Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 05 Supporting Information Zebra reaction or the recipe for heterodimeric zinc complexes synthesis Dawid Jędrzkiewicz, Jolanta Ejfler*, Łukasz John, Sławomir Szafert Faculty of Chemistry, University of Wroclaw, Joliot-Curie Str., 50-8 Wroclaw, Poland
Table of Contents Page Figure S. H MR of L R -H in CDCl. Figure S. C MR of L R -H in CDCl. Figure S. H MR of L Me -H in CDCl. Figure S. C MR of L Me -H in CDCl. Figure S5. H MR of RR-Zn in benzene-d 6. Figure S6. C MR of RR-Zn in benzene-d 6. Figure S7. H MR of RS-Zn in benzene-d 6. 5 Figure S8. H MR of RS-Zn in benzene-d 6. 5 Figure S9. H MR of RCy-Zn in benzene-d 6. 6 Figure S0. C MR of RCy-Zn in benzene-d 6. 6 Figure S. H MR of Me-Zn in benzene-d 6. 7 Figure S. C MR of Me-Zn in benzene-d 6. 7 Figure S. H MR of RMe-Zn in benzene-d 6. 8 Figure S. C MR of RMe-Zn in benzene-d 6. 8 Figure S5. Variable temperature H MR of RR-Zn in toluene-d 8. 9 Figure S6. Variable temperature H MR of RS-Zn in toluene-d 8. 9 Figure S7. H ESY MR of RR-Zn in benzene-d 6. 0 Figure S8. H ESY MR of RR-Zn in toluene-d 8 at 0K. 0 Figure S9. H ESY MR of RS-Zn in benzene-d 6. Figure S0. H ESY MR of RCy-Zn in benzene-d 6. Figure S. H ESY MR of Me-Zn in benzene-d 6. Figure S. H ESY MR of RMe-Zn in benzene-d 6. Table S. X-ray experimental data and refinement. Table S. Selected bond distances and angles. Figure S. Structures of RS-Zn isomers. 5 Figure S. Structures of RR-Zn isomers. 6 Figure S5. Structures of RS/RR-Zn monomers. 7 Table S. Energies of RS/RR-Zn isomers in vacuo. 7 Table S. Energies of RS/RR-Zn isomers in benzene. 8 Table S5. Comparison of experimental and DFT calculated chemical shifts for RR-Zn. 9 Table S6. Comparison of experimental and DFT calculated chemical shifts for RS-Zn. 9 Table S7. Comparison of experimental and DFT calculated chemical shifts for Cy-Zn. 0 Table S8. Comparison of experimental and DFT calculated chemical shifts for RCy-Zn. 0 Table S9. Comparison of experimental and DFT calculated chemical shifts for Me-Zn. 0 Table S0. Comparison of experimental and DFT calculated chemical shifts for RMe-Zn. Table S. Theoretical and experimental diffusion coefficients
Figure S. H MR of L R -H in CDCl. Figure S. C MR of L R -H in CDCl.
Figure S. H MR of L Me -H in CDCl. Figure S. C MR of L Me -H in CDCl.
Figure S5. H MR of RR-Zn in benzene-d 6. Assigments based on DFT studies (Table S5). Figure S6. C MR of RR-Zn in benzene-d 6.
Figure S7. H MR of RS-Zn in benzene-d 6. Figure S8. H MR of RS-Zn in benzene-d 6. 5
Figure S9. H MR of RCy-Zn in benzene-d 6. Figure S0. C MR of RCy-Zn in benzene-d 6. 6
Figure S. H MR of Me-Zn in benzene-d 6. Figure S. C MR of Me-Zn in benzene-d 6. 7
Figure S. H MR of RMe-Zn in benzene-d 6. Figure S. C MR of RMe-Zn in benzene-d 6. 8
Figure S5. Variable temperature H MR of RR-Zn in toluene-d 8. Figure S6. Variable temperature H MR of RS-Zn in toluene-d 8. 9
Figure S7. H ESY MR of RR-Zn in benzene-d 6. Figure S8. H ESY MR of RR-Zn in toluene-d 8. 0
Figure S9. H ESY MR of RS-Zn in benzene-d 6. Figure S0. H ESY MR of RCy-Zn in benzene-d 6.
Figure S. H ESY MR of Me-Zn in benzene-d 6. Figure S. H ESY MR of RMe-Zn in benzene-d 6.
