Universidade Cruzeiro do Sul. e Tecnológicas - CETEC. Light-Cone QCD, and Nonpertubative Hadrons Physics. Electromagnetic Current of a Composed

Σχετικά έγγραφα
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Three coupled amplitudes for the πη, K K and πη channels without data

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Constitutive Relations in Chiral Media

Relativistic particle dynamics and deformed symmetry

Hadronic Tau Decays at BaBar

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Particle Physics Formula Sheet

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

1 Lorentz transformation of the Maxwell equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Quantum Electrodynamics

3+1 Splitting of the Generalized Harmonic Equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Geodesic paths for quantum many-body systems

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Dirac Matrices and Lorentz Spinors

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Empirical best prediction under area-level Poisson mixed models

Srednicki Chapter 55

[Note] Geodesic equation for scalar, vector and tensor perturbations

Space-Time Symmetries

Andreas Peters Regensburg Universtity

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The static quark potential to three loops in perturbation theory

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Higher Derivative Gravity Theories

Hartree-Fock Theory. Solving electronic structure problem on computers

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

LIGHT UNFLAVORED MESONS (S = C = B = 0)

The Jordan Form of Complex Tridiagonal Matrices

The form factor program - a review and new results - the nested SU(N)-off-shell Bethe ansatz - 1/N expansion

High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

Parametrized Surfaces

Ó³ Ÿ , º 3(201).. 461Ä ƒ. ÒÏ ±,.. μ 1. ˆ É ÉÊÉ Ö ÒÌ μ ² ³ ²μ Ê ±μ μ μ Ê É μ μ Ê É É, Œ ±

Errata 18/05/2018. Chapter 1. Chapter 2

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

AdS black disk model for small-x DIS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

The Hartree-Fock Equations

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1

Geometry of the 2-sphere

Particle Physics: Introduction to the Standard Model

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

Chap. 6 Pushdown Automata

Fractional Colorings and Zykov Products of graphs

Reminders: linear functions

NN scattering formulations without partial-wave decomposition

Homework 8 Model Solution Section

6.3 Forecasting ARMA processes

Muon & Tau Lifetime. A. George January 18, 2012

( ) 2 and compare to M.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Spherical Coordinates

Geodesic Equations for the Wormhole Metric

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Large β 0 corrections to the energy levels and wave function at N 3 LO

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Note: Please use the actual date you accessed this material in your citation.

Symmetric Stress-Energy Tensor

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Cosmological Space-Times

Lecture 10 - Representation Theory III: Theory of Weights

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Markov chains model reduction

The wave equation in elastodynamic

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

CONSULTING Engineering Calculation Sheet

The Feynman-Vernon Influence Functional Approach in QED

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

UV fixed-point structure of the 3d Thirring model

Trigonometric Formula Sheet

Durbin-Levinson recursive method

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Field Theory 263: Problem Set 1

Βαρύτητα και Ισχυρή Δύναμη: Ενα ημικλασικό μοντέλο τύπου Bohr χωρίς άγνωστες παραμέτρους για την δομή των πρωτονίων και των νετρονίων

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

Other Test Constructions: Likelihood Ratio & Bayes Tests

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Transcript:

. Universidade Cruzeiro do Sul Centro de Ciências Exatas e Tecnológicas - CETEC Light-Cone QCD, and Nonpertubative Hadrons Physics Electromagnetic Current of a Composed Vector Particle in the Light-Front J. Pacheco B. C. de Melo UNICSUL - CETEC IFT - UNESP Tobias Frederico (CTA-ITA) Minneapolis, May, 006

Summary 1. Light-Front Formalism. Spin-1 Particle: Rho Meson 3. Covariance Restoration in the Light-Front 4. Conclusions

