arxiv:hep-th/ v1 29 May 2006

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Matrices and Determinants

Space-Time Symmetries

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Relativistic particle dynamics and deformed symmetry

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Higher Derivative Gravity Theories

2 Composition. Invertible Mappings

Example Sheet 3 Solutions

Tutorial problem set 6,

Concrete Mathematics Exercises from 30 September 2016

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Reminders: linear functions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Second Order Partial Differential Equations

EE512: Error Control Coding

4.6 Autoregressive Moving Average Model ARMA(1,1)

derivation of the Laplacian from rectangular to spherical coordinates

6.3 Forecasting ARMA processes

Symmetric Stress-Energy Tensor

( y) Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Section 8.3 Trigonometric Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Approximation of distance between locations on earth given by latitude and longitude

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Srednicki Chapter 55

Every set of first-order formulas is equivalent to an independent set

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

Numerical Analysis FMN011

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Math221: HW# 1 solutions

ST5224: Advanced Statistical Theory II

The Simply Typed Lambda Calculus

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

On a four-dimensional hyperbolic manifold with finite volume

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Homework 8 Model Solution Section

Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1

Homework 3 Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 7.6 Double and Half Angle Formulas

On the Galois Group of Linear Difference-Differential Equations

Fractional Colorings and Zykov Products of graphs

Strain gauge and rosettes

Other Test Constructions: Likelihood Ratio & Bayes Tests

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Lecture 26: Circular domains

Lecture 10 - Representation Theory III: Theory of Weights

Uniform Convergence of Fourier Series Michael Taylor

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Dark matter from Dark Energy-Baryonic Matter Couplings

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Higher spin gauge theories and their CFT duals

Notes on the Open Economy

Lecture 15 - Root System Axiomatics

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Tridiagonal matrices. Gérard MEURANT. October, 2008

Abstract Storage Devices

Variational Wavefunction for the Helium Atom

Problem Set 3: Solutions

( ) 2 and compare to M.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Riemannian Curvature

Math 6 SL Probability Distributions Practice Test Mark Scheme

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Empirical best prediction under area-level Poisson mixed models

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

A Note on Intuitionistic Fuzzy. Equivalence Relation

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Second Order RLC Filters

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SPECIAL FUNCTIONS and POLYNOMIALS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 34 Bootstrap confidence intervals

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

D Alembert s Solution to the Wave Equation

Transcript:

Second Order Noncommutative Corrections to Gravity Xavier Calmet 1 and Archil Kobahidze 2 1 Univeité Libre de Bruxelles arxiv:hep-th/0605275 v1 29 May 2006 Service de Physique Théorique, CP225 Boulevard du Triomphe (Campus plaine) B-1050 Brussels, Belgium 2 Department of Physics and Astronomy Univeity of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA May, 2006 Abstract In this wor, we calculate the leading order corrections to general relativity formulated on a canonical noncommutative spacetime. These corrections appear in the second order of the expansion in theta. Fit order corrections can only appear in the gravity-matter interactions. Some implications are briefly discussed. xcalmet@ulb.ac.be obahid@physics.unc.edu 1

