Kul Models for beam, plate and shell structures, 08/2016

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, 07/2016

Kul Models for beam, plate and shell structures, MT

Homework 8 Model Solution Section

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Kul Finite element method I, Exercise 08/2016

derivation of the Laplacian from rectangular to spherical coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Srednicki Chapter 55

Approximation of distance between locations on earth given by latitude and longitude

Spherical Coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Answer sheet: Third Midterm for Math 2339

Second Order Partial Differential Equations

Homework 3 Solutions

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Geodesic Equations for the Wormhole Metric

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Orbital angular momentum and the spherical harmonics

Section 8.3 Trigonometric Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Numerical Analysis FMN011

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

( ) 2 and compare to M.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Math221: HW# 1 solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.6 Autoregressive Moving Average Model ARMA(1,1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 26: Circular domains

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Exercises to Statistics of Material Fatigue No. 5

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

CRASH COURSE IN PRECALCULUS

Solutions to Exercise Sheet 5

Tutorial problem set 6,

ADVANCED STRUCTURAL MECHANICS

Inverse trigonometric functions & General Solution of Trigonometric Equations

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

Geometry of the 2-sphere

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

Statistical Inference I Locally most powerful tests

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( y) Partial Differential Equations

Solution to Review Problems for Midterm III

Kul Finite element method I, Exercise 07/2016

If we restrict the domain of y = sin x to [ π 2, π 2

Empirical best prediction under area-level Poisson mixed models

10.7 Performance of Second-Order System (Unit Step Response)

EE512: Error Control Coding

Reminders: linear functions

Parametrized Surfaces

1 String with massive end-points

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Dr. D. Dinev, Department of Structural Mechanics, UACEG

A Introduction to Cartesian Tensors

Example Sheet 3 Solutions

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

CURVILINEAR COORDINATES

The Simply Typed Lambda Calculus

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

PARTIAL NOTES for 6.1 Trigonometric Identities

ST5224: Advanced Statistical Theory II

6.3 Forecasting ARMA processes

(As on April 16, 2002 no changes since Dec 24.)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Variational Wavefunction for the Helium Atom

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Strain gauge and rosettes

On the Galois Group of Linear Difference-Differential Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Differentiation exercise show differential equation

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

3.5 - Boundary Conditions for Potential Flow

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Parallel transport and geodesics

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

D Alembert s Solution to the Wave Equation

Section 7.6 Double and Half Angle Formulas

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Cosmological Space-Times

2 Composition. Invertible Mappings

Transcript:

Kul-49.45 Models for beam, plate and shell structures, 8/6 Demo problems. Spring geometry is defined by the mapping s s s r ( s) = ( ir cos + jrsin + kε ), R + ε R + ε + ε where R and ε are constants and s is the curve parameter. Use the gradient and the basis vector derivative expressions = e + e + e s s n n b b, es es e n = ε e n s R( ) e + ε b e ε b to derive the expression of curvature κ = ( e n ) c. Answer ε κ = ee s s + ee b s R( + ε ) R( + ε ). Find (some) parametric representations of the following surfaces: (a) Ellipsoid ( r/ a) + ( z/ b) =, (b) Hyperboloid ( r/ a) ( z/ b) = where r = x + y. Answer (a) r( φθ, ) = ia sinθcosφ+ jasinθsinφ+ kb cosθ (b) r( θφ, ) = ia sinhθcosφ+ jasinhθsinφ kb coshθ 3. Compute the expressions of the basis vectors e α, eβ, and e n in terms of i, j,and k, derivatives of the basis vector in terms of e α, eβ and e n, gradient operator, and curvature. Consider the spherical and cylindrical geometries having parametric representations (a) r ( θφ, ) = R(sinθcosφi + sinθsinφ j + cos θk) ( α = θ, β = φ ) (b) r ( φ, z) = R(cosφi + sin φ j) + zk ( α= φβ, = z ) Notice that the order of the coordinates differ from that of the lecture notes, which affect e.g. direction of e n.

R R Answer (a) = ( ) eθ + ( ) eφ + en R+ n R θ R+ n Rsinθ φ n κ = ( ee φ φ+ ee θ θ) R+ n (b) R = ( ) eφ + ez + en R+ n R φ z n κ = ee φ φ R + n The demo problems are published in the course homepage on Fridays. The problems are related to the topic of the next weeks lecture (Wed.5-. hall K3 8). Solutions to the problems are explained in the weekly exercise sessions (Thu.5-4. hall K3 8) and will also be available in the home page of the course. Please, notice that the problems of the midterms and the final exam are of this type.

