Μάθημα 17 Σχάση, σύντηξη.

Σχετικά έγγραφα
Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

Μάθημα Σχάση, σύντηξη.

Aσκήσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Σχάση - Σύντηξη. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Ασκήσεις #1 επιστροφή 15/10/2012

Ασκήσεις #1 επιστροφή 11/11/2011

Ασκήσεις #1 επιστροφή 11/11/2011

Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σχάση - Σύντηξη. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 4 Mέγεθος πυρήνα

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Ασκήσεις Πυρηνικής

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Μάθημα 4 Mέγεθος πυρήνα

Ασκήσεις διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Μάθημα 12 α-διάσπαση

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Ασκήσεις #2 Μέγεθος και Μάζα πυρήνα. Ενέργεια σύνδεσης και το Q μιάς αντίδρασης. Κοιλάδα σταθερότητας.

Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Διάλεξη 8: Πυρηνική ενέργεια από αντιδράσεις σχάσης. Πυρηνική σύντηξη

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Σχετικιστική Κινηματική

Σχάση. X (x, y i ) Y 1, Y 2 1.1

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική

Σχάση - Σύντηξη. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/04/16

Περιεχόµενα Παρουσίασης 2.1

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση

Μάθημα 7 Διαγράμματα Feynman

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Διάλεξη 5: Αποδιέγερσεις α και β

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

1. Ιδιότητες των πυρήνων

ν ( U-235) = 2.44, α (U-235) = 0.175

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

Ασκήσεις Ακ. Έτους (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

λ Ε Πχ. Ένα σωματίδιο α έχει φορτίο +2 όταν επιταχυνθεί από μια διαφορά Για ακτίνες Χ ή ακτινοβολία γ έχουμε συχνότητα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

ΣΥΝΤΗΞΗ: Ένας Ήλιος στο Εργαστήριο

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

Μάθημα 3 Πείραμα Rutherford, ορισμοί, χρόνος ζωής ενεργός διατομή

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Ασκήσεις Ακ. Έτους (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση

Niels Bohr ( ) ΘΕΜΑ Α

α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα:

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Ασκήσεις #7 αποδιεγέρσεις γ

Πυρηνικές διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Ο Ο π υ π ρή ρ να ή ς να τ ο τ υ ο ατόµου

AΠO ΤΑ ΠΡΩΤΟΝΙΑ & ΤΑ ΝΕΤΡΟΝΙΑ ΣΤΟΥΣ ΠΥΡΗΝΕΣ

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 4: Ο ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών. ρ Ευθύµιος Α. Τάγαρης

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

2015 ii. iii. 8 ii. iii. 9

Ασκήσεις Ακ. Έτους (επιλύθηκαν συζητήθηκαν κατά τη διδασκαλία) Όπου χρειάζεται ο Αριθμός Avogadro λαμβάνεται

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα β-σταθερότητας

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ραδιενέργεια Ένα τρομακτικό όπλο ή ένα μέσον για την έρευνα και για καλλίτερη ποιότητα ζωής; Για πόσο μεγάλες ενέργειες μιλάμε; Κ.-Α. Θ.

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Υπό Γεωργίου Κολλίντζα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΥΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΦΥΣΙΚΗΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ

Transcript:

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 17 Σχάση, σύντηξη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 26 Νοεμβρίου 2015

Αυθόρμητη σχάση Εδώ Βιβλίο C&G, Κεφ. 6, παρ. 6.3, Ενέγεια από σχάση κεφ. 9. Σημειώσεις Πυρηνικής, Κεφ. 7 Σύντηξη Βιβλίο C&G, Κεφ. 10, παρ. 10.1, 10.5 Ιστοσελίδα: http://www.physics.auth.gr/course/show/125 Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 2

1α. Αυθόρμητη Σχάση Κεφ. 6 (παρ. 6.3) Θ/νίκη - 1-Δεκ-2014 Κ. Κορδάς, Χ. Ελευθεριάδης - Αλληλεπίδραση με ύλη και ανίχνευση σωματιδί 3

Μ(Α,Ζ) Σχάση σε ίσα μέρη (παρ. 6.3) 2 * Μ(Α/2, Ζ/2) + Q Φαινόμενο σχάσης υγρής σταγόνας Β(Ζ,Ν) = Παραμόρφωση μητρικού πυρήνα: αύξηση επιφάνειας μείωση ενέργειας σύνδεσης μείωση ενέργειας Coulomb αύξηση ενέργειας σύνδεσης a A (όγκου) - b A 2 / 3 (επιφάνειας) - s (N-Z) 2 / A (ασυμμ.) - d Z 2 / A 1 / 3 (Coulomb) - δ / A 1 / 2 (ζευγαρ.) Σημείωση: για σφαιρικό πυρήνα 1. Παραμόρφωση μητρικού πυρήνα 2. Δημιουργία των θυγατρικών σχηματισμών 3. Οριστικός διαχωρισμός τους Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 4

