Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Σχετικά έγγραφα
Quasi-Fibonacci Numbers of the Seventh Order

Applicable Analysis and Discrete Mathematics available online at Roman Witu la, Damian S lota

2 Composition. Invertible Mappings

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homomorphism in Intuitionistic Fuzzy Automata

EE512: Error Control Coding

Homework 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

A Note on Intuitionistic Fuzzy. Equivalence Relation

Every set of first-order formulas is equivalent to an independent set

Areas and Lengths in Polar Coordinates

SOME PROPERTIES OF FUZZY REAL NUMBERS

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CRASH COURSE IN PRECALCULUS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

The Simply Typed Lambda Calculus

Fractional Colorings and Zykov Products of graphs

Finite Field Problems: Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Reminders: linear functions

derivation of the Laplacian from rectangular to spherical coordinates

Uniform Convergence of Fourier Series Michael Taylor

Statistical Inference I Locally most powerful tests

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order Partial Differential Equations

Congruence Classes of Invertible Matrices of Order 3 over F 2

Commutative Monoids in Intuitionistic Fuzzy Sets

A summation formula ramified with hypergeometric function and involving recurrence relation

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Math221: HW# 1 solutions

ST5224: Advanced Statistical Theory II

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The k-α-exponential Function

Section 7.6 Double and Half Angle Formulas

On a four-dimensional hyperbolic manifold with finite volume

A General Note on δ-quasi Monotone and Increasing Sequence

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Strain gauge and rosettes

Concrete Mathematics Exercises from 30 September 2016

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Second Order RLC Filters

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1. Introduction and Preliminaries.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

PARTIAL NOTES for 6.1 Trigonometric Identities

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Approximation of distance between locations on earth given by latitude and longitude

Solutions to Exercise Sheet 5

Trigonometric Formula Sheet

Inverse trigonometric functions & General Solution of Trigonometric Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SOLVING CUBICS AND QUARTICS BY RADICALS

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Differentiation exercise show differential equation

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

SPECIAL FUNCTIONS and POLYNOMIALS

F19MC2 Solutions 9 Complex Analysis

Homomorphism of Intuitionistic Fuzzy Groups

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

TMA4115 Matematikk 3

Cyclic or elementary abelian Covers of K 4

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Solution Series 9. i=1 x i and i=1 x i.

Intuitionistic Fuzzy Ideals of Near Rings

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

n=2 In the present paper, we introduce and investigate the following two more generalized

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

( y) Partial Differential Equations

Lecture 15 - Root System Axiomatics

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Lecture 13 - Root Space Decomposition II

Srednicki Chapter 55

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

6.3 Forecasting ARMA processes

EQUATIONS OF DEGREE 3 AND 4.

Section 9.2 Polar Equations and Graphs

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Space-Time Symmetries

Transcript:

Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci numbers a n δ b n δ. For these numbers many special identities interesting relations can be generated. Also the formulas connecting the numbers a n δ b n δ with Fibonacci Lucas numbers are presented. Moreover some polynomials generated by a n δ b n δ are discussed. AMS Mathematics Subject Classification 010: 11B39 11B83 Key words phrases: Fibonacci number Lucas number 1. Introduction Let ξ expiπ/. Then the following formulas hold true [6]: 1.1 1 + δξ + ξ 4 n an δ + b n δξ + ξ 4 1. 1 + δξ + ξ 3 n an δ + b n δξ + ξ 3 for δ C n N. Hence the below recurrent relations can easily be generated [6]: 1.3 1.4 a 0 δ a 1 δ 1 b 0 δ 0 b 1 δ δ a n+1 δ a n δ + δb n δ b n+1 δ δa n δ + 1 δb n δ. We note that a n δ b n δ Z[δ] for every n N {0}. Both a n δ b n δ for n N are called the δ Fibonacci numbers. It should be emphasized that these numbers are the simplest form of more general classes of numbers introduced recently in the papers [3 4 7 8]. Additionally in paper [6] the following Binet s formulas for a n δ b n δ are presented 1. a n δ + n δ + δ + n δ δ 10 10 n n δ + δ δ δ 1.6 b n δ 1 Institute of Mathematics Silesian University of Technology Kaszubska 3 Gliwice 44-100 Pol e-mail: roman.witula@polsl.pl