Lecture problem Be prepared to derive geometrical quantities of a curved surface. Lecture problems are specified and solved during the lecture (Wed.5-. hall K3 8). The time allocated for this is 3 min.

Home problem Consider a conical shell having the mid-surface r ( z, φ ) = zi ( cos φ+ j sin φ+ k ε ), in which ε is constant. Derive the basis vectors, basis vector derivatives, gradient expression, and curvature dyad of the conical mid-surface in the zφn coordinate system. Solution template. Let us start with the relationship between the basis vectors. Definitions give ez r, z/ r, z i i eφ r, φ/ r, φ = j= [ F] j en ez eφ/ ez eφ k k T. Since the basis is orthonormal i.e. [ F] = [ F], the partial derivatives of the basis vectors are given by (the other derivatives vanish) ez e z eφ= ( [ F])[ F] eφ= φ φ en en ez eφ en 4. The gradient expression in concerned with a generic material point so that the mapping between the curvilinear zφn coordinate system and the reference xyz coordinate system is written as r = r + ne n (the mapping needs to define positions of all particles of the body not just those on the mid-surface). Relationship gives

[ H ] x y z x y z x y z, φ, φ, φ =, θ, θ, θ =, n, n, n cosφ sinφ ε nε nε ( z)sin φ ( z )cosφ + ε + ε εcosφ εsinφ + ε + ε + ε T F 4. The generic formula for the gradient operator gives (here [ F] = [ ] ) T ez / z T eφ [ F] [ H] / φ + ε = = ez + eφ + en ε z z ε εn φ n + + en / n 5. Finally, curvature of the conical mid-surface can be calculated from κ = ( e n ) c, where the subscript zero denotes mid-surface i.e. n = (derivatives of the basis vectors are needed in the calculation = e n κ = NOTICE. You may use Mathematica notebook Geometry.nb to derive/check the calculations of each step! The compulsory home problems are published in the course homepage on Fridays and the deadline for answers is the next weeks Friday 5.45. Return your homework answers into the green course mailbox that can be found from the corridor of the K3 building lobby (Puumiehenkuja 5A). Please, use the solution templates given.

Kul-49.45 Models for beam, plate and shell structures INDEX NOTATION (Orthonormal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENERAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENTITIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDRICAL rφ z SYSTEM r = r cosφi + r sinφ j + zk er cφ sφ i er er eφ = sφ cφ j eφ= eφ φ ez k ez ez = er + eφ + ez r r φ z SPHERICAL θφr SYSTEM r( θφ,, r) = r(s θ c φ i + s θ s φ j + c θ k)

eθ cθφ c cθφ s sθ i eφ = sφ cφ j er sθφ c sθφ s cθ k eθ cθ eφ eφ= sθer cθeθ φ er sθeφ eθ er eφ =, θ er eθ = eθ + eφ + e r r θ rsinθ φ r THIN BODY snb SYSTEM FOR PLANAR BEAMS r(, s n) = r () s + ne () s es r, s / r, s r, s = = e n ess, / ess, ess, R R = es + en R n s n n es en / R = s en es / R ORTHONORMAL CURVILINEAR COORDINATES eα i α x, α y, α z, α x x eβ = [ F] j β = x, β y, β z, β y= [ H] y en k x, y, z γ γ γ, γ z z eα eα eα i eβ= ( i[ F])[ F] eβ= [ D] () i eβ i e j = D ijk e k en en en T T eα α eα α = e F H = e D e e T β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n COMPONENT REPRESENTATIONS Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s sr rjl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i PLATE GEOMETRY ( rφ n) r ( r, φ, n) = [ ir cosφ+ jr sin φ ] + nen Γ ijk = D ir D rjk

er cosφ sinφ i eφ = sinφ cosφ j en k er eφ eφ = er φ e n d = r r d r = d = φ φ n n Γ = Γ = φrφ φφr r dv = dndω BEAM GEOMETRY ( snb ) r ( s, n, b) = [ r ( s)] + ne n + be b es r, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDRICAL SHELL GEOMETRY ( zφ n) r ( z, φ, n) = [ ir cosφ+ jrsin φ + kz] + nen ez i ez eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = z z φ = ( ) φ d n = n d R n Γ φφn = Γ φnφ = ( R n) dv = ( nr ) dn( Rdφ ) dz = ( nr ) dndω LINEAR ISOTROPIC ELASTICITY σ = E: ε = E: u (minor and major symmetries of the elasticity dyad assumed) ε = [ u + ( u )] c