Σχάση χρόνοι ζωής στην πράξη Μ(Α,Ζ) 2 * Μ(Α/2, Ζ/2) + Q Q>0 όταν: Z 2 / A >18 ( 9 8 4 2 Mo) Αλλά δεν γίνεται τόσο εύκολα: φαινόμενο σύραγγας με φράγμα δυναμικού ~5-6 ΜeV Στην πράξη γίνεται μόνο όταν Z 2 / A > 36 [ Κάτι ανάλογο είδαμε και στην α-διάσπαση: Ότι Q>0 για τα στοιχεία με Ζ>63 (ή ισοδύναμα, για Α>151), αλλά μόνο αυτά που δίνουν Q>4 MeV έχουν χρόνους ζωής που δεν είναι τεράστιοι σε σχέση με την ηλικία της Γής (4.5 δισ χρόνια)! Αυτά έχουν Ζ>83 ]. Log 10 Log (χρόνος 10 ( / ζωής 1 έτος) τ, σε έτη) 15 10 5 0-5 Z 2 /A Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 5

Σχάση είναι ενεργεικά προτιμητέα μια μικρή παραμόρφωση; Μ(Α,Ζ)σφαιρικός M(A,Z)ελλειψοειδής, με ίσους όγκους: Όρος επιφανείας: b A 2 / 3 b A 2/ 3 1 2 5 ε 2 Όρος Coulomb: d Ζ 2 A d Ζ 2 1/ 3 A (1 1 1/ 3 5 ε2 ) Η παραμόρφωση αυτή είναι προτιμητέα (οπότε, μη αντιστρέψιμη πιά) όταν: Μ(Α,Ζ)ελλειψ. < Μ(Α,Ζ)σφαιρ. Β(Α,Ζ)ελειψ > Β(Α,Ζ)σφαιρ Β(Α,Ζ)ελειψ Β(Α,Ζ)σφαιρ > 0 ( b A 2 / 3 (1+ 2 5 ε 2 ) d Ζ 2 A (1 1 1/ 3 5 ε2 )) ( b A 2 / 3 d Ζ 2 )>0 1/3 A ε 2 ( 2 5 b A2/ 3 1 5 d Z 2 2 Z )>0 1/ 3 A A >2 b =51 Z >144 είναι ασταθή d Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 6

Σχάση είναι ενεργεικά προτιμητέα μια μικρή παραμόρφωση; Μ(Α,Ζ)σφαιρικός M(A,Z)ελλειψοειδής, με ίσους όγκους: Ζ 2 A >51 Z >144 είναι ασταθήσε μικρές μ παρα ορφώσεις Ζ > 144 ασταθή ως προς τη σχάση Ζ> 92 γίνεται αν περάσουν το φράγμα δυναμικού Και άρα δεν μένουν για πολύ ως τέτοιοι πυρήνες δεν υπάρχουν τέτοιοι πυρήνες Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 7

Σχάση στην πράξη ασυμμετρικοί θυγατρικοί Π.χ., στη σχάση του μητρικού 2 3 5 U, το πιό πιθανό για τους θυγατρικούς πυρήνες είναι να έχουν, ο ένας Α~90 και ο άλλος το υπόλοιπο (Α~140) Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 8

Σχάση απελευθέρωση ενέργειας Τι κερδίζουμε αποσυνθέτοντας πυρήνες; 2 4 0 Π.χ., Χ -> 1 2 0 Υ + 1 2 0 Υ + Q (όπου Q ~ 200 MeV) 5 6 Fe Προς σταθερότερη κατάσταση Προς σταθερότερη κατάσταση Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 9

