ratio equal to the one achieved by the approximate Star PC algorithm, thus 4/3 ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 15

Bounded Degree Tree PC Trees of bounded degree are reduced by the above reduction to multigraphs of bounded size EC in bounded size multigraphs can be solved optimally in polynomial time ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 16

Generalized Tree (S,d)PC Finite set of graphs S Tree of degree at most d Optimally (exactly) solvable in polynomial time Idea: Since graphs are finite, coloring can be done in P f(s,d) Recursive algorithm, color rearrangement Application: Backbone Networks of customized LANs ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 17

Directed Graphs ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 18

PC in directed graphs D-Chain PC: Reduced to two undirected instances D-Ring PC: As above D-TreePC: Approximated within a 5/3 factor. Least possible factor is 4/3, though the algorithm known is the best possible among all greedy algorithms [Erlebach, Jansen, Kaklamanis, Persiano 97] D-TreePC: Not solved optimally in bounded degree trees ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 19

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 20

Routing and Path Coloring (RPC) Input: Graph G, set of requests R V 2 Feasible solution: Routing of requests in R via a set of paths P and color assignment to P in such a way that overlapping paths are not assigned the same color Goal: Minimize the number of colors used In acyclic graphs (trees, chains) RPC and PC coincide ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 21

Ring RPC Cut-a-link technique [Raghavan-Upfal 94] Pick an edge e Route all requests avoiding edge e Solve chain instance with L colors Thm: The above is a 2-approximation algorithm Proof: L <= 2 L opt <= 2 OPT V. Kumar: 1.68-approximation with high probability ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 22

Approximation ratio 3 Tree of Rings RPC ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 23

RPC in (bi)directed topologies In acyclic topologies PC and RPC coincide In rings there is a simple 2-approximation algorithm. In trees of rings the same as before technique gives approximation ratio 10/3 (=2 x 5/3) ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΜΠΣ Οικονομική & Διοίκηση Τηλεπ/κών Δικτύων (ΕΚΠΑ) 24