Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Σχετικά έγγραφα
Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Table of Contents 1 Supplementary Data MCD

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

IV. ANHANG 179. Anhang 178

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Supporting Information

Butadiene as a Ligand in Open Sandwich Compounds

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Supplementary information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Electronic Supplementary Information:

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supplementary Information

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Fused Bis-Benzothiadiazoles as Electron Acceptors

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supplementary Material

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

and Trimethylene Carbonate

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information for

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. Experimental section

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supplementary Information for

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Supporting Information

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Supporting Information

Supporting Information

Supporting Information

Electronic supplementary information for

Experimental. Crystal data

Supporting Information

Supporting Information

Electronic Supplementary Information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information. Experimental section

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supporting Information for: electron ligands: Complex formation, oxidation and

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting Information. for. Single-molecule magnet behavior in 2,2 -bipyrimidinebridged

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Electronic Supplementary Information

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Supporting Information

metal-organic compounds

Electronic Supplementary Information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Supporting information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 05 Supporting Information Zebra reaction or the recipe for heterodimeric zinc complexes synthesis Dawid Jędrzkiewicz, Jolanta Ejfler*, Łukasz John, Sławomir Szafert Faculty of Chemistry, University of Wroclaw, Joliot-Curie Str., 50-8 Wroclaw, Poland

Table of Contents Page Figure S. H MR of L R -H in CDCl. Figure S. C MR of L R -H in CDCl. Figure S. H MR of L Me -H in CDCl. Figure S. C MR of L Me -H in CDCl. Figure S5. H MR of RR-Zn in benzene-d 6. Figure S6. C MR of RR-Zn in benzene-d 6. Figure S7. H MR of RS-Zn in benzene-d 6. 5 Figure S8. H MR of RS-Zn in benzene-d 6. 5 Figure S9. H MR of RCy-Zn in benzene-d 6. 6 Figure S0. C MR of RCy-Zn in benzene-d 6. 6 Figure S. H MR of Me-Zn in benzene-d 6. 7 Figure S. C MR of Me-Zn in benzene-d 6. 7 Figure S. H MR of RMe-Zn in benzene-d 6. 8 Figure S. C MR of RMe-Zn in benzene-d 6. 8 Figure S5. Variable temperature H MR of RR-Zn in toluene-d 8. 9 Figure S6. Variable temperature H MR of RS-Zn in toluene-d 8. 9 Figure S7. H ESY MR of RR-Zn in benzene-d 6. 0 Figure S8. H ESY MR of RR-Zn in toluene-d 8 at 0K. 0 Figure S9. H ESY MR of RS-Zn in benzene-d 6. Figure S0. H ESY MR of RCy-Zn in benzene-d 6. Figure S. H ESY MR of Me-Zn in benzene-d 6. Figure S. H ESY MR of RMe-Zn in benzene-d 6. Table S. X-ray experimental data and refinement. Table S. Selected bond distances and angles. Figure S. Structures of RS-Zn isomers. 5 Figure S. Structures of RR-Zn isomers. 6 Figure S5. Structures of RS/RR-Zn monomers. 7 Table S. Energies of RS/RR-Zn isomers in vacuo. 7 Table S. Energies of RS/RR-Zn isomers in benzene. 8 Table S5. Comparison of experimental and DFT calculated chemical shifts for RR-Zn. 9 Table S6. Comparison of experimental and DFT calculated chemical shifts for RS-Zn. 9 Table S7. Comparison of experimental and DFT calculated chemical shifts for Cy-Zn. 0 Table S8. Comparison of experimental and DFT calculated chemical shifts for RCy-Zn. 0 Table S9. Comparison of experimental and DFT calculated chemical shifts for Me-Zn. 0 Table S0. Comparison of experimental and DFT calculated chemical shifts for RMe-Zn. Table S. Theoretical and experimental diffusion coefficients

Figure S. H MR of L R -H in CDCl. Figure S. C MR of L R -H in CDCl.