Άσκηση 1: Σχάση ουρανίου-235 ( 2 3 5 U) Άσκηση: a) Πόση ενέργεια εκλύεται κατά την παρακάτω αντίδραση σχάσης του ουρανίου? n 235 92 U 141 56 Ba 92 36 Kr 3 n b)συγκρίνετε την ενέργεια αυτή με την ενέργεια που εκλύεται σε χημικές αντιδράσεις (όπου έχουμε ανταλλαγές ηλεκτρονίων των ατόμων, τα οποία έχουν ενέργειες της τάξης των ev, κι έτσι η τάξη μεγέθους για χημικές αντιδράσεις δύο ατόμων είναι ev) c) Αν ένας πυρηνικός αντιδραστήρας έχει σχεδιαστεί να δίνει 1 MW θερμότητας συνεχώς, πόσες σχάσεις ουρανίου σαν την παραπάνω πρέπει να συμβαίνουν κάθε δευτερόλεπτο για να συντηρούν την ισχύ αυτή? Πόσο ουράνιο-235 καταναλώνεται κάθε χρόνο στον αντιδραστήρα? Δίνονται: το βιβλίο σας - παρ. 9.1, 9.2, 9.3 - παρ. 4.4., σελ. 60: 1 amu = 931.49 MeV/c 2 και 1 ev = 1.6 x 10-1 9 J d)m(n) = 1.0087 amu, m(u) = 235.0439 amu, m(ba) = 140.9139 amu, m(kr) = 91.8973 amu Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 10

Άσκηση 1α): Σχάση ουρανίου-235 ( 2 3 5 U) Αρχή διατήρησης της ενέργειας Ενέργεια πριν = Ενέργεια μετά, Η μάζα είναι μιά μορφή ενέργειας Σ Μ(αρχικά) = Σ Μ(τελικά) + Q, για αυθόρμητη σχάση πρέπει Q 0 Η μάζα κάθε πυρήνα δίνεται σε amu. Mπορώ να τις κάνω MeV αμέσως, ή να τις αφήσω σε amu, να βρω το Q σε amu και να το κάνω σε MeV στο τέλος. Μ( 2 3 5 U) + M(n) = Μ( 1 4 1 Ba) + M( 92 Kr) + 3*M(n) + Q Q = Μ( 2 3 5 U) Μ( 1 4 1 Ba) M( 9 2 Kr) - 2*M(n) = 0.2153 amu Q = 0.2513 * 931.49 MeV = 234.1 MeV (δηλ. Q>0 : άρα γίνεται αυθόρμητα) Οπότε κατά την αντίδραση αυτή (δηλ., για ΕΝΑΝ μόνο πυρήνα 2 3 5 U), εκλύεται ενέργεια 234.1 MeV. Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 11

Άσκηση 1β): Σχάση ουρανίου-235 ( 2 3 5 U) - Λύση Υπολογίσαμε πρίν ότι κατά την αντίδραση αυτή (δηλ., για ΕΝΑΝ μόνο πυρήνα 2 3 5 U), εκλύεται ενέργεια 234.1 MeV Οι ενέργειες που εκλύονται κατά τις χημικές αντιδράσεις είναι της τάξης των διαφορών στις ενεργειακές στάθμες των ατόμων, δηλαδή της τάξης των evkev, δηλαδή χοντρικά κατά 10 9 (1 δις) έως 10 12 (1 τρις) φορές μικρότερες! 1 MW = 1 MJ/s (θυμνάστε ότι η ισχύς είναι ενέργεια ανά μονάδα χρόνου) 1 χρόνος = 1y = 365*24*60*60 s = 31536000 s = 3.15 * 10 7 s Οπότε: 1 MW = 3.15 * 10 7 MJ/y Οπότε μπορούμε να βρούμε πόσους πυρήνες χρειαζόμαστε για να πάρουμε τόση ενέργεια σε ένα χρόνο Αριθμός σχάσεων 2 3 5 U σε ένα έτος = αριθμός πυρήνων 2 3 5 U που χρειαζόμαστε σε ένα έτος = 3.15 * 10 7 MJ / 234.1 MeV = 3.15 * 10 7 * 10 6 J / ( 234.1 * 10 6 * 1.6 * 10-1 9 J) = 0.84 * 10 2 4 οπότε χρειαζόμαστε: 0.84 * 10 2 4 / (6.02 * 10 2 3 ) mol = 1.4 mol = 1.4 * 235 gr = 329 gr ουρανίου 2 3 5 U Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 12

1β. Επαγόμενη Σχάση, αλλησιδωτές αντιδράσεις και αντιδραστήρες Κεφ. 9 Θ/νίκη - 1-Δεκ-2014 Κ. Κορδάς, Χ. Ελευθεριάδης - Αλληλεπίδραση με ύλη και ανίχνευση σωματιδί 13