It is a difficult to formulate General Relativity on noncommutative spaces and there are thus different approaches in the literature. In [1] for example a deformation of Einstein s gravity was studied using a construction based on gauging the noncommutative SO(4,1) de Sitter group and the Seiberg-Witten map with subsequent contraction to ISO(3,1). Most recently constructions of a noncommutative gravitational theory [2, 3] were proposed based on a twisted Poincaré algebra [4, 5]. The main problem in formulating a theory of gravity on noncommutative manifolds is that it is difficult to implement symmetries such as general coordinate covariance and local Lorentz invariance and to define derivatives which are toion-free and satisfy the metricity condition. Another approach has been proposed based on true physical symmetries [6, 7]. In that approach one restricts the noncommutative action to symmetries of the noncommutative algebra: [ˆx µ, ˆx ν ] = iθ µν. (1) (see also [8] where this idea was applied to Lorentz symmetry). Obviously, the commutator (1) explicitly violates general coordinate covariance since θ µν is constant in all reference frames. However, we can identify a subclass of general coordinate transformations, ˆx µ = ˆx µ + ˆξ µ (ˆx), (2) which are compatible with the algebra given by (1). The hat on the function ˆξ(ˆx) indicates that it is in the enveloping algebra. Under the change of coordinates (2) the commutator (1) transforms as: [ˆx µ, ˆx ν ] = ˆx µ ˆx ν ˆx ν ˆx µ = iθ µν + [ˆx µ, ˆξ ν ] + [ˆξ µ, ˆx ν ] + O(ˆξ 2 ) (3) Requiring that θ µν remains constant yields the following partial differential equations: θ µα ˆ αˆξν (ˆx) = θ νβ ˆ β ˆξµ (ˆx). (4) A nontrivial solution to this condition can be easily found: ˆξ µ (ˆx) = θ µν ˆ ν ˆf(ˆx), (5) where ˆf(ˆx) is an arbitrary field. This noncommutative general coordinate transformation corresponds to the following transformation: ˆξ µ (x) = θ µν ν ˆf(x). The Jacobian of this restricted coordinate transformations is equal to 1, meaning that the volume element is invariant: d 4 x = d 4 x. The veion of General Relativity based on volume-preserving diffeomorphism is nown as the unimodular theory of gravitation [11]. Thus we came to the conclusion that symmetries of canonical noncommutative spacetime naturally lead to the noncommutative 2

veion of unimodular gravity. We obtain the noncommutative field-strength of the SO(3,1) gauge symmetry: with ˆR = R + R (1) + R(2) + O(θ3 ), (6) R (1) = 1 2 θcd {R ac, R bd } 1 4 θcd {ω c, ( d + D d )R }. (7) The noncommutative Riemann tensor is then given by ˆR (ˆx) = 1 2 and the leading order correction in θ is found explicitly to be: ˆR cd (ˆx)Σ cd, (8) ˆR (1)cd (x) = 1 2 θcd Rac ij Rbd l d pq ijl 1 4 θcd wc ij ( d + D d )R l d (2)pq ijl (9) the coefficient d (2)pq ijl is defined by d (1)pq ijl = Tr ({Σ ij, Σ l }Σ pg ), (10) where trace goes over the matrix indices of the SO(3,1) generato Σ ij. The group-theoretic coefficients of eq. (10) are all vanishing by virtue of antisymmetricity of the SO(3,1) generato, Σij T = Σ ij and cyclic properties of the trace [12]. This can be explicitly demonstated for an arbitrary representation for the generato, e.g. Σ = i [γ 4 a, γ b ] The new result of this wor is the second order correction in θ which is given by (2) mn R = 1 32 θij θ l (2wi 2 l i R 4w ef +iw i 2iw iw +2 i (w w cd j l (R ri j w cd j w cd R ef R cd ri R cd R ef il R cd 2iwi R cd +R r R cd is w ef lr ef cdef Rsj cd ) l R ef sj r w ef j cdef + 2iw cdef 4i iw d (5)mn cdefgh ir l d (5)mn cdefgh 2R i + iw l w cd i j d (6)mn cdefgh + 2 iw ) j w ef l d (7)mn cdef + 2 irr R gh sl d (3)mn ghcdef R ef jl +2w l (wi cd j R ef iw ir cd efcd + 4i irr cdef w ef j l d (5)mn + iw w cd j R ef l R ef j d (3)mn cdefgh j l R cd d (4)mn cd i wj cd R ef 2R r R cd w ef i jr cd w cd j R cd i w ef l R ef sl l d (5)mn cdefgh j R ef jrsl cd d (4)mn cd w cd i cdefgh w j R ef wcd i R ef cdef (11) j l d (6)mn cdefgh sl cdef cdef efcd l d (5)mn cdefgh j w pq l d (8)mn cdefghpq ) 3