Figure S. H MR of L Me -H in CDCl. Figure S. C MR of L Me -H in CDCl.

Figure S5. H MR of RR-Zn in benzene-d 6. Assigments based on DFT studies (Table S5). Figure S6. C MR of RR-Zn in benzene-d 6.

Figure S7. H MR of RS-Zn in benzene-d 6. Figure S8. H MR of RS-Zn in benzene-d 6. 5

Figure S9. H MR of RCy-Zn in benzene-d 6. Figure S0. C MR of RCy-Zn in benzene-d 6. 6

Figure S. H MR of Me-Zn in benzene-d 6. Figure S. C MR of Me-Zn in benzene-d 6. 7

Figure S. H MR of RMe-Zn in benzene-d 6. Figure S. C MR of RMe-Zn in benzene-d 6. 8

Figure S5. Variable temperature H MR of RR-Zn in toluene-d 8. Figure S6. Variable temperature H MR of RS-Zn in toluene-d 8. 9

Figure S7. H ESY MR of RR-Zn in benzene-d 6. Figure S8. H ESY MR of RR-Zn in toluene-d 8. 0

Figure S9. H ESY MR of RS-Zn in benzene-d 6. Figure S0. H ESY MR of RCy-Zn in benzene-d 6.

Figure S. H ESY MR of Me-Zn in benzene-d 6. Figure S. H ESY MR of RMe-Zn in benzene-d 6.

RR-Zn SS-Zn RS-Zn RCy-Zn SMe-Zn Empirical formula C H 6 Zn C H 6 Zn C H 6 Zn C H 6 Zn C 7 H 56 Zn C 6 D 6 Formula weight 78.69 78.69 78.69 759.69 775.7 Crystal system Triclinic Triclinic Monoclinic Monoclinic Triclinic Space group P P P /c P P a (Å) 7.0 () 7.00 ().58 (5).9 () 9.0 () b (Å) 0.6 () 0.7 () 0.5 () 0.6 () 9.90 () c (Å) 5. (5) 5.79 (6).00 ().7 (5).67 () α ( ) 70.75 () 70.6 () 90 90 78.0 () β ( ) 8. () 8.8 () 98.6 () 0.7 () 86.50 () γ ( ) 8.66 () 8.65 () 90 90 7.57 () V (Å ) 0.5 (6) 0.6 (6) 980 () 06. () 059.7 (6) Z Crystal description Block, colourless Block, colourless Block, colourless Block, colourless Block, colourless Crystal size (mm) 0.5 0.5 0.8 0.6 0.9 0.0 0.55 0.6 0. 0.50 0.6 0.0 0.0 0.6 0.0 d calc (g/cm ).55.56..5.6 μ (mm - ).0.0.5.7.7 F(000) 6 6 8 8 0 Diffractometer Kuma KM- CCD Xcalibur, CCD Ruby Kuma KM- CCD Xcalibur, CCD nyx Kuma KM- CCD λ (Å) 0.707 (Mo) 0.707 (Mo) 0.707 (Mo).58 (Cu) 0.707 (Mo) T (K) 00 9 00 00 80 Θ min/max ( ).9/8.7.8/8.7.0/.5./70..9/8.7 h, k, l min/max -9/7, -/, -9/0-9/7, -7/, -8/0-8/0, -/, -7/ -6/6, -/0, -7/7 -/, -/, -6/6 Reflections collected 705 76 57 065 959 Independent reflections 567 5807 59 585 706 Reflections [I>σ(I)] 5058 58 55 576 5758 R (int.) 0.0 0.06 0.08 0.056 0.00 Flack parameter -0.00 () -0.00 (9) - 0.0 () -0.05 (8) data/restraints/params 567/57/5 5807/69/55 59/0/ 585/9/75 706/0/57 R[F > σ(f )] 0.05 0.07 0.0 0.05 0.08 wr(f ) 0.6 0.06 0.0 0.50 0.058 GooF.0.00...00 Δρ max /Δρ min (e Å - ) 0.9/-0.5 0./-0.9 0.7/-0. 0.67/-0.8 0./-0.60 Table S. X-ray experimental data and refinement.

