Kul Models for beam, plate and shell structures, 09/2016

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, 07/2016

Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, MT

Spherical Coordinates

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Answer sheet: Third Midterm for Math 2339

ADVANCED STRUCTURAL MECHANICS

Kul Finite element method I, Exercise 08/2016

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

Geodesic Equations for the Wormhole Metric

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Homework 8 Model Solution Section

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

Srednicki Chapter 55

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 26: Circular domains

Areas and Lengths in Polar Coordinates

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Chapter 7 Transformations of Stress and Strain

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CRASH COURSE IN PRECALCULUS

Matrices and Determinants

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 3 Solutions

Orbital angular momentum and the spherical harmonics

1 String with massive end-points

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Example Sheet 3 Solutions

( ) 2 and compare to M.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Solution to Review Problems for Midterm III

Inverse trigonometric functions & General Solution of Trigonometric Equations

Problem Set 3: Solutions

Math221: HW# 1 solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Strain gauge and rosettes

CYLINDRICAL & SPHERICAL COORDINATES

Geometry of the 2-sphere

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Kul Finite element method I, Exercise 07/2016

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Numerical Analysis FMN011

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

D Alembert s Solution to the Wave Equation

Solutions to Exercise Sheet 5

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

EE512: Error Control Coding

Chapter 6 BLM Answers

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

If we restrict the domain of y = sin x to [ π 2, π 2

Trigonometric Formula Sheet

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Reminders: linear functions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

6.3 Forecasting ARMA processes

Laplace s Equation in Spherical Polar Coördinates

3.5 - Boundary Conditions for Potential Flow

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Partial Differential Equations in Biology The boundary element method. March 26, 2013

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Parametrized Surfaces

Parallel transport and geodesics

Empirical best prediction under area-level Poisson mixed models

Derivation of Optical-Bloch Equations

MathCity.org Merging man and maths

Differentiation exercise show differential equation

Lifting Entry (continued)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Tutorial problem set 6,

CORDIC Background (2A)

Curvilinear Systems of Coordinates

2 Composition. Invertible Mappings

Exercises to Statistics of Material Fatigue No. 5

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A Introduction to Cartesian Tensors

Transcript:

Kul-49.45 Models for beam, plate and shell structures, 9/6 Demo problems. Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N + b = ( d N +Γ N +Γ N + b) e = j ji kjk ji jki jk i i and expressions Γ φφn =Γ θθn =, Γ φθφ = cot θ, dφ = φ, sinθ dθ = θ, and d n = n. Answer T [csc θnφφ, φ + Nθφ, θ + cot θ ( Nθφ + Nφθ )] + bφ e φ eθ [csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ )] + bθ = e n ( Nφφ + Nθθ ) + bn. Consider a simply supported (long) circular cylindrical shell of radius, thickness t, and filled with liquid of density ρ in cylindrical φn coordinates. Determine the mid-surface stress resultants N φφ, N φ and N by assuming that there are no axial forces at the ends of the shell and bending deformation is negligible. (J.N.eddy: Example.3.) g L x Answer N p ρg cosφ φφ Nφ = ρg ( L )sin φ+ A N ( ρg L )cos φ (A and p are constants) 3. Consider a truncated cone, as shown in the figure. Determine the mid-surface stress resultants due to its own weight. Acceleration by gravity g, density of the material ρ, and thickness of the cell t wall are constants. Use cylindrical φn coordinates and assume that the cone stands freely on a frictionless foundation. The coordinate value of the free end is. (J.N.eddy: Problem.8 modified somewhat). y α x g

Answer N φφ tρgtan α Nφ = N tρg( + tan α) ( ) The demo problems are published in the course homepage on Fridays. The problems are related to the topic of the next weeks lecture (Wed.5-. hall K3 8). Solutions to the problems are explained in the weekly exercise sessions (Thu.5-4. hall K3 8) and will also be available in the home page of the course. Please, notice that the problems of the midterms and the final exam are of this type.

Lecture problem Be prepared to write component forms of equilibrium and constitutive equations of membrane model using directed derivatives and Christoffel symbols. Lecture problems are specified and solved during the lecture (Wed.5-. hall K3 8). The time allocated for this is 3 min.