Light-Front Formalism Light-Front Coordinates x + = t + z x + = x 0 + x 3 = Time x = t z x = x 0 x 3 = Position Four-Vector = x µ = (x 0, x 1, x, x 3 ) = (x +, x, x ) Metric Tensor g µν = 0 0 0 0 0 0 0 0 1 0 0 0 0 1 Scalar product and g µν = 1 0 1 x y = x µ y µ = x + y + + x y + x 1 y 1 + x y = 1 (x+ y + x y + ) x y p + = p 0 + p 3 p = p 0 p 3 p = (p 1, p ) 0 0 0 0 0 0 0 1 0 0 0 0 1 Dirac Matrix γ + = γ 0 + γ 3 = Electr. Current J + = J 0 + J 3 γ = γ 0 γ 3 = Electr. Current J = J 0 J 3 γ = (γ 1, γ ) = Electr. Current J = (J 1, J )

Fig. 1: Ligh-Front p µ x µ = p+ x +p x + p x x +, x, x = p +, p, p p = Light-Front Energy p = p + p p = p = p +m p + Bosons: = S F (p) = 1 p m +ıɛ Fermions: = S F (p) = /p+m p m +ıɛ + γ+ p + Ref: Phys. Rept. 301, (1998) 99-486 S. J. Brodsky, H.C. Pauli and S.S. Pinsky

Spin-1 Particle: Rho Meson General Electromagnetic Current J µ αβ = [F 1(q )g αβ F (q ) q αq β ]p µ F m 3 (q )(q α g µ β q βg α µ ), ρ Polarization Vectors ɛ µ x = ( η, 1 + η, 0, 0), ɛ µ y = (0, 0, 1, 0), ɛ µ z = (0, 0, 0, 1), ɛ µ x = ( η, 1 + η, 0, 0), ɛ µ y = ɛ y, ɛ µ z = ɛ z where η = q /4m ρ Breit Frame p µ i = (p 0, q x /, 0, 0) Initial p µ f = (p0, q x /, 0, 0) Final where p 0 = m ρ 1 + η.

k P k P P k P Fig. : Light-front time-ordered triangle diagram for the electromagnetic current.

Plus Component of the Electromagnetic Current J + ji = ı d 4 k (π) 4 T r[ɛ β j Γ β(k, k p f )(/k /p f + m) ((k p i ) m + ıɛ)(k m + ıɛ) γ+ (/k /p i + m)ɛ α i Γ α(k, k p i )(/k + m)]λ(k, p f )Λ(k, p i ) ((k p f ) m + ıɛ Regulator Function ρ-meson Vertex Λ(k, p i(f) ) = N/((p k) m R + ıɛ) Γ µ (k, p) = γ µ m ρ k µ p µ p.k + m ρ m ıɛ Mass Squared (x = k+ P + = 0 < x < 1) M (m a, m b ) = k + m a x + ( p k) + m b 1 x p Free Mass M 0 (m, m) and Function M R (m, m R) Wave Function Φ i (x, k ) = N (1 x) (m ρ M 0 )(m ρ M R ) ɛ i.[ γ k M 0 + m] Ref: Phy.Rev. C55 (1997) 043 J.P.B. C. de Melo and T. Frederico

Instant-Form Spin Base J + zx J + = 1 J + xx + J + yy J + zx J + zz J yy + J xx + J + zx J + yy J + xx J + zx J + xx + J + yy Light-Front I + = Matrix Elements I + 11 I + 10 I + 1 1 I + 10 I + 00 I + 10 I + 1 1 I + 10 I + 11 I 11 + = J xx + + (1 + η)j yy + ηj zz + ηj zx + (1 + η) I + 10 = ηj + xx + ηj + zz (η 1)J + zx (1 + η) I + 1 1 = J + xx + (1 + η)j + yy + ηj + zz + ηj + zx (1 + η) I + 00 = ηj + xx + J + zz ηj + zx (1 + η)

J + xx = J + zx = J + yy J + zz = 1 1 + η [I+ 11 + ηi 10 + ηi+ 00 I+ 1 1 ] η η 1 + η [ I+ 11 + (η 1)I+ 10 + I+ 00 η I+ 1 1 ] = I + 11 + I+ 1 1 Angular Condition 1 1 + η [ ηi+ 11 + ηi + 10 + I+ 00 + ηi+ 1 1 ] (q ) = (1 + η)i + 11 + I + 1 1 8ηI + 10 I + 00 = 0 Ref: Sov. J. Nucl. Phys. 39 (1984) 198 I.Grach and L.A. Kondratyku Phy. Rev. Lett. 6 (1989) 387 L.L. Frankfurt, I.Grach, L.A. Kondratyku and M. Strikman