Atoms RR-Zn SS-Zn RS-Zn RCy-Zn SMe-Zn Bond distance [Å] Zn-C.96(9).977(6).9866(7).990(6).97(9) Zn-C5 a.999(8).986(5).00(6).97(9) Zn-.006(5).009().055().0().06(5) Zn-.008(5).00().09().00(5) Zn- i.068(5).06().085().06().07(5) Zn-.055(5).059().08().0(5) Zn-.6(6).7(5).6(5).6().66(7) Zn-.6(7).57(5).5().(8) Zn-Zn i,b.096().0967(0).05(9).058().0576() - i,b.6().6().696().690().68() Angles [ ] C-Zn- 8.() 8.5().86(6) 6.() 7.9() C5 a -Zn- 5.() 7.5(7) 5.57(9) 5.() C-Zn- i.9() 9.().0(6) 6.0(8) 7.() C5 a -Zn- 9.6().5(8) 0.(9) 8.8() -Zn- i 80.8(9) 80.6(5) 8.0(5) 8.5() 8.(9) -Zn- 8.05(9) 80.86(5) 8.8() 8.65(8) C-Zn- 8.() 0.5() 5.9(6).(8) 8.() C5 a -Zn-.() 9.().() 9/() -Zn- 9.0() 9.5(6) 9.85(5) 9.0() 9.() -Zn- 9.5() 9.7(5) 9.7() 9.6() i -Zn- 05.() 0.76(6) 98.70(5) 95.0() 97.() -Zn- 0.8() 05.7(6) 0.08(5) 97.() Zn--Zn i 99.7(9) 99.6() 96.90(5) 97.7() 97.() Zn--Zn 98.79(9) 99.8() 97.() 97.5() Sum of the interior angles of the core Zn [ ] 59.9(8) 59.9(6) 60 59.9(6) 60.0(8) i = x+, y+, z+ for RS-Zn i =, Zn i = Zn for RR-Zn, SS-Zn, RCy-Zn, SMe-Zn C5 a = C9 for RCy-Zn, C for SMe-Zn b Values in parentheses refer to the non-bonding interactions. Table S. Selected bond distances (Å) and angles ( ).

RS-ZnA R C R Zn Zn S S C RS-ZnA' S C R Zn Zn S R C RS-ZnB S C S Zn Zn R R C RS-ZnB' R C S Zn Zn R S C RS-ZnC R C R Zn Zn R S C RS-ZnC' S C S Zn Zn S R C Zn Zn RS-ZnD R C R Zn Zn R S C RS-ZnE R C R Zn Zn R S C Zn Zn RS-ZnF R C R Zn Zn S S C RS-ZnF' S C R Zn Zn S R C Figure S. Structures of RS-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green zinc atoms, blue nitrogen atoms. 5

RR-ZnA R C R Zn Zn S R C RR-ZnB R C S Zn Zn R R C RR-ZnC R C R Zn Zn R R C RR-ZnC' R C S Zn Zn S R C Zn Zn RR-ZnD R C R Zn Zn R R C RR-ZnD' R C S Zn Zn S R C Zn Zn RR-ZnE R C R Zn Zn R R C RR-ZnE' R C S Zn Zn S R C Zn Zn RR-ZnF R C R Zn Zn S R C RR-ZnF' R C R Zn Zn S R C Figure S. Structures of RR-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green zinc atoms, blue nitrogen atoms. 6