10 Roman Witu la for every n 1... as well as the formulas connecting a n δ b n δ with Fibonacci Lucas numbers denoted by F n L n respectively: 1.7 1.8 a n δ b n δ n n k n n k F k 1 δ k F k 1 k 1 δ k. We note that by 1.3 1.4 the following equalities are true see also Remark.1: 1.9 a n 1 F n+1 a n 1 F n 1 a n F 3n 1 b n 1 F n b n 1 F n b n F 3n. The next lemma consists of some other basic technical facts which will turn out to be useful in the current paper. Lemma 1.1. 1.10 a We have β : ξ + ξ 4 cos π 1 α : ξ + ξ 3 cos π +1. b Any two of the numbers 1 α β are linearly independent over Q. Moreover we have α + β α β 1 α α + 1 β β + 1. c Let f k Q[δ] g k Q[δ] k 1. Then for any a b R linearly independent over Q if f 1 δa + g 1 δb f δa + g δb for δ Q then f 1 δ f δ g 1 δ g δ for δ C.. Reduction formulas This section concerns the main reduction formulas for the indices of δ Fibonacci numbers. It is a supplement of Section 6 from the paper [6]. At the beginning we get 1 + δ ξ + ξ 4 kn ak δ + b k δ ξ + ξ 4 n.1 a n kδ 1 + b kδ a k δ ξ + ξ4 n a n bk δ bk δ kδ a n + b n ξ + ξ 4. a k δ a k δ

δ-fibonacci numbers part II 11 On the other h we have. 1 + δ ξ + ξ 4 kn akn δ + b kn δ ξ + ξ 4. By comparing.1 with. using Lemma 1.1 b we obtain the following basic reduction identities formulas 6.4 6. from [6]:.3 a kn δ a n bk δ kδ a n a k δ.4 b kn δ a n bk δ kδ b n. a k δ It appears that the above formulas carry important reduction properties which are especially noticeable in the background of the following summation formulas:..6 N N a k n+1δ Hence for δ 1 we have.7.8 N N b k n+1δ a kn k δ a k n a kn k δ b k n bk δ a k δ bk δ. a k δ N N Fk F k n+1 +1 Fk+1 kn a k n F k+1 N N Fk F k n+1 Fk+1 kn b k n F k+1 next for n 1 we get.9.10 N N F k +1 Fk+1 k Fk a k F k+1 N N F k Fk+1 k Fk b k. F k+1 Another example of using formulas.3.4 is the following F 36 F37 F36 b F37 a F36 b b F 36 + F 3 F 6 7 b 6 F6 F 7 + F 8 a F7 F 8 F 36 a F36

1 Roman Witu la F6 b 6 a F6 3 F 7 F 7 b b3 F 6 F 7 a 3 F6 F 7. We note that by 1.3 1.4 we get F36 F36 a a 4 + F 36 F36 b 4 a [ b a F36 F 36 F a 36 + F 36 b F36 b 1 F36 F36 F 36 a 4 + F 3 b 4 [ F 36 a F36 a b F 36 a F36 + F 3 F 36 b b F 36 F a 36 b F 36 Remark.1. We note that the relations Fk+1a n Fk n F kn+1 F n Fk F k+1b n k+1 F k+1 hold for every k Z \ { 1} n N. i.e. For example we get F n F 3 b n F 3n F 1 n b n 1 n 1 F 3n b n F 3n ] a F36 F kn ]. similarly a n +F 3n 1. Corollary.. If δ C k N a k δ b k δ then.11.1 For example: a n kδ F n+1 a kn δ a n kδ F n b kn δ. a δ b δ δ e±iπ/4.

δ-fibonacci numbers part II 13 Hence we get a n e±iπ/4 F n+1 1 ± 1 i n b n e±iπ/4 F n 1 ± 1 i n for every n N. Moreover if δ C k N a k δ b k δ then lim dist α a k δ n a kn δ 0 n n where the symbol a kn δ denotes the set of all complex roots of n th order of a kn δ for every n N. If additionally δ R then n+1 lim a kn+1 δ α a k δ n where the symbol n+1 a kn+1 δ denotes now the only real root of a kn+1 δ. At the end of this section we present one more result of the reductive nature. Theorem.3. We have.13 a k an δ + b n δ ξ + ξ 4 + b k an δ + b n δ ξ + ξ 4 ξ + ξ 4 Proof. We have 1 s k! r! s! δ r s a r+sn+r δ + b r+sn+r δ ξ + ξ 4. rs 0 r+s k 1 + 1 + δ ξ + ξ 4 n k ξ + ξ 4 a k an δ + b n δ ξ + ξ 4 + b k an δ + b n δ ξ + ξ 4 ξ + ξ 4. On the other h we get 1 + 1 + δ ξ + ξ 4 n k ξ + ξ 4 1\δ 1 + δ ξ + ξ 4 n+1 1\δ 1 + δ ξ + ξ 4 n k + 1 3. Sums of some series 1 s k! r! s! δ r s 1 + δ ξ + ξ 4 r+sn+r. rs 0 r+s k According to formula 1.1 two following formulas can be easily deduced 3.1 n1 an δ + b n δ cos π 1 δ cos π 1