Επαγόμενη Σχάση Μπορούμε να βοηθήσουμε έναν βαρύ πυρήνα να σχασθεί αν ρίξουμε πάνω του ένα νετρόνιο. Π.χ: n + 2 3 5 U 1 3 7 Cs + 9 4 Rb + 5n Ουσιατικά, το νετρόνιο απορροφήθηκε από το 2 3 5 U και δημιουργήθηκε το 2 3 6 U, το οποίο όμως είναι ασταθές και σχάζεται. Ανάλογα τον μητρικό πυρήνα, η ενέργεια του νετρονίου που θα προκαλέσει σχάση μπορεί να είναι ακόμα και ~μηδενικής ενέργειας! Τέτοιοι πυρήνες είναι: 2 3 3 9 2 U, 2 3 5 9 2 U, 2 3 9 9 4 Pu, 2 4 1 9 4 Pu Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 14

Ενέργειες προϊόντων στη σχάση Άμεσα: 10-14 sec Κινητική ενέργεια άμεσων νετρονίων Καθυστερημένα: ~13 sec Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 15

Αλυσιδωτή αντίδραση Αν τουλάχιστον ένα από τα παραγόμενα νετρόνια προκαλεί τη σχάση ενός ίδιου πυρήνα, έχουμε αλυσιδωτή αντίδραση. Αν για κάθε ένα νετρόνιο που πέφτει πάνω σ' έναν μητρικό πυρήνα, - παράγονται κατά μέσο όρο ν νετρόνια, - και το καθένα έχει πιθανότητα q να προκαλέσει με τη σειρά του σχάση, - τότε: νq = τα παραγόμενα νετρόνια για κάθε 1 που προκαλέι σχάση νq-1 = η μεταβολή του πληθυσμού των νετρονίων από 1 τέτοιο νετρόνιο α) αν νq-1>0 αύξηση πληθυσμού: η αντίδραση έχει ξεφύγει (υπερκρίσιμη), β) αν νq-1<0 μείωση πληθυσμού: η αντίδραση σβήνει εκθετικά (υποκρίσιμη), γ) αν νq-1=0 σταθερότητα: η αντίδραση είναι ελέγξιμη (κρίσιμη) Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 16

Αλυσιδωτή αντίδραση t p = μέσος χρόνος που χρειάζεται ένα νετρόνιο να αλληλεπιδράσει και να προκαλέσει σχάση n(t) = πληθυσμός νετρονίων στο δείγμα Ο πληθυσμός νετρονίων μετά από χρόνο dt θα είναι: n(t+dt)=n(t )+(νq 1)n(t )(dt /t p ) dn dt = (νq 1) t p n(t) n(t)=n(0)e (νq 1)t / t p Για 235 U : ν~2.5 νετρόνια, οπότε όταν (νq-1)>0 q>0.4, μας έχει ξεφύγει: ο πληθυσμός των νετρίνων που προκαλούν σχάσεις, δηλ. ο αριθμός σχάσεων, αυξάνεται ανεξέλεγτκα Εκθετική αύξηση ή μείωση Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 17

Ενεργές διατομές n + 235 U, n + 238 U 235 U Στη φύση: 0.7% 235 U και 99.3% 238 U σχάση 238 U 235 U: ευκολότατη σχάση! - σε πολύ μικρές ενέργειες νετρονίων σχάση ~ 84% - σε Ε~2 MeV, σχάση ~18% 238 U - σχάση ΜΟΝΟ για Ε>1.4 MeV, σε ποσοστό ~5-10% Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 18

Αλλησιδωτές αντιδράσεις Μέση τιμή της ενεργού διατομής αλληλεπίδρασης νετρονίου με δείγμα ουρανίου, φτιαγμένο με 235 U και 238 U : c=ποσοστό 235 U, 1-c = ποσοστό 238 U Μέση ελεύθερη διαδρομή ενός νετρονίου (μάθημα 3): l= 1 ρ πυρήνων σ tot Π.χ., ξέροντας τη μαζική πυκνότητα (g/cm 3 ) του ουρανίου, βρίκω την αριθμητική πυκνότητα (ρ = πόσοι ανά cm 3 ), και βάζοντας μέση ενέργεια των άμεσων νετρονίων της σχάσης Ε=2 MeV, έχουμε: σ 235 tot σ 238 tot 7barns l 3cm t= l u = l 2 Em l c mc2 2 E 3 cm 0.3 cm/ns 1000 MeV 2 2 MeV 1.5 10 9 s Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 19

