Aerodynamics & Aeroelasticity: Beam Theory

Σχετικά έγγραφα
Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Strain gauge and rosettes

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

2 Composition. Invertible Mappings

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

4.6 Autoregressive Moving Average Model ARMA(1,1)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Notes on the Open Economy

Μηχανική Μάθηση Hypothesis Testing

Linearized Lifting Surface Theory Thin-Wing Theory

ADVANCED STRUCTURAL MECHANICS

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Areas and Lengths in Polar Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Démographie spatiale/spatial Demography

The Simply Typed Lambda Calculus

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Solutions to Exercise Sheet 5

Reminders: linear functions

Homework 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

CYLINDRICAL & SPHERICAL COORDINATES

Problem Set 3: Solutions

1 String with massive end-points

( y) Partial Differential Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ST5224: Advanced Statistical Theory II

Higher Derivative Gravity Theories

Other Test Constructions: Likelihood Ratio & Bayes Tests

Areas and Lengths in Polar Coordinates

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Aerodynamics & Aeroelasticity: Eigenvalue analysis

Homework 8 Model Solution Section

Math221: HW# 1 solutions

Chapter 7 Transformations of Stress and Strain

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

Exercises to Statistics of Material Fatigue No. 5

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Every set of first-order formulas is equivalent to an independent set

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ιστορία νεότερων Μαθηματικών

( ) 2 and compare to M.

On a four-dimensional hyperbolic manifold with finite volume

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Derivation of Optical-Bloch Equations

Variational Wavefunction for the Helium Atom

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Differential equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

Ηλεκτρονικοί Υπολογιστές IV

EE512: Error Control Coding

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

The challenges of non-stable predicates

Spherical Coordinates

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Congruence Classes of Invertible Matrices of Order 3 over F 2

Matrices and Determinants

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Ηλεκτρονικοί Υπολογιστές IV

Forced Pendulum Numerical approach

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

C.S. 430 Assignment 6, Sample Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 6 Mohr s Circle for Plane Stress

Parametrized Surfaces

Instruction Execution Times

DETERMINATION OF FRICTION COEFFICIENT

Example Sheet 3 Solutions

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Transcript:

Εθνικό Μετσόβιο Πολυτεχνείο National Technical Universit of thens erodnamics & eroelasticit: Beam Theor Σπύρος Βουτσινάς / Spros Voutsinas

Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς. erodnamics & eroelasticit Beam Theor

simple eample: the beam Beams are defined as slender bodies, i.e. solid bodies with one dominant dimension (the other two are assumed much smaller). Throughout the our analsis, the ais of the beam will coincide with ais of the sstem defining the beam. Beams are in theor considered as one-dimensional structures. This means that all detail over its cross sections will be neglected and cross sections are behaving as rigid surfaces. s we are going to see this is done b integration. lthough cross sections will not deform, the can displace b following the ais of the beam. Beams can deform in three was: in fleion, in bending and in torsion. These three modes of deformation are described b 3 displacements: u,v,w and 3 rotations:,, erodnamics & eroelasticit Beam Theor 3

simple eample: the beam Beam is a slender structure with one of its dimensions dominant Tension, bendings and torsion can be defined: O Radial fleion v O Bending w θ O In classical beam theor the 3 displacements and the torsion rotation are independent while the bending rotations are given as: Torsion θ θ w θ u erodnamics & eroelasticit Beam Theor 4

simple eample: the beam Definition of displacements & strains P 0 (u,w) P u v U u 1 0 0 0 0 w V v 0 1 0 0 W w 0 0 1 0 0 (U,V,W) defines the displacements of an arbitrar point P 0 of a beam section. u u 1 0 0 0 0 0 0 v v o 0 1 r ro 0 1 0 0 o 0 o 0 o w r S u Su w 0 0 1 o 0 0 1 0 Usuall S 1 is eliminated in which case we are left onl with S 0 erodnamics & eroelasticit Beam Theor 5

simple eample: the beam Definition of displacements & strains P 0 (u,w) P u v U u 1 0 0 0 0 w V v 0 1 0 0 W w 0 0 1 0 0 (U,V,W) defines the displacements of an arbitrar point P 0 of a beam section. V 1U V W U V U U V V W W W V U U V V W W v u w v u w erodnamics & eroelasticit Beam Theor 6

simple eample: the beam Definition of stresses & internal loads In beam theor stresses, strains and displacements are related as follows: σ Eε V E v E E u E w Ev Eu Ew τ τ Gγ Gγ U V G W V G θ G θ G Gθ Gθ τ τ Where E is Young s modulus and G the torsion rigidit or stiffness. Primes will denote from now on differentiation with respect to. erodnamics & eroelasticit Beam Theor 7