14 Roman Witu la whenever 1 + δ cos π\ > 1 i.e. δ + + 1\ > + 1\ 3. n1 an δ + b n δ cos π δ cos π 1 + δ cos π 1 whenever δ + + 1\ < + 1\. Next from equation 1. we get 3.3 n1 an δ b n δ cos π 1 δ cos π 1 whenever 1 δ cosπ\ > 1 i.e. δ 1\ > 1\ 3.4 n1 an δ b n δ cos π 1 δ cos π δ cos π whenever δ 1\ < 1\. Note that all the above formulas can be easily presented in a more general form. We think that the case δ 1 for Fibonacci numbers is the most representative the appropriate formulas are listed below: a b c 3. Fkn+1 + F kn cos π s n0 F sk+1 + F sk cos π F sk+1 + F sk cos π for any k s N 1 cos π sk cos π for any k N s R sk + ; 1 3.6 Fkn+1 + F kn cos π s Fln+1 + F ln cos π r n0 F sk+lr+1 + F sk+lr cos π F sk+lr+1 + F sk+lr cos π for any s r N 1 cos π sk+lr for any k l N cos π sk+lr 1 s r R + ; 3.7 Fkn+1 F kn cos π s 1 Fsk+1 + F sk cos π 1 n0 for every s N;

δ-fibonacci numbers part II 1 d 3.8 n0 1 kn F kn cos π F s kn+1 1 1 ks F ks+1 F ks cos π 1 for any k s N 1 1 k F k+1 F k cos π s 1 1 cos π ks 1 for k N s R + ; e 3.9 1 kn F kn+1 F kn cos π s 1 ln F ln+1 F ln cos π r n0 1 1 ks+lr F sk+lr+1 F sk+lr cos π 1 for any k l s r N 1 1 k F k+1 F k cos π s 1 l F l+1 F l cos π r 1 1 cos π ks+lr 1 for any k l N s r R+. 4. Two-parameter convolution formulas Results presented in the current paper refer to Theorems..6 from [6]. In particular the identities 4.3 4.4 generalize identities.19.0 from the paper [6]. Theorem 4.1. We have 4.1 n an k δ b k ε a k ε b n k δ n/ n+1 n k 4 ε δ n k 1 ε δ k+1 k + 1 4. n ak ε a n k δ b k ε b n k δ a k ε b n k δ a n k δ b k ε n/ n+1 n k 4 ε δ n k ε δ k k

16 Roman Witu la 4.3 4.4 n an δ b n ε a n ε b n δ 1 ε δ n δ ε ε δ a n k b k a k b n k 1 ε δ 1 ε δ 1 ε δ 1 ε δ n/ n k ε + δ n k 1 ε δ k+1 k + 1 1 ε δ 1 ε δ n an ε a n δ b n ε b n δ a n ε b n δ a n δ b n ε 1 ε δ n ε δ ε δ a k a n k b k b n k 1 ε δ 1 ε δ 1 ε δ 1 ε δ ε δ δ ε a n b n a n b n 1 ε δ 1 ε δ 1 ε δ 1 ε δ n/ n k ε + δ n k ε δ k k 1 ε δ 1 ε δ for every ε δ C n N. Proof. Let ξ exp π i/. We have + εξ + ξ 4 + δ ξ + ξ 3 n 1 + ε ξ + ξ 4 + 1 + δ ξ + ξ 3 n n n 1 + ε ξ + ξ 4 k 1 + δ ξ + ξ 3 n k k n n ak ε + b k ε ξ + ξ 4 a n kδ + b n kδ ξ + ξ 3. k By equalities 1.10 we obtain ak ε + b k εξ + ξ 4 a n k δ + b n k δ ξ + ξ 3 a k ε + b k ε 1 an k δ b n k δ +1 a k ε a n k δ b k ε b n k δ 1 ak ε b n k δ + a n k δ b k ε Furthermore we get + an k δ b k ε a k ε b n k δ. + ε ξ + ξ 4 + δ ξ + ξ 3 n 1 ε + δ + n/ n k a n k b k + n/ k ε δ n k n k + 1 a n k 1 b k+1