Αλλησιδωτές αντιδράσεις σε καθαρό 235 U Για τη μέση ενέργεια των άμεσων νετρονίων της σχάσης (2 MeV) έχουμε πιθανότητα σχάσης ανά αλληλεπίδραση σ f / σ tot ~ 18% (σχ.9.1) Αν στη σκέδαση δεν κάνει σχάση, το νετρόνιο θα χάσει μέρος της ενέργειάς του και έτσι θα έχει τώρα μεγαλύτερη πιθανότητα να κάνει σχάση στην επόμενη σύγκρουση κατά μέσο όρο χρειάζονται 6 συγκρούσεις για να κάνει σχάση. Μέχρι τότε θα έχει κάνει απόσταση και χρόνο: 6 3 cm 7 cm t p 10 8 s άρα κάθε 10-8 s ένα νετρόνιο από σχάση αντικαθίσταται από ~2.5 νέα νετρόνια σχάσης των 2 MeV έκαστο Αν το υλικό είναι λίγο, τότε κάθε νετρόνιο σχάσης έχει μεγάλη πιθανότητα διαφυγής πρίν προλάβει να κάνει σχάση σε μία από τις συγκρούσεις του, οπότε q μικρό (νq-1)<0 : η αντίδραση σβήνει Σίγουρα θέλουμε υλικό διαστάσεων πάνω από 7 cm : υπολογίζεται ότι q>0.4 για σφαίρα με ακτίνα > 8.7 cm > 52 kg 235 U : τότε ανεξέλεγκτη αντίδραση βόμβα! Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 20

Ελεγχόμενη αλλησιδωτή αντίδραση αντιδραστήρες Σε φυσικό ουράνιο: 0.7% 235 U και 99.3% 238 U Μετά από ~2 συγκρούσεις το νετρόνιο έχει κάτω από 1.4 MeV, οπότε δεν κάνει πιά σχάση με το 238 U μόνη ελπίδα το 235 U. Αφού το 235 U είναι ~100 φορές λιγότερο από το 238 U, χρειάζεται να πάμε σε ενέργειες όπου η ενεργός διατομή αλληλεπίδρασης με το 235 U να είναι >100 φορές μεγαλύτερη απ' ότι η αλληλεπίδραση με το 238 U. Από το σχήμα 9.1: Ενέργειες ~0.1 ev (θερμική ενέργεια για T=1160 K) Θερμικός αντιδραστήρας : Χρήση επιβραδυντικού υλικού κάνουμε τα νετρόνια θερμικά μέσα στο επιβραδυντικό υλικό, π.χ., νερό, και έτσι περνάνε την επικίνδυνη περιοχή 1-1000 ev (όπου πιθανότατα θα συλλαμβάνονταν από κάποιο συντονισμό του 238 ) και έρχονται στο ουράνιο με ενέργειες ~0.1 ev, όπου η πιθανότητα σχάσης ανά αλληλεπίδραση με 235 U είναι: σ f / σ tot ~ 84% (σχ. 9.1, πρίν) Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 21

Ελεγχόμενη αλλησιδωτή αντίδραση αντιδραστήρες Σε φυσικό ουράνιο: 0.7% 235 U και 99.3% 238 U Μετά από ~2 συγκρούσεις το νετρόνιο έχει κάτω από 1.4 MeV, οπότε δεν κάνει πιά σχάση με το 238 U μόνη ελπίδα το 235 U. Αφού το 235 U είναι ~100 φορές λιγότερο από το 238 U, στο φυσικό ουράνιο, κρατώντας αυτή την αναλογία, χρειάζεται να πάμε σε ενέργειες όπου η ενεργός διατομή αλληλεπίδρασης με το 235 U να είναι >100 φορές μεγαλύτερη απ' ότι η αλληλεπίδραση με το 238 U. Από το σχήμα 9.1: Ενέργειες ~0.1 ev (θερμική ενέργεια για T=1160 K) ή Με αύξηση του ποσοστού 235 U στο υλικό, μπορούμε να έχουμε σηνατική πιθανότητα σχάσης ακόμα και με πιό ταχέα νετρόνια ταχύς αντιδραστήρας : εμπλουτισμός σε σχάσιμο υλικό ( 239 Pu με ν~2.96, αντί για 235 U με ν~2.5) : ~20% του συνόλου. Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 22

Έλεγχος ρυθμού αντιδράσεων (1) Πρέπει να πάρουμε υπ' όψινα μας και τα καθυστερημένα νετρόνια (δν), στην αύξηση του πληθυσμού των νετρονίων: ( ν +δν)q 1=0, για ελεγχόμενηκατάσταση σταθερής ισχύος Όταν πάει να γίνει >0, μειώνω το q με τη μηχανική εισαγωγή ράβδων ελέγχου (πχ., Βόριο που έχει μεγάλη ενεργό διατομή για απορρόφηση θερμικών νετρονίων). Για να έχω αρκετό χρόνο αντίδρασης για να καταβάσω τις ράβδους, θέλω να το κάνω αυτό με τα καθυστερημένα νετρόνια (τ ~10 sec), και όχι με τα άμεσα νετρόνια (τ~10-8 sec) Οπότε για τα άμεσα νετρόνια, κρατάω πάντα: και είναι τα καθυστερημένα νετρόνια που κάνουν: νq 1< 0 (ν +δν)q 1=0 Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 23