Home problem Consider a cylindrical shell of semicircular cross section supporting its own weight, which is assumed to be distributed uniformly over the surface of the shell. Using the membrane theory, determine Nφφ, Nφ and N assuming that there are no axial forces at the ends of the tube. (J.N.eddy: Problem.) x g y L Solution template The membrane equations written in cylindrical φ coordinate system and the relationship between the basis vector of the Cartesian and cylindrical system are, N T φ, φ + N, + b e eφ Nφ, + Nφφ, φ + bφ = en Nφφ + bn i sinφ cosφ e j= cosφ sinφ eφ k en. External distributed force due to gravity expressed in the basis of the cylindrical coordinate system is (here t = ) T e t/ t/ b = f = [ ] dn e t/ = t/ φ e n. Membrane equations of the present case are ( Nφ = Nφ) T e eφ en = 3. Solution to the eqution associated with direction e n is given by

N φφ = 4. Knowing the solution above, the equation associated with direction e φ gives (notice that integration constants of partial differential equations are not constants but arbitrary functions of φ. Denote the function A( φ) here) N φ =, N φ = 5. Knowing the solution above, the equation associated with direction e gives (again: notice that integration constants of partial differential equations are not constants but arbitrary functions of φ. Denote the function B( φ ) here) N, = N = 6. By assumption, there are no axial forces at the ends {, L}. Therefore N (, φ ) = = N ( L, φ ) = = giving A( φ ) = B( φ ) = 7. Solutions to the force resultants are

N (, φ ) = gt cos ( L) ρ φ Nφ (, φ ) = ρgtsin φ ( L ) + A Nφφ (, φ ) = ρgtcos φ NOTICE. Solutions to quite similar demo problems will be discussed in detail during the exercise session on Thu -4! The compulsory home problems are published in the course homepage on Fridays and the deadline for answers is the next weeks Friday 5.45. eturn your homework answers into the green course mailbox that can be found from the corridor of the K3 building lobby (Puumiehenkuja 5A). Please, use the solution templates given.

Kul-49.45 Models for beam, plate and shell structures INDEX NOTATION (Orthonormal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENEAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENTITIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDICAL rφ SYSTEM r = r cosφi + r sinφ j + k er cφ sφ i er er eφ = sφ cφ j eφ= eφ φ e k e e = er + eφ + e r r φ SPHEICAL θφr SYSTEM r( θφ,, r) = r(s θ c φ i + s θ s φ j + c θ k)

eθ cθφ c cθφ s sθ i eφ = sφ cφ j er sθφ c sθφ s cθ k eθ cθ eφ eφ= sθer cθeθ φ er sθeφ eθ er eφ =, θ er eθ = eθ + eφ + e r r θ rsinθ φ r THIN BODY snb SYSTEM FO PLANA BEAMS r(, s n) = r () s + ne () s es r, s / r, s r, s = = e n ess, / ess, ess, = es + en n s n n es en / = s en es / OTHONOMAL CUVILINEA COODINATES eα i α x, α y, α, α x x eβ = [ F] j β = x, β y, β, β y= [ H] y en k x, y, γ γ γ, γ eα eα eα i eβ= ( i[ F])[ F] eβ= [ D] () i eβ i e j = D ijk e k en en en T T eα α eα α = e F H = e D e e T β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n COMPONENT EPESENTATIONS Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s sr rjl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i PLATE GEOMETY ( rφ n) r ( r, φ, n) = [ ir cosφ+ jr sin φ ] + nen Γ ijk = D ir D rjk

er cosφ sinφ i eφ = sinφ cosφ j en k er eφ eφ = er φ e n d = r r d r = d = φ φ n n Γ = Γ = φrφ φφr r dv = dndω BEAM GEOMETY ( snb ) r ( s, n, b) = [ r ( s)] + ne n + be b es r, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDICAL SHELL GEOMETY ( φ n) r (, φ, n) = [ i cosφ+ jsin φ + k] + nen e i e eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = φ = ( ) φ d n = n d n Γ φφn = Γ φnφ = ( n) dv = ( n ) dn( dφ ) d = ( n ) dndω LINEA ISOTOPIC ELASTICITY σ = E: ε = E: u (minor and major symmetries of the elasticity dyad assumed) ε = [ u + ( u )] c