Prescriptions : F F S GK CCKP BH vs COVARIANT Breit Frame = P + = P +, P = P, P = P = q/ B.F: q + = q 0 + q 3 = 0 { 4 Current Elements J + ρ 3 F orm F actors G 0, G 1 and G Angular Condition: Violation P arity q x = J yy + = J zz + + Rotations (q ) = (1 + η)(j + yy J + zz) = (1 + η)i + 11 + I + 1 1 8ηI + 10 I + 00 (q ) 0

Charge Form Factor ρ 1 m ρ =0.770 GeV m q =0.430 Ge m r =1.8 GeV Covariant FFS GK BH CCKP G 0 (q ) 0 0 4 6 q [GeV] Fig. 3: Rho Meson Charge Form Factor GK Sov. J. Nucl. Phys. 39 (1984) 198 I.Grach and L.A. Kondratyku CCKP Phy.Rev C37 (1988) 000 P.L. Chung, F. Coester, B.D. Keister and W.N. Polizou FFS Phy.Rev C48 (1993) 18 L.Frankfurt, T. Frederico and M. Strikman BH Phy.Rev D46 (199) 141 S.J. Brodsky and J.R. Hiller

3.00.00 Magnetic Form Factor ρ m ρ =0.770 GeV m q =0.430 Ge m r =1.8 GeV Covariant FFS GK BH CCKP G 1 (q ) 1.00 0.00 0 4 6 q [GeV] Fig. 4: Rho Meson Magnetic Form Factor

0.00 0.10 Quadrupole Form Factor ρ m ρ =0.770 GeV m q =0.430 Ge m r =1.8 GeV Covariant FFS GK BH CCKP G (q ) 0.0 0.30 0.40 0 4 6 q [GeV] Fig. 5: Rho Meson Quadrupole Form Factor

Table 1: Results for the low-energy electromagnetic ρ-meson observables, for the covariant (COV) and light-front calculations. The light-front extraction schemes to obtain the form-factors are given by Refs. (GK), (CCKP), (FFS) and (BH). In the last column, the results of Ref. [*] are given. MODEL COV GK CCKP BH FFS Ref.[*] < r > (fm ) 0.37 0.37 0.38 0.40 0.39 0.35 µ.14.19.17.15.48.6 Q (fm ) 0.05 0.050 0.051 0.051 0.058 0.04 Ref.[*] < r > = lim q 0 µ = lim G 1 (q ) q 0 6(G 0 (q ) 1) q Q = lim 3 G (q ) q 0 q Phy. Lett. B 349 (1995) 393 F. cardarelli, I.L. Grach, I.M. Narodetskii, E. Pace and G. Salmé

k P k P P k (a) P k P k P P k (b) P Fig. 6: Light-front time-ordered diagrams for the current: (a) Triangle Diagram and (b) Pair Terms.

Covariance Restoration in the Light-front Vertex Γ(q µ, q ν ) Trace T r ji = T r[(/k /p f + m)γ + (/k /p i + m) γ+ ] k ɛ µ f (kµ p µ ) ɛ ν i (kµ p µ ) + T r[(/k /p f + m)γ + (/k /p i + m)( γ k + ɛ µ f (kµ p µ )ɛ ν i (kµ p µ ) γ k + m)] By Parts: T r A ij = T r[(/k /p f + m)γ + (/k /p i + m)γ + ] T r B ij = T r[(/k /p f + m)γ + (/k /p i + m)( γ k + γ k + m)]