Έλεγχος ρυθμού αντιδράσεων (2) Επίσης η συμπεριφορά με τη θερμοκρασία Τ πρέπει να είναι: dq dt <0 για να επανέρχεται η σταθερή κατάσταση όταν ανεβαίνει η θερμοκρασία: αύξηση θερμοκρασίας αύξηση των πλατών των συντονισμών του 238 U λόγω Doppler αυξημένη απορρόφηση νετρονίων! Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 24

Ραδιενεργά απόβλητα Άμεσα προϊόντα σχάσης: πλούσα σε νετρόνια β-διασπάσεις για να έρθουν στην κοιλάδα σταθερότητας. Συχνά οι ενδιάμεσες καταστάσεις είναι διεγερμένες, οπότε έχουμε και αποδιεγέρσεις γ Οι θυγατρικοί αυτοί πυρήνες έχουν διάφορους χρόνους ζωής Εμπειρικά: για κάθε σχάση ο μέσος ρυθμός έκλυσης ενέργειας ιονισμού από τα προϊόντα της διάσασης σε χρόνο t από τη στιγμή της σχάσης, είναι: Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 25

2. Σύντηξη Παρ. 10.1, 10.5 Θ/νίκη - 1-Δεκ-2014 Κ. Κορδάς, Χ. Ελευθεριάδης - Αλληλεπίδραση με ύλη και ανίχνευση σωματιδί 26

Σύντηξη (παρ. 10.1 βιβλίο) Τι κερδίζουμε συνθέτοντας πυρήνες; Π.χ., 2 0 Χ + 2 0 Χ 4 0 Υ + Q 5 6 Fe Προς σταθερότερη κατάσταση Προς σταθερότερη κατάσταση Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 27

Σύντηξη: κατά κάποιον τρόπο, το ανάποδο της α-διάσπασης Ένας πυρήνας να βρεθεί μέσα σε έναν άλλον και θα γίνουν ένας βαρύτερος πυρήνας. Π.χ., ένα σωματίδιο α έρχεται από δεξιά και συναντά την ηλερομαγνητική άπωση ενός άλλου πυρήνα α. Η δυναμική ενέργεια Coulomb γίνεται μέγιστη, με τιμή V B, όταν οι δύο πυρήνες α εφάπτονται σε απόσταση r s : από εκεί και μετά η ισχυρή αλληλεπίδραση γίνεται σημαντική και αν το α περνούσε θα βρισκόνταν στο πηγάδι δυναμικού του πυρήνα α α V B Πυρήνας α Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 28

Σύντηξη: Φράγμα Coulomb α και α Πόσο μεγάλο είναι το φράγμα (V B ) σε ενέργεια? Μπορεί το α να το σκαρφαλώσει και να περάσει μέσα στον πυρήνα α? Το δυναμικό Coulomb είναι μέγιστο ( φράγμα V B ) όταν το α εφάπτεται στον πυρήνα. Δηλαδή όταν η απόσταση από το κέντρο του α μέχρι το κέντρο του πυρήνα α έιναι R α + R α, όπου R α είναι οι ακτίνα των πυρήνων α αντίστοιχα. R=1.1 A 1/3 fm R a =1.1 4 1/3 fm=1.7 fm r s =2 R a =3.4 fm V B = 2 e 2 e =a 2 Z ħ c = 1 r s r s 137 2 2 197 MeV fm 3.4 fm =1.6 MeV Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 29

Κλασσικά: Σύντηξη: Φράγμα Coulomb α και α όταν ένα σωματίδιο α έχει κινητική ενέργεια Τ<V B Τ<1.6 MeV, τότε δεν μπορεί να μπεί στον πυρήνα α όμως μπαίνει με το κβαντομηχανικό φαινόμενο σύραγγας Φράγμα 1.6 ΜeV πολύ μεγαλύτερο από την κινητική ενέργεια των συγκρουόμενων πυρήνων: ~kτ λόγω θερμοκρασίας του Ηλιου (T ~ 10 7 Kelvin ) Σε 300 Κ kt = 1/40 ev Σε 12000 Κ kt = 1 ev Σε 10 7 K kt ~ 1 kev : λίγη σε σχέση με το φράγμα δυναμικού, όμως: α) η κινητική ενέργεια λόγω θερμικής κίνησης παίζει (κατανομή Boltzman) β) έχουμε το κβαντομηχανικό φαινόμενο σύραγγας που βοηθάει το σωματίδιο να συντηχθεί με τον άλλον πυρήνα διασχίζοντας την κλασσικά απαγορευμένη περιοχή Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 30