T T ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stress) ν kk kk ki + ik ki + ik T T ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik T T ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik E Et G = D = ( +ν ) ( ν ) PINCIPLE OF VITUAL WOK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A 3 BEAM EQUATIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ TIMOSHENKO BEAM ( xy ) E = Eii + Gjj + Gkk N + bx Q y + by= Q + b T + cx M y Q + cy= M + Qy + c

N EAu ESψ + ES yθ Qy= GA( v ψ) GS yφ Q GA( w + θ) + GSφ TIMOSHENKO BEAM ( snb ) T GS y( v ψ) + GS( w + θ) + GIrrφ M y = ES yu EIyψ + EI yyθ M ESu + EIψ EI yθ N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb T Mnκb + cs Mn + Tκb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) T GSb( w + vκ s + θ ) + GIrr( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLATE EQUATIONS F + b = ( M Q+ c) k = F = σ d = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ d = iim + ijm + jim + jjm + ( ki + ik ) + ( kj + jk ) xx xy yx yy x y EISSNE-MINDLIN PLATE ( xy ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + b Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q or w w n Nnn Nn or un un = M ns M s or θn θn = N ns Ns or us u s M nn M n or θs θs KICHHOFF PLATE ( xy )

Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + b ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn or un un = N ns Ns or us us EISSNE-MINDLIN PLATE ( rφ ) Q + M Q M or w w M nn M n or w, n + θ s n nss, ss, = [( rn ) + N N ] / r + b [( rnrφ ), r + Nφφ, φ + Nφr] / r + bφ rr, r φr, φ φφ r = Nrr ur, r + ν ( ur + uφφ, )/ r Et Nφφ = u ν rr, + ( ur+ uφ, φ )/ r ν N ( ν )[( u u ) / r+ u ] / rφ r, φ φ φ, r [( rqr), r + Qφφ, ] / r + b [( rmrr ), r + Mφr, φ Mφφ ] / r Qr + cr = [( rmrφ ), r + Mφφ, φ + Mφr] / r Qφ + cφ Mrr θφ, r + νθ ( φ θr, φ)/ r Mφφ = D νθφ, r + ( θφ θr, φ )/ r M ( ν)[( θ + θ ) / r θ ] / rφ φφ, r rr, Qr w, r + θφ = Gt Qφ w, φ / r θr OTATION SYMMETIC KICHHOFF PLATE D w+ b = d d = ( r ) r dr dr 4 r r ( r ) b ( ) r wr = + a ln + b + cln r+ d D 64 4 4 MEMBANE EQUATIONS IN CYLINDICAL GEOMETY ( φ n) Nφ, φ + N, b Nφ, + Nφφ, φ + bφ = b n Nφφ te [ u, + ν ( u φφ, u n)] N ν te Nφφ = [ ( u φ, φ un) + νu, ] ν Nφ tg( u, φ + uφ, ) MEMBANE EQUATIONS IN SPHEICAL GEOMETY ( φθ n )

cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = Nφφ + Nθθ b n te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUATIONS IN CYLINDICAL GEOMETY ( φ n) κ Nφ, φ + N, + b Nφ, + κnφφ, φ κqφ + bφ = κqφ, φ + Q, + κnφφ + bn Mφ, + κmφφ, φ κmφn Qφ + cφ M + κm Q + c =, φ, φ N u, + νκ( uφφ, un) Et Nφφ = u ν, + κ( uφφ, un) ν Nφ ( ν)( uφ, + κu, φ) / M ω, + κνωφφ, κu, Mφφ νω, + κωφφ, + κ ( uφφ, un) M φ D ( ν )( ωφ, κω, φ κuφ, ) / = + Mφ ( ν)( ωφ, + κω, φ + κ u, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Q un, + ω = tg Q ω + κ( u + u ) φ φ n, φ φ ω θ φ = ωφ θ