using the result obtained for a generic noncommutative gauge theory in [10] and where the coefficients d (i) are defined by: cdef = Tr ({{Σ, Σ cd }, Σ ef }Σ mn ), (12) d (3)mn cdefgh = Tr ({Σ, {[Σ cd, Σ ef ], Σ gh }}Σ mn ), (13) d (4)mn cd = Tr ([Σ, Σ cd ]Σ mn ), (14) d (5)mn cdefgh = Tr ({[{Σ, Σ cd }, Σ ef ], Σ gh }Σ mn ), (15) d (6)mn cdefgh = Tr ({[Σ, Σ cd ], {Σ ef, Σ gh }}Σ mn ), (16) d (7)mn cdef = Tr ([[Σ, Σ cd ], Σ ef ]Σ mn ), (17) d (8)mn cdefghpq = Tr ({[Σ, {[Σ cd, Σ ef ], Σ gh }], Σ pq }Σ mn ). (18) This coefficients are easily calculle using a specific representation, e.g. spinorial representation, for the matrices Σ and a computer algebra program such as Mathematica with the routine TRACER [9]. We give explicit expressions for these traces in the appendix. The noncommutative action is then given by S = d 4 x 1 2κ ˆR(ˆx) = 2 d 4 x 1 2κ 2 ( R(x) + R (2) (x) ) + O(θ 3 ). (19) This equation is an action for the noncommutative veion of the unimodular theory of gravitation. The unimodular theory is nown [11] to be classically equivalent to Einstein s General Relativity with a cosmological constant and it can be put in the form S NC = 1 16πG d 4 x gr(g µν ) + O(θ), (20) where R(g µν ) is the usual Ricci scalar and g is the determinant of the metric. If we restrict ouelves to the transformations (5), the determinant of the metric is always equal to minus one, the term g in the action is thus trivial. However, as mentioned previously, we recover full general coordinate invariance in the limit θ µν to zero and it is thus important to write this term explicitly to study the symmetries of the action. In order to obtain the equations of motion corresponding to this action, we need to consider variations of (20) that preserve g = detg µν = 1, i.e. not all the components of g µν are independent. One thus introduces a new varile g µν = g 1 4g µν, which has explicitly a determinant equal to one. The field equations are then R µν 1 4 gµν R + O(θ) = 0. (21) As done in e.g. [11] we can use the Bianchi identities for R and find: R ;µ = 0 (22) 4

which can be integrated easily and give R = Λ, where Λ is an integration constant. It can then be shown that the differential equations (21) imply R µν 1 2 gµν R Λg µν + O(θ) = 0, (23) i.e. Einstein s equations of General Relativity with a cosmological constant Λ that appea as an integration constant. Because any solution of Einstein s equations with a cosmological constant can, at least over any topologically R 4 open subset of spacetime, be written in a coordinate system with g = 1, the physical content of unimodular gravity is identical at the classical level to that of Einstein s gravity with some cosmological constant [11]. The form of the O(θ 2 ) corrections in eq. (11) suggests that in the linearized approximation, gravity is not affected by spacetime noncommutativity. Note also that in the full gravity-matter action the dominant O(θ) will generally be present in the matter Lagrangian, that in turn could affect the solutions for the metric in this order. It would be very interesting to study cosmological perturbations in the ove setting. Acnowledgments The wor of X.C. was supported in part by the IISN and the Belgian science policy office (IAP V/27). References [1] A. H. Chamseddine, Phys. Lett. B 504, 33 (2001) [arxiv:hep-th/0009153]. [2] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, Class. Quant. Grav. 22, 3511 (2005) [arxiv:hep-th/0504183]; P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Class. Quant. Grav. 23, 1883 (2006) [arxiv:hep-th/0510059]. [3] A. Kobahidze, arxiv:hep-th/0603132. [4] J. Wess, Deformed coordinate spaces: Derivatives, in Lectures given at BW2003 Wohop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Pepectives of Balans Colloration, Vrnjaca Banja, Serbia, 29 Aug - 2 Sep 2003, arxiv:hep-th/0408080. [5] M. Chaichian, P. P. Kulish, K. Nishijima and A. Tureanu, Phys. Lett. B 604, 98 (2004) [arxiv:hep-th/0408069]. [6] X. Calmet and A. Kobahidze, Phys. Rev. D 72, 045010 (2005) [arxiv:hep-th/0506157]. [7] X. Calmet, arxiv:hep-th/0510165. 5