Χαρακτηριστικά του ήλιου: Σύντηξη στον ήλιο Λαμπρότητα (Luminosity) = ρυθμός εκπομπής ηλεκτρομαγνητικής ενέργειας Συστολή λόγω βαρύτητας Βαρυτική δυναμική ενέργεια γίνεται κινητική αύξηση θερμοκρασίας του αερίου του εσωτερικού όταν η θερμοκρασία είναι αρκετά μεγάλη γίνεται η αντίδραση καύσης του υδρογόνου παράγεται ενέργεια ακτονοβολίας που κάνει το θερμό και πυκνό αέριο να εξισορροπεί τη βαρυτική κατάρευση. Υλικά στο ηλιακό σύστημα: κυρίως Η Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 31

Σύντηξη στον ήλιο Αλυσίδα PPI: H He + 26.73 MeV για κάθε He Ιδού τα βήματα: e + e φωτόνια+1.02 MeV Καταναλώθηκαν 4 H για να παραχθεί ένα 4 Ηe και 2 παράχθηκαν 26.73 MeV ενέργειας, οπότε: 26.73 MeV/ 4 = 6.55 MeV εκλυόμενη ενέργεια ανά Η (τα νετρίνα στην πρώτη αντίδραση παίρνουν μόνο 0.26 MeV). Για τη δεδομένη λαμπρότητα: 3.7 * 10 38 Η ανά sec (άσκηση) Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 32

Σύντηξη στον ήλιο Για τη δεδομένη λαμπρότητα: 3.7 * 10 38 Η ανά sec (άσκηση) Σε όλη τη ζωή του Ηλίου ~ 5.5 * 10 55 Η έχει καεί 10% του ολικού υδρογόνου στον ήλιο (από μάζα ηλίου) ακόμα νέος ο ήλιος! Βαρυτική ενέργεια: 1 kev σε κάθε σωμάτιο (πυρήνες, ηλεκτρόνια) ( Τ ~ 10 7 K) Όλα ιονισμένα πλάσμα Κι έτσι μπορεί να υπάρχει ενέργεια ικανή να κάνει φαινόμενο σύραγγας και να έρθουν τόσο κοντά τα υδρογόνα (και τα ήλια) που να αρχίσει η ισχυρή αλληλεπίδραση σύντηξη να δουλεύει. Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 33

Υποψήφιες αντιδράσεις: Σύντηξη για ενέργεια Άφθονο το δευτέριο στο φυσικό νερό (0.015% στο φυσικό υδρογόνο): Ενεργητικά πιό συμφέρον το τρίτιο (που πρέπει όμως να παρασκευαστεί πρώτα): Τεχνικά πώς; Ισχυρά μαγνητικά πεδία συγκρατούν και συμπιέζουν το πλάσμα του αερίου όπου θέλουμε να αρχίσει η σύντηξη Θέρμανση με ηλεκτρομαγνητικά πεδία. Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 34

Άσκηση 2: Σύντηξη υδρογόνου για παραγωγή ηλίου στον Ήλιο Άσκηση 2: Πόσο υδρογόνο ( 1 Η ) πρέπει να μετατρέπεται σε ήλιο ( 4 He ) κάθε δευτερόλεπτο στον Ήλιο, αν η ηλιακή σταθερά είναι 1.35 kw / m 2 στην επιφάνεια της Γης και η απόσταση Γης-Ηλίου είναι 1.5x10 8 km? (Υποθέστε εδώ ότι 4 1 Η 4 He, χωρίς άλλο προϊόν, πράγμα που δεν είναι σωστό, αλλά χάριν την άσκησης υποστείτε το: θα σας διδάξει κάτι) Δίνονται: 1 amu = 931.49 MeV/c 2 και 1 ev = 1.6 x 10-1 9 J - M(n) = 939.57 MeV, M(p) = 938.27 MeV, M(e) = 0.511 MeV, M(ν)=0 - Ενέργειες Σύνδεσης (B): B( 4 He) = 28.30 MeV Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 35