RR-Zn SS-Zn RS-Zn RCy-Zn SMe-Zn Empirical formula C H 6 Zn C H 6 Zn C H 6 Zn C H 6 Zn C 7 H 56 Zn C 6 D 6 Formula weight 78.69 78.69 78.69 759.69 775.7 Crystal system Triclinic Triclinic Monoclinic Monoclinic Triclinic Space group P P P /c P P a (Å) 7.0 () 7.00 ().58 (5).9 () 9.0 () b (Å) 0.6 () 0.7 () 0.5 () 0.6 () 9.90 () c (Å) 5. (5) 5.79 (6).00 ().7 (5).67 () α ( ) 70.75 () 70.6 () 90 90 78.0 () β ( ) 8. () 8.8 () 98.6 () 0.7 () 86.50 () γ ( ) 8.66 () 8.65 () 90 90 7.57 () V (Å ) 0.5 (6) 0.6 (6) 980 () 06. () 059.7 (6) Z Crystal description Block, colourless Block, colourless Block, colourless Block, colourless Block, colourless Crystal size (mm) 0.5 0.5 0.8 0.6 0.9 0.0 0.55 0.6 0. 0.50 0.6 0.0 0.0 0.6 0.0 d calc (g/cm ).55.56..5.6 μ (mm - ).0.0.5.7.7 F(000) 6 6 8 8 0 Diffractometer Kuma KM- CCD Xcalibur, CCD Ruby Kuma KM- CCD Xcalibur, CCD nyx Kuma KM- CCD λ (Å) 0.707 (Mo) 0.707 (Mo) 0.707 (Mo).58 (Cu) 0.707 (Mo) T (K) 00 9 00 00 80 Θ min/max ( ).9/8.7.8/8.7.0/.5./70..9/8.7 h, k, l min/max -9/7, -/, -9/0-9/7, -7/, -8/0-8/0, -/, -7/ -6/6, -/0, -7/7 -/, -/, -6/6 Reflections collected 705 76 57 065 959 Independent reflections 567 5807 59 585 706 Reflections [I>σ(I)] 5058 58 55 576 5758 R (int.) 0.0 0.06 0.08 0.056 0.00 Flack parameter -0.00 () -0.00 (9) - 0.0 () -0.05 (8) data/restraints/params 567/57/5 5807/69/55 59/0/ 585/9/75 706/0/57 R[F > σ(f )] 0.05 0.07 0.0 0.05 0.08 wr(f ) 0.6 0.06 0.0 0.50 0.058 GooF.0.00...00 Δρ max /Δρ min (e Å - ) 0.9/-0.5 0./-0.9 0.7/-0. 0.67/-0.8 0./-0.60 Table S. X-ray experimental data and refinement.
Atoms RR-Zn SS-Zn RS-Zn RCy-Zn SMe-Zn Bond distance [Å] Zn-C.96(9).977(6).9866(7).990(6).97(9) Zn-C5 a.999(8).986(5).00(6).97(9) Zn-.006(5).009().055().0().06(5) Zn-.008(5).00().09().00(5) Zn- i.068(5).06().085().06().07(5) Zn-.055(5).059().08().0(5) Zn-.6(6).7(5).6(5).6().66(7) Zn-.6(7).57(5).5().(8) Zn-Zn i,b.096().0967(0).05(9).058().0576() - i,b.6().6().696().690().68() Angles [ ] C-Zn- 8.() 8.5().86(6) 6.() 7.9() C5 a -Zn- 5.() 7.5(7) 5.57(9) 5.() C-Zn- i.9() 9.().0(6) 6.0(8) 7.() C5 a -Zn- 9.6().5(8) 0.(9) 8.8() -Zn- i 80.8(9) 80.6(5) 8.0(5) 8.5() 8.(9) -Zn- 8.05(9) 80.86(5) 8.8() 8.65(8) C-Zn- 8.() 0.5() 5.9(6).(8) 8.() C5 a -Zn-.() 9.().() 9/() -Zn- 9.0() 9.5(6) 9.85(5) 9.0() 9.() -Zn- 9.5() 9.7(5) 9.7() 9.6() i -Zn- 05.() 0.76(6) 98.70(5) 95.0() 97.() -Zn- 0.8() 05.7(6) 0.08(5) 97.() Zn--Zn i 99.7(9) 99.6() 96.90(5) 97.7() 97.() Zn--Zn 98.79(9) 99.8() 97.() 97.5() Sum of the interior angles of the core Zn [ ] 59.9(8) 59.9(6) 60 59.9(6) 60.0(8) i = x+, y+, z+ for RS-Zn i =, Zn i = Zn for RR-Zn, SS-Zn, RCy-Zn, SMe-Zn C5 a = C9 for RCy-Zn, C for SMe-Zn b Values in parentheses refer to the non-bonding interactions. Table S. Selected bond distances (Å) and angles ( ).