Bad Terms (Bad) = k T r Bad xx = k 3 T ra ij + (k η k q x η 1 + η)t r B ij T r God yy = (p + k + ) T r Bad zz = k 3 T ra ij + (k k k + )T r B ij T r Bad zx = k 3 η T rij A + [k η k k + η(k x + q x 1 + η)]t r B ij Integration Interval i) 0 < k + < p + ii) p + < k + < p + p + = p + + δ + (Dislocation Method) Poles Contribution i) k = f 1+m k + ii) k = p f 3 ıɛ p + k + XVth Few-Body Confer. Groningem (1997) Nucl. Phys., A 631, (1998) 574c (J.P.B.C. de Melo, J.H.O. Salles,T. Frederico and P.U.Sauer) Few-Body Syst., 4, (1998) 99 ( H.W. Naus, J.P.B.C. de Melo, T. Frederico and P.U.Sauer) Phy. Rev., C59, (1999) 78 (J.P.B.C. de Melo, H.W. Naus and T. Frederico)

Definitions - Feynman Propagators [1] = k + (k f 1 ıɛ k + ) [] = (p + k + )(p k f ıɛ p + k + ) [3] = (p + k + )(p k f 3 ıɛ p + k + ) [4] = (p + k + )(p k f 4 ıɛ p + k + ) [5] = (p + k + )(p k f 5 ıɛ p + k + ) [6] = (p + k + )(p k f 6 ıɛ p + k + ) [7] = (p + k + )(p k f 7 ıɛ p + k + ) Where the functions f i are given by: f 1 = k + m q f = (k p) + m q f 3 = (k p ) + m q f 4 = (k p) + m R. f 5 = (k p ) + m R f 6 = (k p) + m R. f 7 = (k p ) + m R

Pair Terms + (P air) J xx = lim δ + 0 + (P air) J zx = lim δ + 0 + (P air) J zz = lim δ + 0 + (Bad) d 3 T r[j xx ] k [1][][4][5][6][7] O prop + (Bad) d 3 T r[j zx ] k [1][][4][5][6][7] O prop + (Bad) d 3 T r[j zz ] k [1][][4][5][6][7] O prop O prop = d 3 k d k dk + (π) 3 m ρ 4(p µ k µ +m q m ρ )(p µ k µ +m q m ρ ) Limit: δ + 0 lim δ + 0 lim δ + 0 lim δ + 0 d 3 T r +A ij k [1][][4][5][6][7] k 3 O prop O(δ + ) d 3 T r +B ij k [1][][4][5][6][7] k O prop O(δ + ) d 3 T r +B ij k [1][][4][5][6][7] k O prop O(δ + )

I. Grach and L. Kondratyku Prescription: I + 00 GK (P air) G0 = 1 + (Bad) [J xx 3 GK (P air) G1 = [ J zz + (Bad) + ηj + (Bad) zz ] = 1 3 [ k q x ( η 1 + η)t r B ij + ( ηk k + T r B ij)] = 0 J + (Bad) zx η ] = 0 GK (P air) G = 3 [J + (Bad) xx + ηj + (Bad) zz ] = 0 No Pair Terms Contribution!!!

Vertex Γ(q µ, γ ν ) Trace T r ji = T r[(/k /p + m)γ + (/k /p + m)/ɛ µ (/k + m)]ɛ µ j (k µ p µ) Light-Front Trace T r ji = T r[(/k /p + m)γ + (/k /p + m)/ɛ γ + ] k ɛµ j (k µ p µ) Bad Terms (Bad) / Pair Terms T r Bad xx = T r[(/k /p + m)γ + (/k /p + m)γ γ + ] k T r Bad yy = 0 T rzz Bad = T r[(/k /p + m)γ + (/k /p + m)γ γ + ] k T rzz Bad = T r[(/k /p + m)γ + (/k /p + m)γ γ + ] k η By Definition T r C ij = T r[(/k /p + m)γ + (/k /p + m)γ γ + ] T r Bad xx = T r C ij T r Bad zz = T r C ij T r Bad zz = T r C ij k η k k η

Pair Terms Interval p + < k + < p + where: p + = p + + δ + + (P ar) J xx = lim δ + 0 + (P ar) J zx =lim δ + 0 + (P ar) J zz =lim δ + 0 d 3 + P ar T r[j xx ] K [1][][4][5][6][7] m ρ (p µ k µ + m q m ρ ) 0 d 3 + P ar T r[j zx ] K [1][][4][5][6][7] m ρ (p µ k µ + m q m ρ ) 0 d 3 K T r[j + (P ar) zz ] [1][][4][5][6][7] m ρ (p µ k µ + m q m ρ ) 0 Vertex Γ(γ µ, q ν ) No Pair Terms Contributions!!!