4 1 H 4 He + Q Άσκηση 2: Σύντηξη υδρογόνου - Λύση Γνωρίζετε ότι ο πυρήνας του υδρογόνου ( 1 H) είναι το πρωτόνιο και άρα δεν έχει ενέρεια σύνδεσης, αφού είναι μόνο του! Q = 4 * M(p) Μ(He) = 4* M(p) - ( 2 M (p) + 2 M(n) 28.3) = = 25.7 MeV Η ενέργεια που εκλύεται στον ήλιο κατά τη σύντηξη 4 πυρήνων υδρογόνου για παραγωγή ηλίου είναι 25.7 MeV, δηλαδή 6.43 MeV ανά πυρήνα υδρογόνου = 6.43 * 10 6 * 1.6 10-19 J = 10-12 J Τί γίνεται αυτή η ενέργεια; Εκπέμπεται παντού R = ακτίνα περιφοράς Γής γύρω απ'τον Ήλιο Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 36

Άσκηση 2: Σύντηξη υδρογόνου - Λύση Η ενέργεια που εκλύεται στον ήλιο κατά τη σύντηξη 4 πυρήνων υδρογόνου για παραγωγή ηλίου είναι 25.7 MeV, δηλαδή 6.43 MeV ανά πυρήνα υδρογόνου = 6.43 * 10 6 * 1.6 10-19 J = 10-12 J Ο ήλιος εκπέμπει την ενέργεια αυτή. Όση ενέργεια εκπέμπαι από τον ήλιο σε κάθε δευτερόλεπτο, διαχέεται ακτινικά πρός τα έξω. Οπότε το σύνολο της ενέργειας που περνάει μέσα από μια επιφάνεια 4πR 2 κάθε δευτερόλεπτο, είναι όση εκπέμπαι από τον ήλιο σε κάθε δευτερόλεπτο. R = ακτίνα περιφοράς Γής γύρω απ'τον Ήλιο Στη Γη ξέρουμε την ηλιακή σταθερά, δηλ. πόση ηλιακή ενέργεια πέφτει σε μια επιφάνεια 1 m 2, σε κάθε δευτερόλεπτο = 1.35 kw / m 2 = 1.35 (kj/s) / m 2 Οπότε, στην απόσταση Γης-Ήλιου (σε ακτίνα R=1.5x10 8 km από τον ήλιο), περνούν 1.35 * 4πR 2 kj/s / m 2 και άρα ο ήλιος εκπέμπει 3.8 * 10 2 6 J ανά sec. Άρα χρειάζονται (3.8 * 10 2 6 J/s)/(10-12 J) = 3.8*10 3 8 πυρήνες υδρογόνου ανά sec. Αφού 6.02 * 10 23 πυρήνες 1 H ζυγίζουν 1 γρ (όσο ο μαζικος αριθμός), τότε στον ήλιο συντήκονται 3.8 * 10 3 8 / 6.02 * 10 23 = 6.3 * 10 1 1 kg 1 H ανά sec!!! Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 37

Σχετικιστική κινηματική: Σχετικιστική κινηματική E = mc 2 = η ενέργεια πού έχω επειδή απλά και μόνο έχω μάζα m ενέργεια μάζα c = ταχύτητα του φωτός Η μάζα είναι μια μορφή ενέργειας γενικά, με κινητική ενέργεια Κ, έχουμε : E =Κ m c 2 E=m γ c 2, όπου γ = 1, και β= υ/c, με υ=ταχύτητα 2 1 β μ p=m γ υ=m γ βc,όπου p= ορμή σω ατιδίου E 2 = pc 2 m c 2 2 E [MeV], p [MeV/c], m [MeV/c 2 ] Σημ είωση: μ ε c = 1, γράφουμε : E 2 =p 2 +m 2, κλπ. Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 38

Μονάδες c= 3 10 8 m/s μ ονάδα ταχύτητας 1 μ ονάδα ενέργειας ev =1.6 10 19 Cb V =1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 10 9 ev) Σταθερά του Plank = h = ħ c=197 MeV fm, όπου ħ= h 6.626 x 10-3 4 J s 2π μ ονάδα δράσης ενέργειας χρόνου 1 α= e 2 e2 [mks ]= 4 πε 0 ħ c ħ c [cgs]= 1 137 α = η σταθερά λεπής υφής = 1/137 Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: e 2 =αħ c, όπου α=1/137 Μετράμε: ħ c=197 MeV fm Μάζα: MeV/c 2 (αφού Ε = mc 2 ) Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = 931.5 MeV/c 2 Mάζα ηλεκτρονίου = 0.511 MeV/c 2 Μάζα πρωτονίου = 938.3 MeV/c 2, Μάζα νετρονίου = 939.6 MeV/c 2 Α.Π.Θ - 26 Νοε. 2015 Κ. Κορδάς - Πυρηνική & Στοιχειώδη Ι - Μάθημα 17: Σχάση, σύντηξη 39