simple eample: the beam Ev Eu Ew E G G F d Evd Ev M ( - )d G( ) d GI t v M w u F M M M - d - (-E u - E w )d EI u EI w M d (-E u- E w )d -EI u- EI w erodnamics & eroelasticit Beam Theor 8 GI G( ) d EI EI EI t Ed E d E d E d

simple eample: the beam Equilibrium equations The balance of forces and moments over a differential length d of the beam result in the equations of motion. In classical beam theor there will be 4 eq s: the 3 force equations and the torsion moment equation. In case shear is added then 6 eq s will be derived F +df M +dm δl M F +df M +dm F F (a) dr r a (b) F +df M F M +dm M erodnamics & eroelasticit Beam Theor 9

simple eample: the beam Balance of forces along the df U u d( u ) dg L d In order to determine the derivative of F we use the moment balance in. 0 dm Fd Fdu O( d ) df d FM (F u ) F (EI u ) (EI w ) (Fu ) ( ) u ( ) * ( EI u) ( EI w ) ( Tu) ( ) g L Where T=F and * denotes the location of the center of gravit. erodnamics & eroelasticit Beam Theor 10

simple eample: the beam Balance of forces along the ( - df W w d w ) dg L d In order to determine the derivative of F we use the moment balance in. 0 dm Fd Fdw O( d ) df d FM (F w ) F (EI u ) (EI w ) (F w ) * ( )w ( ) (EI u ) (EI w ) (Tw) ( )g L erodnamics & eroelasticit Beam Theor 11

simple eample: the beam Balance of forces along the -ais (tension) B neglecting and introducing surface properties we obtain: ρd(u - w ) d (v u - w ) (( E) v) ( )v d g (( E) v) ( )g L L Balance of moments in the _ais (torsion) d( )θ ρu ρw)d (GI θ t ( a ) δl ρ(g a δl ) g )d * * * * ( I )θ ( ) u (ρ) w (GIθ ) ( ) g ( ) g t t ( δl δl ) a a erodnamics & eroelasticit Beam Theor 1

simple eample: the beam In matri form: 0 1 dii1s u diis u = K u K u K u K u dii g II L 11 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 II 1 II 0 0 1 ΙI 0 0 1 a 0 0 1 0 0 0 a a flap tension torsion edge F 0 0 0 EI 0 0 0 0 0 EI 0 0 E 0 0 0 E 0 0 0 0 0 0 E 0 E 0 0 0 0 0 K Κ K Κ 11 0 0 F 0 EI 0 0 0 0 0 EI 0 1 1 0 E 0 0 0 0 0 GI 0 0 0 0 t 0 0 0 0 0 0 0 0 erodnamics & eroelasticit Beam Theor 13

How can we generate structural data? Beams are approimations of otherwise 3D structures. In order to appl beam theor we need to know the averaged properties of the section. To this end we need as input the sectional geometr as well as the distribution of the basic material properties: mass densit and the two elastic module E and G. Then for most of the properties simple averaging is required. For eample: Cell 1 Cell Cell 3 L e (X 1e,Y 1e ) (X e,y e ) E= el e = N e=1 N e=1 L t E e e e e E(X X ) / e e 1e e E N ρ = ρe e=1 e erodnamics & eroelasticit Beam Theor 14

How can we generate structural data? From averaging we get: E, G, ρ, EI, EI, EI, CM, CM, el, el However, GI t and the shear center which defines the ais of a beam, requires a more elaborate procedure. For a section in pure torsion, the St Venant torsional constant I t is defined as: M t It= G We need to calculate the twist for e.g. M t =1. The equations we introduce shear flows along the section and appl: shear flow continuit, balance of moments, and finall that all cells should undergo the same twist. e q 6 M t q 1 q 5 q 3 q q 4 e erodnamics & eroelasticit Beam Theor 15

How can we generate structural data? The shear center is the point wherefrom the resultant load must pass in order to prevent the development of twisting moments. For multi cell sections, the procedure is as follows: 1. In ever cell we introduce a slit. n etra shear flow is added so that all slits close, We appl again shear flow continuit and compatibilit at nodes. The shear flows will generate a moment which must counter the moment generated b the eternal force V which defines the shear center. 1 a 4 6 e 4 3 1 1 b a b 3 a 3 b Node 1 5 q 1 4 e q 1 1b q 1 b erodnamics & eroelasticit Beam Theor 16

End of presentation erodnamics & eroelasticit Beam Theor 17

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. erodnamics & eroelasticit Beam Theor 18