δ-fibonacci numbers part II 17 where a : 4 ε δ b : ε δ. Moreover we have 1 + ε ξ + ξ 4 1 + δ ξ + ξ 3 1 ε δ + ε ξ + ξ 4 + δ ξ + ξ 3 1 ε δ 1 + εξ + ξ 4 n 1 + δ ξ + ξ 3 n + ε 1 ε δ ξ + ξ4 + δ 1 ε δ ξ + ξ 3 a n ε + b n ε ξ + ξ 4 a n δ + b n δ ξ + ξ 3 a n ε a n δ b n ε b n δ + a n ε b n δ ξ + ξ 3 + a n δ b n ε ξ + ξ 4 a n ε a n δ b n ε b n δ 1 an ε b n δ + a n δ b n ε + an δ b n ε a n ε b n δ.. Inner products of δ-fibonacci vectors The aim of this section is to determine the compact analytical description of the following three sums: S N δ : S 1N δ : a k δ b k δ a kδ S 3N δ : We achieve the assumed goal in two independent ways. The first way b kδ. Let us start with the identity written below see formula.8 in [6]: 1 δ δ k 1 + δ ξ + ξ 4 k 1 + δ ξ + ξ 3 k.1 Hence we obtain. a k δ + b k δ ξ + ξ 4 a k δ + b k δ ξ + ξ 3 a kδ a k δ b k δ b kδ. S N δ S 1N δ S 3N δ 1 δ δ k 1 1 δ δ N 1 1 δ δ 1 δ + δ 1 1 δ δ N N 1 k k δ + δ k.

18 Roman Witu la Remark.1. If 1 δ δ 1 i.e. δ 0 or δ 1 then we set S N δ S 1N δ S 3N δ : On the other h we have H lim δ 0 or δ 1 lim δ 0 or δ 1 1 + δ ξ + ξ 4 k ak δ + b k δ ξ + ξ 4 1 δ + δ 1 1 δ δ N N 1 δ δ N. a kδ + b kδ + a k δ b k δ b kδ ξ + ξ 4 which implies the identity.3 S N δ + S 3N δ + ξ + ξ 4 S 1N δ S 3N δ 1 + δ ξ + ξ 4 k 1 1 + δ ξ + ξ 4 N 1 1 + δ ξ + ξ 4 1 a N δ b N δξ + ξ 4 1 a δ b δξ + ξ 4 b δ 1 a N δ 1 a δ a N δ + b N δ 1 + 1 a N δ b N δ 1 a δ b δ b δ 1 a δ + b δ 1 a δ b δ ξ + ξ 4. Hence we obtain two new identities b δ 1 a N δ 1 a δ a N δ + b N δ 1 S N δ + S 3N δ b δ 1 a δ + b δ 1 a δ b δ i.e. δ 0 1 ± :.4 δ δ +1 S N δ+s 3N δ 1 δ a N δ 1+ δ b N δ S 1N δ S 3N δ i.e. δ 0 1 ± : 1 a N δ b N δ 1 a δ b δ b δ 1 a δ + b δ 1 a δ b δ. δ δ + 1 S 1N δ S 3N δ δ a N δ 1 δ b N δ.

δ-fibonacci numbers part II 19 Finally from the identities..4. we get.6 S N δ S N δ S 1N δ S 3N δ + 3 S N δ + S 3N δ + S 1N δ S 3N δ 1 1 δ δ δ + δ N 1 + 8 7 δan δ δ + 1 δ 1 + 6 4 δ b N δ.7 S 3N δ 1 δ δ δ + δ N 1 1 + 3 δan δ δ + 1 δ 1 + 4 δ b N δ.8 S 1N δ 1 δ + δ 1 δ δ N 1 + 1 6 4 δan δ δ + 1 δ 1 + 3 δ b N δ. For example from.6 for N we obtain.9 δ δ + δ + 34 δ δ 8 7 δa 4 δ 1 + 6 4 δ b 4 δ. Corollary.. Using 1.9 we get see also [1 ]:.10.11.1.13.14.1 S 3N 1 S N 1 S 1N 1 S 3N 1 S N+1 1 S 1N+1 1 F k 1 N + 3 F N F N+1 L + 1 N ; N Fk+1 F N+1 + F N 1 N F N+ + F N 1 N L N+1 1 N ; F k F k+1 L N + 1 1 N ; F k 1 N + F 4N ; N Fk 1 N + + F 4N ; N F k 1 F k N 1 + F 4N+1.