R-ZnM R C R R-ZnM' R C S Figure S5. Structures of RS/RR-Zn monomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green zinc atoms, blue nitrogen atoms. Isomer E (hartree) ZPE (kcal/mol) ΔE zpe (kcal/mol) ΔE zpe (kj/mol) RS-ZnA -55.05957 608. 0.00 0.00 RS-ZnA' -55.05690 609.5.05 6.97 RS-ZnB -55.057 609.0 5.7.6 RS-ZnB' -55.9796 609.06 8.9 7.6 RS-ZnC -55.09000 608.59.8 8. RS-ZnC' -55.0576 608.75 6.00 5. RS-ZnD -55.9879 607.76 7. 9.89 RS-ZnE -55.9686 608.78. 5.9 RS-ZnF -55.9905 608.8 7. 9.8 RS-ZnF' -55.99 608.6.0 50.6 RR-ZnA -55.07800 608.8.8 7.6 RR-ZnB -55.080 609. 5.8.69 RR-ZnC -55.06980 608.8.70.9 RR-ZnC' -55.0700 608.87. 7.0 RR-ZnD -55.0680 608.5 5.5.0 RR-ZnD' -55.9765 608. 9.77 0.86 RR-ZnE -55.9556 608.9 0.60.5 RR-ZnE' -55.879589 608.7.07 58.85 RR-ZnF -55.97000 608. 0.00.8 RR-ZnF -55.9688 608. 8.9 7.0 R-ZnM -766.76999 0.8.87* 5.89* R-ZnM' -766.768 0.7 7.89* 58.5* Table S. Energies of RS/RR-Zn isomers in vacuo. * - Calculated as for two monomers. 7

Isomer E (hartree) ZPE (kcal/mol) ΔE zpe (kcal/mol) ΔE zpe (kj/mol) RS-ZnA -55.5907 608.6 0.00 0.00 RS-ZnA' -55,976 608.9..0 RS-ZnB -55.09909 608.8.69 9.6 RS-ZnB' -55.0979 608.6 7.9.0 RS-ZnC -55.098089 608.9.86 6. RS-ZnC' -55.0778 608.5 5.70.85 RS-ZnD -55.0606 607.5 6.8 7. RS-ZnE -55.9879 608..07 6. RS-ZnF -55.05658 608.7 6.56 7. RS-ZnF' -55.9878805 608.09 0.68.68 RR-ZnA -55.505 608..8 6.9 RR-ZnB -55.0907 608.76.9 0.60 RR-ZnC -55.5507 608.7. 0. RR-ZnC' -55.055 608.56.89 6.8 RR-ZnD -55.07690 607.88.88 0. RR-ZnD' -55.06 607.76 8.8 6.89 RR-ZnE -55.089 608.6 9.68 0.5 RR-ZnE' -55.9570 607.95.7 5.8 RR-ZnF -55.05967 608. 8.96 7.9 RR-ZnF -55.0098 608. 8.0.6 R-ZnM -766.87009 0.86 8.75* 0.9* R-ZnM' -766.869909 0.7.7*.7* Table S. Energies of RS/RR-Zn isomers in benzene. * - Calculated as for two monomers. 8

a b c d e f f g h i j k a b c d e f f g h i j k RR-ZnA (R C R Λ Zn part) RR-ZnA (R C S Δ Zn part) DFT EXP DFT EXP 7.50 7. 8 a 7.9 7.9 7. 7.0 7 b 7. 7.0 EXP (ppm) 7. 7.0 6 c 6.98 7. 6.68 6.86 5 d 6.8 6.96.98 5.08 e..9.0.8 f.90.8.67.09 f.8.9.8.99 g.96.9.79.68 0 h.0.66.0.6 0 5 6 7 8 i.9.9.00.8 DFT (ppm) j.0.9 0. 0. k 0. 0. RR-ZnC (R C R Λ Zn part) RR-ZnC (R C R Δ Zn part) DFT EXP DFT EXP 7.7 7. 8 a 7.5 7.9 7.6 7.0 7 b 7. 7.0 6.99 7. 6 c 7.06 7. 6.70 6.86 5 d 7.0 6.96.95.9 e.99.95.6.8 f.8.95.7.09 f.5.58.5.0 g.69.6.7.75 0 h.6.6.9.7 0 5 6 7 8 i..9 0.76. DFT (ppm) j.0.5 0.5 0.5 EXP (ppm) k 0. 0.6 EXP (ppm) EXP (ppm) 8 7 6 5 0 8 7 6 5 0 0 5 6 7 8 DFT (ppm) 0 5 6 7 8 DFT (ppm) Table S5. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RR-Zn. The best R values were achievied for RR-ZnA, RR-ZnC isomers. a b c d e f f g h i j k DFT EXP 7.8 7.0 7.7 7.6 7.0 7.07 6.68 6.87 5. 5.06.69.86.87..00.99.77.68 0.96.8.7.5 0. 0.7 RS-ZnA 8 EXP (ppm) 7 6 5 0 0 5 6 7 8 DFT (ppm Table S6. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RS-Zn. 9