RS-ZnA R C R Zn Zn S S C RS-ZnA' S C R Zn Zn S R C RS-ZnB S C S Zn Zn R R C RS-ZnB' R C S Zn Zn R S C RS-ZnC R C R Zn Zn R S C RS-ZnC' S C S Zn Zn S R C Zn Zn RS-ZnD R C R Zn Zn R S C RS-ZnE R C R Zn Zn R S C Zn Zn RS-ZnF R C R Zn Zn S S C RS-ZnF' S C R Zn Zn S R C Figure S. Structures of RS-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green zinc atoms, blue nitrogen atoms. 5
RR-ZnA R C R Zn Zn S R C RR-ZnB R C S Zn Zn R R C RR-ZnC R C R Zn Zn R R C RR-ZnC' R C S Zn Zn S R C Zn Zn RR-ZnD R C R Zn Zn R R C RR-ZnD' R C S Zn Zn S R C Zn Zn RR-ZnE R C R Zn Zn R R C RR-ZnE' R C S Zn Zn S R C Zn Zn RR-ZnF R C R Zn Zn S R C RR-ZnF' R C R Zn Zn S R C Figure S. Structures of RR-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green zinc atoms, blue nitrogen atoms. 6
R-ZnM R C R R-ZnM' R C S Figure S5. Structures of RS/RR-Zn monomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green zinc atoms, blue nitrogen atoms. Isomer E (hartree) ZPE (kcal/mol) ΔE zpe (kcal/mol) ΔE zpe (kj/mol) RS-ZnA -55.05957 608. 0.00 0.00 RS-ZnA' -55.05690 609.5.05 6.97 RS-ZnB -55.057 609.0 5.7.6 RS-ZnB' -55.9796 609.06 8.9 7.6 RS-ZnC -55.09000 608.59.8 8. RS-ZnC' -55.0576 608.75 6.00 5. RS-ZnD -55.9879 607.76 7. 9.89 RS-ZnE -55.9686 608.78. 5.9 RS-ZnF -55.9905 608.8 7. 9.8 RS-ZnF' -55.99 608.6.0 50.6 RR-ZnA -55.07800 608.8.8 7.6 RR-ZnB -55.080 609. 5.8.69 RR-ZnC -55.06980 608.8.70.9 RR-ZnC' -55.0700 608.87. 7.0 RR-ZnD -55.0680 608.5 5.5.0 RR-ZnD' -55.9765 608. 9.77 0.86 RR-ZnE -55.9556 608.9 0.60.5 RR-ZnE' -55.879589 608.7.07 58.85 RR-ZnF -55.97000 608. 0.00.8 RR-ZnF -55.9688 608. 8.9 7.0 R-ZnM -766.76999 0.8.87* 5.89* R-ZnM' -766.768 0.7 7.89* 58.5* Table S. Energies of RS/RR-Zn isomers in vacuo. * - Calculated as for two monomers. 7
Isomer E (hartree) ZPE (kcal/mol) ΔE zpe (kcal/mol) ΔE zpe (kj/mol) RS-ZnA -55.5907 608.6 0.00 0.00 RS-ZnA' -55,976 608.9..0 RS-ZnB -55.09909 608.8.69 9.6 RS-ZnB' -55.0979 608.6 7.9.0 RS-ZnC -55.098089 608.9.86 6. RS-ZnC' -55.0778 608.5 5.70.85 RS-ZnD -55.0606 607.5 6.8 7. RS-ZnE -55.9879 608..07 6. RS-ZnF -55.05658 608.7 6.56 7. RS-ZnF' -55.9878805 608.09 0.68.68 RR-ZnA -55.505 608..8 6.9 RR-ZnB -55.0907 608.76.9 0.60 RR-ZnC -55.5507 608.7. 0. RR-ZnC' -55.055 608.56.89 6.8 RR-ZnD -55.07690 607.88.88 0. RR-ZnD' -55.06 607.76 8.8 6.89 RR-ZnE -55.089 608.6 9.68 0.5 RR-ZnE' -55.9570 607.95.7 5.8 RR-ZnF -55.05967 608. 8.96 7.9 RR-ZnF -55.0098 608. 8.0.6 R-ZnM -766.87009 0.86 8.75* 0.9* R-ZnM' -766.869909 0.7.7*.7* Table S. Energies of RS/RR-Zn isomers in benzene. * - Calculated as for two monomers. 8