[8] X. Calmet, Phys. Rev. D 71, 085012 (2005) [arxiv:hep-th/0411147] and arxiv:hep-th/0605033, to appear in the proceedings of 41st Rencontres de Moriond on Electrowea Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 11-18 Mar 2006. [9] M. Jamin and M. E. Lautenbacher, Comput. Phys. Commun. 74 (1993) 265. [10] L. Moller, JHEP 0410, 063 (2004) [arxiv:hep-th/0409085]. [11] The equations of motion corresponding to this theory have fit been written down by A. Einstein in: A. Einstein, Siz. Preuss. Acad. Scis., (1919); Do Gravitational Fields Play an essential Role in the Structure of Elementary Particle of Matter, by A. Einstein et al (Dover, New Yor, 1952)[Eng. translation]. The theory has been rediscovered in J. J. van der Bij, H. van Dam and Y. J. Ng, Physica 116A, 307 (1982), and further developed by a number of autho, see e.g., F. Wilcze, Phys. Rept. 104, 143 (1984); W. Buchmuller and N. Dragon, Phys. Lett. B 207, 292 (1988); M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195 (1989); W. G. Unruh, Phys. Rev. D 40, 1048 (1989). [12] P. Muherjee, private communication. Appendix d (2) cdefmn = (η af η bn η cm η de η af η bm η cn η de η ae η bn η cm η df + η ae η bm η cn η df (24) η af η bn η ce η dm + η ae η bn η cf η dm + η af η be η cn η dm η ae η bf η cn η dm + η an (η bm (η cf η de η ce η df ) + η bf (η ce η dm η cm η de ) + η be (η cm η df η cf η dm )) +η af η bm η ce η dn η ae η bm η cf η dn η af η be η cm η dn + η ae η bf η cm η dn + η am (η bn (η ce η df η cf η de ) +η bf (η cn η de η ce η dn ) + η be (η cf η dn η cn η df )) + η ad η bc η en η fm η ac η bd η en η fm η ad η bc η em η fn + η ac η bd η em η fn ) d (3) cdefghmn = i(η ah η bg η cn η df η em η ag η bh η cn η df η em η ah η bg η cf η dn η em + (25) η ag η bh η cf η dn η em + η ah η bd η cf η gn η em η ad η bh η cf η gn η em η ah η bc η df η gn η em + η ac η bh η df η gn η em η ah η bg η cm η df η en + η ag η bh η cm η df η en + η ah η bg η cf η dm η en η ag η bh η cf η dm η en + η an η bm (η cf (η dg η eh η dh η eg ) + η ch (η df η eg η de η fg ) +η cg (η de η fh η df η eh ) + η ce (η dh η fg η dg η fh )) + η am η bn (η cf (η dh η eg η dg η eh ) +η ch (η de η fg η df η eg ) + η cg (η df η eh η de η fh ) + η ce (η dg η fh η dh η fg )) η ah η bg η cn η de η fm + η ag η bh η cn η de η fm +η ah η bg η ce η dn η fm η ag η bh η ce η dn η fm + η ah η bg η cm η de η fn η ag η bh η cm η de η fn η ah η bg η ce η dm η fn + η ag η bh η ce η dm η fn + η ah η bf η cn η de η gm η af η bh η cn η de η gm η ah η be η cn η df η gm + η ae η bh η cn η df η gm η ah η bf η ce η dn η gm + η af η bh η ce η dn η gm 6