DFT EXP a 7.5 7. b 6.98 7. c 6.96 7. d..59 d.7. e.8.7 f.89.8 g.8.5 h.7. J 0.0 0. EXP (ppm) Cy-Zn 8 7 6 5 0 0 5 6 7 8 DFT (ppm) Table S7. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for Cy-Zn.. RCy-Zn (L R part) DFT EXP DFT EXP a 7. 7. 8 l 7.5 7.5 b 7.5 7. 7 m 7.00 7. c 7.0 7.07 6 n 6.98 7.0 d 6.97 6.8 o..6 5 e 5. 5.07 o.6.7 f.55.8 p.55.5 f.6.08 r.90.88 g.88.96 s 0.9.8 h.77.67 t.7.6 I.. 0 0 5 6 7 8 u 0.6 0.9 J.8. DFT (ppm) k 0.6 0.9 EXP (ppm) RCy-Zn (L Cy part) 8 7 EXP (ppm) 6 5 0 0 5 6 7 8 DFT (ppm) Table S8.. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RCy-Zn. a b c d d e e f g h DFT EXP 7.5 7. 6.98 7.0 6.9 7.0.5..70.70.9.8.98.79.7..5.6 0.09 0.8 EXP (ppm) Me-Zn 8 7 6 5 0 0 5 6 7 8 DFT (ppm) Table S9. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for Me-Zn. 0

a b c d e f f g h i j k RMe-Zn (L R part) DFT EXP DFT EXP 7.7 7. 8 l 7.57 7. 7.8 7. 7 m 7.07 7.05 7.05 7.06 6 n 7.0 7.0 6.9 6.8 5 o.59.6 5.00.9 o.8.7.5.7 p.6..6.07 p.0.8.9.95 q.9..79.69 0 r.09.0.. 0 5 6 7 8 s 0.0 0...6 DFT (ppm) 0. 0. EXP (ppm) RMe-Zn (L Me part) 8 EXP (ppm) 7 6 5 0 0 5 6 7 8 DFT (ppm) Table S0. Comparison of H MR chemical shifts in benzene-d 6 (EXP) with calculated (DTF) for RMe-Zn. V vdw [Å ] V SES [Å ] D vdw D SES vdw SES D f D f [0-0 m /s] [0-0 m /s] [0-0 m /s] [0-0 m /s] RR-ZnA 68.70 85. 6.5 6.5 6. 6. RR-ZnC 68.6 85.0 6.5 6.57 6. 6. D EXp [0-0 m /s] 6. RS-ZnA 68.9 856.88 6.5 6.5 6. 6. 6.0 Me-Zn 5.8 65.8 8.5 7.6 7.8 7.07 7. Cy-Zn a 65.98 88.0 6.75 6.66 6.6 6.55 6.65 RMe-Zn 596.96 7.9 7.7 6.9 7.0 6.80 6.88 RCy-Zn 69.5 77.56 6.7 6.8 6.6 6.68 6.7 Table S. Van der Waals volumes V vdw, Connolly volumes V SES, theoretical diffusion coefficients D vdw, D SES and theoretical diffusion coefficients corrected by the shape factor D vdw f, D SES f for DFT optimized strucures and corresponding experimental diffusion coefficients D EXP. a Previously published, D. Jędrzkiewicz, J. Ejfler,. Gulia, Ł. John, S. Szafert, Dalton Trans., 05,, 700;