0 Roman Witu la Moreover from.1 the following formula can be derived S 1N+1 1 N L k F k F k N L k F k N F k. Hence by.13.1 we get i.e N + F 4N+1.16 N L k F k F 4N+ N 1 N L k F k L 4N+ 3. The second way First we prove in two ways two auxiliary formulas:.17 δ.18 δ b k δ a N δ 1 a k δ a N δ + b N δ 1. Proof. Immediately from 1.3 we derive δ b k δ Next from 1.4 we obtain δ ak+1 δ a k δ a N δ a 0 δ a N δ 1. a k δ δ Hence by 1.3 again we get δ b k+1 δ + δ 1 δ b k δ a N+1 δ 1 + δ 1 a N δ 1 a N+1 δ + δ 1 a N δ δ. a k δ a N δ + b N δ 1.

δ-fibonacci numbers part II 1 Now by the Binet s formulas 1. 1.6 we obtain N a k δ δ + 1 + δ + δ δ+ δ N 1 δ+ δ 1 δ + 1 δ δ δ δ N 1 δ δ 1 1 δ + 1 + δ 3 δ + 1 δ + N+1 δ 1 δ + 1 + δ 3 δ + 1 δ + δ N+1 1 δ + 1 δ 1 δδ + δ 4 δ + 1 3 + δ + 1 δ δ δ + 1 3 + δ + 1 δ δ δ 1 a N+ δ + δ b N+ δ δ 3 δ + δ + i.e. the following identity holds.19 δ δ + δ 4 Next from 1.3 it follows that δ b k δ a k δ δ 1 a N δ 1 + δ b N δ. a k+1 δ a k δ Hence by.18.19 we obtain δ δ + δ 4 b k δ i.e..0 δ δ + δ 4 a k δ a k δ a 0 δ a 1 δ. δ + δ 4 a N δ + b N δ 1 δ 1 a N δ + δ b N δ δ 3 δ + δ + δ 3 + δ 4 δ δ δ a N δ 1 + δ b N δ b k δ δ a N δ 1 + δ b N δ.

Roman Witu la Next form 1. 1.6 we obtain S 1N δ a k δ + Thus by.19.0 we derive b k δ 1 δ δ k. δ δ + δ 4 S 1N δ δ 1 a N δ 1 + δ b N δ + δ a N δ 1 + δ b N δ + 1 1 δ δ δ + δ N 1 4 δ 6 a N δ 1 + 3 δ b N δ + δ + δ 4 δ + 1 which is exactly the formula.8. References 1 δ δ N 1 [1] Knott R. Fibonacci Golden Ratio Formulae. http://www.maths.surrey. ac.uk/hosted-sites/r.knott/fibonacci/fibformulae.html [] Koshy T. Fibonacci Lucas Numbers with Application. Wiley New York: 001. [3] Witu la R. S lota D. Warzyński A. Quasi-Fibonacci Numbers of Seventh Order. J. Integer Seq. 9 006 Article 06.4.3 1 8. [4] Witu la R. S lota D. Quasi-Fibonacci Numbers of Order 11. J. Integer Sequences 10 007 Article 07.8. 1 9. [] Witu la R. Jama D. Connections Between the Primitive -th Roots of Unity Fibonacci Numbers Part I. Zeszyty Nauk. Pol. Sl. Mat.-Fiz. 9 010 43 60. [6] Witu la R. S lota D. δ-fibonacci Numbers. Appl. Anal. Discrete Math. 3 009 310-39. [7] Witu la R. Jama D. Connections Between the Primitive -th Roots of Unity Fibonacci Numbers Part II. Zeszyty Nauk. Pol. Sl. Mat.-Fiz. 9 010 61 73. [8] Witu la R. S lota D. Quasi-Fibonacci Numbers of Order 13 on the Occasion the Thirteenth International Conference on Fibonacci Numbers Their Applications. Congr. Numer. 01 010 89 107. Received by the editors December 9 010