+η ah η be η cf η dn η gm η ae η bh η cf η dn η gm η ah η bd η cf η en η gm + η ad η bh η cf η en η gm +η ah η bc η df η en η gm η ac η bh η df η en η gm + η ah η bd η ce η fn η gm η ad η bh η ce η fn η gm η ah η bc η de η fn η gm + η ac η bh η de η fn η gm η ah η bf η cm η de η gn +η af η bh η cm η de η gn + η ah η be η cm η df η gn η ae η bh η cm η df η gn + η ah η bf η ce η dm η gn η af η bh η ce η dm η gn η ah η be η cf η dm η gn + η ae η bh η cf η dm η gn η ah η bd η ce η fm η gn + η ad η bh η ce η fm η gn + η ah η bc η de η fm η gn η ac η bh η de η fm η gn η ag η bf η cn η de η hm + η af η bg η cn η de η hm + η ag η be η cn η df η hm η ae η bg η cn η df η hm + η ag η bf η ce η dn η hm η af η bg η ce η dn η hm η ag η be η cf η dn η hm + η ae η bg η cf η dn η hm + η ag η bd η cf η en η hm η ad η bg η cf η en η hm η ag η bc η df η en η hm + η ac η bg η df η en η hm η ag η bd η ce η fn η hm + η ad η bg η ce η fn η hm + η ag η bc η de η fn η hm η ac η bg η de η fn η hm + η af η bd η ce η gn η hm η ad η bf η ce η gn η hm η ae η bd η cf η gn η hm + η ad η be η cf η gn η hm η af η bc η de η gn η hm + η ac η bf η de η gn η hm + η ae η bc η df η gn η hm η ac η be η df η gn η hm + ( η bg (η af (η cm η de η ce η dm ) + η ae (η cf η dm η cm η df ) (η ad η cf η ac η df )η em + (η ad η ce η ac η de )η fm ) + η ag (η bf (η cm η de η ce η dm ) + η be (η cf η dm η cm η df ) (η bd η cf η bc η df )η em + (η bd η ce η bc η de )η fm ) (η ad (η be η cf η bf η ce ) + η af (η bd η ce η bc η de ) + η ae (η bc η df η bd η cf ) + η ac (η bf η de η be η df ))η gm )η hn ) d (4) cdmn = i( η am η bd η cn + η ad (η bm η cn η bn η cm ) (26) +η ac η bn η dm + η an (η bd η cm η bc η dm ) + η am η bc η dn η ac η bm η dn ) d (5) cdefghmn = i(η ah η bn η cm η df η eg η ah η bm η cn η df η eg η af η bn η cm η dh η eg (27) +η af η bm η cn η dh η eg η ah η bn η cf η dm η eg + η af η bn η ch η dm η eg + η ah η bf η cn η dm η eg η af η bh η cn η dm η eg + η a h η bm η cf η dn η eg η af η bm η ch η dn η eg η ah η bf η cm η dn η eg + η af η bh η cm η dn η eg η ag η bn η cm η df η eh + η ag η bm η cn η df η eh + η af η bn η cm η dg η eh η af η bm η cn η dg η eh + η ag η bn η cf η dm η eh η af η bn η cg η dm η eh η ag η bf η cn η dm η eh + η af η bg η cn η dm η eh η ag η bm η cf η dn η eh + η af η bm η cg η dn η eh + η ag η bf η cm η dn η eh η af η bg η cm η dn η eh η ah η bn η cg η df η em + η ag η bn η ch η df η em + η ah η bg η cn η df η em η ag η bh η cn η df η em + η ah η bn η cf η dg η em η af η bn η ch η dg η em η ah η bf η cn η dg η em + η af η bh η cn η dg η em η ag η bn η cf η dh η em + η af η bn η cg η dh η em + η ag η bf η cn η dh η em η af η bg η cn η dh η em η ah η bg η cf η dn η em + η ag η bh η cf η dn η em + η ah η bf η cg η dn η em 7