T T ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stress) ν kk kk ki + ik ki + ik T T ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik T T ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik E Et G = D = ( +ν ) ( ν ) PRINCIPLE OF VIRTUAL WORK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A 3 BEAM EQUATIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ TIMOSHENKO BEAM ( xyz ) E = Eii + Gjj + Gkk N + bx Q y + by= Qz + bz T + cx M y Qz + cy= Mz + Qy + cz

N EAu ESzψ + ES yθ Qy= GA( v ψ) GS yφ Q z GA( w + θ) + GSzφ TIMOSHENKO BEAM ( snb ) T GS y( v ψ) + GSz( w + θ) + GIrrφ M y = ES yu EIzyψ + EI yyθ M z ESzu + EIzzψ EI yzθ N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb T Mnκb + cs Mn + Tκb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) T GSb( w + vκ s + θ ) + GIrr( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLATE EQUATIONS F + b = ( M Q+ c) k = F = σ dz = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ zdz = iim + ijm + jim + jjm + ( ki + ik ) R + ( kj + jk ) R xx xy yx yy x y REISSNER-MINDLIN PLATE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + bz Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q or w w n Nnn Nn or un un = M ns M s or θn θn = N ns Ns or us u s M nn M n or θs θs KIRCHHOFF PLATE ( xyz )

Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + bz ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn or un un = N ns Ns or us us REISSNER-MINDLIN PLATE ( rφ z) Q + M Q M or w w M nn M n or w, n + θ s n nss, ss, = [( rn ) + N N ] / r + b [( rnrφ ), r + Nφφ, φ + Nφr] / r + bφ rr, r φr, φ φφ r = Nrr ur, r + ν ( ur + uφφ, )/ r Et Nφφ = u ν rr, + ( ur+ uφ, φ )/ r ν N ( ν )[( u u ) / r+ u ] / rφ r, φ φ φ, r [( rqr), r + Qφφ, ] / r + bz [( rmrr ), r + Mφr, φ Mφφ ] / r Qr + cr = [( rmrφ ), r + Mφφ, φ + Mφr] / r Qφ + cφ Mrr θφ, r + νθ ( φ θr, φ)/ r Mφφ = D νθφ, r + ( θφ θr, φ )/ r M ( ν)[( θ + θ ) / r θ ] / rφ φφ, r rr, Qr w, r + θφ = Gt Qφ w, φ / r θr ROTATION SYMMETRIC KIRCHHOFF PLATE D w+ b z = d d = ( r ) r dr dr 4 r r ( r ) b ( ) z r wr = + a ln + b + cln r+ d D 64 4 4 MEMBRANE EQUATIONS IN CYLINDRICAL GEOMETRY ( zφ n) Nφz, φ + Nzz, z R bz Nzφ, z + Nφφ, φ + bφ = R b n Nφφ R te [ u zz, + ν ( u φφ, u n)] R Nzz ν te Nφφ = [ ( u φ, φ un) + νuzz, ] ν R Nzφ tg( uz, φ + uφ, z) R MEMBRANE EQUATIONS IN SPHERICAL GEOMETRY ( φθ n )

cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = R Nφφ + Nθθ b n te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] R ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUATIONS IN CYLINDRICAL GEOMETRY ( zφ n) κ Nφz, φ + Nzz, z + bz Nzφ, z + κnφφ, φ κqφ + bφ = κqφ, φ + Qzz, + κnφφ + bn Mzφ, z + κmφφ, φ κmφn Qφ + cφ M + κm Q + c = zz, z φz, φ z z Nzz uz, z + νκ( uφφ, un) Et Nφφ = u ν z, z + κ( uφφ, un) ν Nzφ ( ν)( uφ, z + κuz, φ) / Mzz ωzz, + κνωφφ, κuzz, Mφφ νω zz, + κωφφ, + κ ( uφφ, un) M zφ D ( ν )( ωφ, z κωz, φ κuφ, z) / = + Mφz ( ν)( ωφ, z + κωz, φ + κ uz, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Qz unz, + ωz = tg Q ω + κ( u + u ) φ φ n, φ φ ωz θ φ = ωφ θz