a b c d e f f g h i j k a b c d e f f g h i j k RR-ZnA (R C R Λ Zn part) RR-ZnA (R C S Δ Zn part) DFT EXP DFT EXP 7.50 7. 8 a 7.9 7.9 7. 7.0 7 b 7. 7.0 EXP (ppm) 7. 7.0 6 c 6.98 7. 6.68 6.86 5 d 6.8 6.96.98 5.08 e..9.0.8 f.90.8.67.09 f.8.9.8.99 g.96.9.79.68 0 h.0.66.0.6 0 5 6 7 8 i.9.9.00.8 DFT (ppm) j.0.9 0. 0. k 0. 0. RR-ZnC (R C R Λ Zn part) RR-ZnC (R C R Δ Zn part) DFT EXP DFT EXP 7.7 7. 8 a 7.5 7.9 7.6 7.0 7 b 7. 7.0 6.99 7. 6 c 7.06 7. 6.70 6.86 5 d 7.0 6.96.95.9 e.99.95.6.8 f.8.95.7.09 f.5.58.5.0 g.69.6.7.75 0 h.6.6.9.7 0 5 6 7 8 i..9 0.76. DFT (ppm) j.0.5 0.5 0.5 EXP (ppm) k 0. 0.6 EXP (ppm) EXP (ppm) 8 7 6 5 0 8 7 6 5 0 0 5 6 7 8 DFT (ppm) 0 5 6 7 8 DFT (ppm) Table S5. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RR-Zn. The best R values were achievied for RR-ZnA, RR-ZnC isomers. a b c d e f f g h i j k DFT EXP 7.8 7.0 7.7 7.6 7.0 7.07 6.68 6.87 5. 5.06.69.86.87..00.99.77.68 0.96.8.7.5 0. 0.7 RS-ZnA 8 EXP (ppm) 7 6 5 0 0 5 6 7 8 DFT (ppm Table S6. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RS-Zn. 9
DFT EXP a 7.5 7. b 6.98 7. c 6.96 7. d..59 d.7. e.8.7 f.89.8 g.8.5 h.7. J 0.0 0. EXP (ppm) Cy-Zn 8 7 6 5 0 0 5 6 7 8 DFT (ppm) Table S7. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for Cy-Zn.. RCy-Zn (L R part) DFT EXP DFT EXP a 7. 7. 8 l 7.5 7.5 b 7.5 7. 7 m 7.00 7. c 7.0 7.07 6 n 6.98 7.0 d 6.97 6.8 o..6 5 e 5. 5.07 o.6.7 f.55.8 p.55.5 f.6.08 r.90.88 g.88.96 s 0.9.8 h.77.67 t.7.6 I.. 0 0 5 6 7 8 u 0.6 0.9 J.8. DFT (ppm) k 0.6 0.9 EXP (ppm) RCy-Zn (L Cy part) 8 7 EXP (ppm) 6 5 0 0 5 6 7 8 DFT (ppm) Table S8.. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RCy-Zn. a b c d d e e f g h DFT EXP 7.5 7. 6.98 7.0 6.9 7.0.5..70.70.9.8.98.79.7..5.6 0.09 0.8 EXP (ppm) Me-Zn 8 7 6 5 0 0 5 6 7 8 DFT (ppm) Table S9. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for Me-Zn. 0
a b c d e f f g h i j k RMe-Zn (L R part) DFT EXP DFT EXP 7.7 7. 8 l 7.57 7. 7.8 7. 7 m 7.07 7.05 7.05 7.06 6 n 7.0 7.0 6.9 6.8 5 o.59.6 5.00.9 o.8.7.5.7 p.6..6.07 p.0.8.9.95 q.9..79.69 0 r.09.0.. 0 5 6 7 8 s 0.0 0...6 DFT (ppm) 0. 0. EXP (ppm) RMe-Zn (L Me part) 8 EXP (ppm) 7 6 5 0 0 5 6 7 8 DFT (ppm) Table S0. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RMe-Zn. V vdw [Å ] V SES [Å ] D vdw D SES vdw SES D f D f [0-0 m /s] [0-0 m /s] [0-0 m /s] [0-0 m /s] RR-ZnA 68.70 85. 6.5 6.5 6. 6. RR-ZnC 68.6 85.0 6.5 6.57 6. 6. D EXp [0-0 m /s] 6. RS-ZnA 68.9 856.88 6.5 6.5 6. 6. 6.0 Me-Zn 5.8 65.8 8.5 7.6 7.8 7.07 7. Cy-Zn a 65.98 88.0 6.75 6.66 6.6 6.55 6.65 RMe-Zn 596.96 7.9 7.7 6.9 7.0 6.80 6.88 RCy-Zn 69.5 77.56 6.7 6.8 6.6 6.68 6.7 Table S. Van der Waals volumes V vdw, Connolly volumes V SES, theoretical diffusion coefficients D vdw, D SES and theoretical diffusion coefficients corrected by the shape factor D vdw f, D SES f for DFT optimized strucures and corresponding experimental diffusion coefficients D EXP. a Previously published, D. Jędrzkiewicz, J. Ejfler,. Gulia, Ł. John, S. Szafert, Dalton Trans., 05,, 700;