η af η bh η cg η dn η em η ag η bf η ch η dn η em + η af η bg η ch η dn η em + η ah η bm η cg η df η en η ag η bm η ch η df η en η ah η bg η cm η df η en + η ag η bh η cm η df η en η ah η bm η cf η dg η en + η af η bm η ch η dg η en + η ah η bf η cm η dg η en η af η bh η cm η dg η en + η ag η bm η cf η dh η en η af η bm η cg η dh η en η ag η bf η cm η dh η en +η af η bg η cm η dh η en + η ah η bg η cf η dm η en η ag η bh η cf η dm η en η ah η bf η cg η dm η en + η af η bh η cg η dm η en + η ag η bf η ch η dm η en η af η bg η ch η dm η en η ah η bn η cm η de η fg + η ah η bm η cn η de η fg + η ae η bn η cm η dh η fg η ae η bm η cn η dh η fg + η ah η bn η ce η dm η fg η ae η bn η ch η dm η fg η ah η be η cn η dm η fg + η ae η bh η cn η dm η fg η ah η bm η ce η dn η fg + η ae η bm η ch η dn η fg + η ah η be η cm η dn η fg η ae η bh η cm η dn η fg + η ag η bn η cm η de η fh η ag η bm η cn η de η fh η ae η bn η cm η dg η fh + η ae η bm η cn η dg η fh η ag η bn η ce η dm η fh + η ae η bn η cg η dm η fh + η ag η be η cn η dm η fh η ae η bg η cn η dm η fh + η ag η bm η ce η dn η fh η ae η bm η cg η dn η fh η ag η be η cm η dn η fh + η ae η bg η cm η dn η fh + η ah η bn η cg η de η fm η ag η bn η ch η de η fm η ah η bg η cn η de η fm + η ag η bh η cn η de η fm η ah η bn η ce η dg η fm + η ae η bn η ch η dg η fm + η ah η be η cn η dg η fm η ae η bh η cn η dg η fm + η ag η bn η ce η dh η fm η ae η bn η cg η dh η fm η ag η be η cn η dh η fm + η ae η bg η cn η dh η fm + η ah η bg η ce η dn η fm η ag η bh η ce η dn η fm η ah η be η cg η dn η fm + η ae η bh η cg η dn η fm + η ag η be η ch η dn η fm η ae η bg η ch η dn η fm + η an (η bf η cm η dh η eg η bf η ch η dm η eg + η bg η cm η df η eh η bf η cm η dg η eh η bg η cf η dm η eh + η bf η c g η dm η eh η bg η ch η df η em + η bf η ch η dg η em + η bg η cf η dh η em η bf η cg η dh η em η be η cm η dh η fg + η be η ch η dm η fg η bg η cm η de η fh + η be η cm η dg η fh + η bg η ce η dm η fh η be η cg η dm η fh + η bm (η cf (η dg η eh η dh η eg ) + η ch (η df η eg η de η fg ) + η cg (η de η fh η df η eh ) + η ce (η dh η fg η dg η fh )) + 8

(η bg (η ch η de η ce η dh ) + η be (η cg η dh η ch η dg ))η fm + η bh (η cf (η dm η eg η dg η em ) + η cm (η de η fg η df η eg ) + η cg (η df η em η de η fm ) + η ce (η dg η fm η dm η fg ))) + (η ah (η bm (η ce η dg η cg η de ) + η bg (η cm η de η ce η dm ) + η be (η cg η dm η cm η dg )) + η ag (η bm (η ch η de η ce η dh ) + η bh (η ce η dm η cm η de ) + η be (η cm η dh η ch η dm )) + η ae (η bm (η cg η dh η ch η dg ) + η bh (η cm η dg η cg η dm ) + η bg (η ch η dm η cm η dh )))η fn + η am ( η bf η cn η dh η eg + η bf η ch η dn η eg η bg η cn η df η eh + η bf η cn η dg η eh + η bg η cf η dn η eh η bf η cg η dn η eh + η bg η ch η df η en η bf η ch η dg η en η bg η cf η dh η en + η bf η cg η dh η en + η be η cn η dh η fg η be η ch η dn η fg + η bg η cn η de η fh η be η cn η dg η fh η bg η ce η dn η fh + η be η cg η dn η fh + η bn (η cf (η dh η eg η dg η eh ) + η ch (η de η fg η df η eg ) + η cg (η df η eh η de η fh ) + η ce (η dg η fh η dh η fg )) + (η bg (η ce η dh η ch η de ) + η be (η ch η dg η cg η dh ))η fn + η bh (η cf (η dg η en η dn η eg ) + η cn (η df η eg η de η fg ) + η cg (η de η fn η df η en ) + η ce (η dn η fg η dg η fn )))) d (6) cdefghmn = i(η am η bd η cn η eh η fg η ac η bn η dm η eh η fg (28) η am η bc η dn η eh η fg + η ac η bm η dn η eh η fg η am η bd η cn η eg η fh + η ac η bn η dm η eg η fh + η am η bc η dn η eg η fh η ac η bm η dn η eg η fh + η an (η bd η cm η bc η dm )(η eg η fh η eh η fg ) η ah η bd η cg η en η fm + η ag η bd η ch η en η fm + η ah η bc η dg η en η fm η ac η bh η dg η en η fm η ag η bc η dh η en η fm + η ac η bg η dh η en η fm + η ah η bd η cg η em η fn η ag η bd η ch η em η fn η ah η bc η dg η em η fn + η ac η bh η dg η em η fn + η ag η bc η dh η em η fn η ac η bg η dh η em η fn + η ah η bd η cf η en η gm η af η bd η ch η en η gm η ah η bc η df η en η gm + η ac η bh η df η en η gm + η af η bc η dh η en η gm η ac η bf η dh η en η gm η ah η bd η ce η fn η gm + η ae η bd η ch η fn η gm + η ah η bc η de η fn η gm η ac η bh η de η fn η gm η ae η bc η dh η fn η gm + η ac η be η dh η fn η gm η ah η bd η cf η em η gn + η af η bd η ch η em η gn + η ah η bc η df η em η gn η ac η bh η df η em η gn η af η bc η dh η em η gn + η ac η bf η dh η em η gn + η ah η bd η ce η fm η gn η ae η bd η ch η fm η gn η ah η bc η de η fm η gn + η ac η bh η de η fm η gn + 9

η ae η bc η dh η fm η gn η ac η be η dh η fm η gn η ag η bd η cf η en η hm + η af η bd η cg η en η hm + η ag η bc η df η en η hm η ac η bg η df η en η hm η af η bc η dg η en η hm + η ac η bf η dg η en η hm + η ag η bd η ce η fn η hm η ae η bd η cg η fn η hm η ag η bc η de η fn η hm + η ac η bg η de η fn η hm + η ae η bc η dg η fn η hm η ac η be η dg η fn η hm η af η bd η ce η gn η hm + η ae η bd η cf η gn η hm + η af η bc η de η gn η hm η ac η bf η de η gn η hm η ae η bc η df η gn η hm + η ac η be η df η gn η hm + (η ac η bg η df η em η ac η bf η dg η em + η ae η bd η cg η fm η ac η bg η de η fm η ae η bc η dg η fm + η ac η be η dg η fm + η ag (η bd (η cf η em η ce η fm ) + η bc (η de η fm η df η em )) + (η ae (η bc η df η bd η cf ) + η ac (η bf η de η be η df ))η gm + η af (η bd (η ce η gm η cg η em ) + η bc (η dg η em η de η gm )))η hn + η ad ((η bn η cm η bm η cn )(η eh η fg η eg η fh ) + η bf η ch η en η gm η be η ch η fn η gm η bf η ch η em η gn + η be η ch η fm η gn + η bh (η cg (η en η fm η em η fn ) + η cf (η em η gn η en η gm ) + η ce (η fn η gm η fm η gn )) η bf η c g η en η hm + η be η cg η fn η hm + η bf η ce η gn η hm η be η cf η gn η hm + (η bf (η cg η em η ce η gm ) + η be (η cf η gm η cg η fm ))η hn + η bg (η ch (η em η fn η en η fm ) + η cf (η en η hm η em η hn ) + η ce (η fm η hn η fn η hm )))) d (7) cdefmn = ( η af η bd η cn η em + η ac η bn η df η em + (29) η af η bc η dn η em η ac η bf η dn η em η am η bd η cf η en + η af η bd η cm η en + η am η bc η df η en η ac η bm η df η en η af η bc η dm η en + η ac η bf η dm η en + η ae η bd η cn η fm η ac η bn η de η fm η ae η bc η dn η fm + η ac η be η dn η fm + η an (η bd (η cf η em η ce η fm ) + η bc (η de η fm η df η em )) + (η am (η bd η ce η bc η de ) + η ae (η bc η dm η bd η cm ) + η ac (η bm η de η be η dm ))η fn + η ad (η bf (η cn η em η cm η en ) + η bn (η ce η fm η cf η em ) + η bm (η cf η en η ce η fn ) + η be (η cm η fn η cn η fm ))) d (8) cdefghpqmn = 1 2 (η deǫ cfgh η ec ǫ dfgh ǫ edgh η fc + ǫ ecgh η ld ) (30) (ǫ bmnp η aq ǫ anpq η bm + ǫ ampq η bn ǫ amnq η bp + ǫ amnp η bq ) 10