Vertex Γ(γ µ, γ ν ) T r ji = T r[/ɛ α f (/k /p + m)γ + (/k /p + m)/ɛ α i (/k + m)] Bad Terms (Bad) (k ) T r Bad ji = k T r[/ɛα f (/k /p + m)γ + (/k /p + m)/ɛ α γ + ] T rxx Bad = k η T r[γ (/k /p + m)γ + (/k /p + m)/ɛ α i 8 γ γ + ] T ryy Bad = k (k + p + ) = 0 T r Bad zz = k 8 T r[γ (/k /p + m)γ + (/k /p + m)/ɛ α i γ γ + ] T r Bad zx = k η 8 Fact: T r[γ (/k /p + m)γ + (/k /p + m)/ɛ α i γ γ + ] k (m+1) (p + k + ) n No Pair Terms Contribution if m < n Simplification: is VIP T rxx Bad T rzx Bad = η T r Bad zz = η T r Bad zz

Pair Terms + (P air) J xx = lim δ + 0 + (P air) J zx = lim δ + 0 + (P air) J zz = lim δ + 0 d 3 K T r[j + (Bad) xx ] [1][][4][5][6][7] +(Bad) d 3 T r[j zx ] K [1][][4][5][6][7] d 3 K T r[j + (Bad) zz ] [1][][4][5][6][7] 0 0 0 Pair Term Contribution!!! Grach and Kondratyku : Elimination I + 00 G GK 0 = 1 3 [J + xx + J + yy ηj + yy + ηj + zz] G GK 1 = J + yy J + zz J + zx η G GK = 3 [J + xx + J + yy( 1 η) + ηj + zz]

Pair Terms Combination GK (P air) G0 = 1 + (Bad) [J xx + ηj zz + (Bad) ] = 3 1 + (Bad) [ ηj zz + ηj zz + (Bad) ] = 0 3 GK (P air) G1 = J zz + (Bad) J + (Bad) zx η = J + (Bad) zz + η J + (Bad) zz η = 0 GK (P air) G = 3 3 [J + (Bad) xx [ ηj + (Bad) zz + ηj + (Bad) zz ] = + ηj + (Bad) zz ] = 0 Final Result: No Pair Terms Contribution!! Ref. De Melo and T. Frederico Braz. J. Phys. Vol.34, 3A, (004) 881 B.L.G. Bakker and C.R. Ji Phy. Rev. D65 (00) 116001

Electromagnetic Current Vertex Γ (γ µ,γ ν ) m q =0.430 GeV m R =1.8 GeV 0.9 Covariant Light Front Whitout Pair Terms Light Front + Pair Terms 0.4 J + xx 0.1 0.6 0 4 6 8 10 q [GeV] Fig. 7: Spin-1 Electromagetic Current

0.8 Electromagnetic Current Vertex Γ (γ µ,γ ν ) m q =0.430 GeV m R =1.8 GeV 0.6 J + zx 0.4 0. Covariant Light Front Whitout Pair Terms Light Front + Pair Terms 0 0 4 6 8 10 q [GeV] Fig. 8: Spin-1 Electromagetic Current

1.4 1. 1 Electromagnetic Current Vertex Γ (γ µ,γ ν ) m q =0.430 GeV m R =1.8 GeV Covariant Light Front Whitout Pair Terms Light Front + Pair Terms 0.8 J + zz 0.6 0.4 0. 0 0 4 6 8 10 q [GeV] Fig. 9: Spin-1 Electromagetic Current

1. Electromagnetic Current Vertex Γ (γ µ,γ ν ) m q =0.430 GeV m R =1.8 GeV 1 Covariant Light Front Whitout Pair Terms Light Front + Pair Terms 0.8 J + yy 0.6 0.4 0. 0 0 4 6 8 10 q [GeV] Fig. 10: Spin-1 Electromagetic Current

Conclusions Light-Front = { Bound States Covariance Rotational Invariance Broken = k Problematic { Good Terms Bad Electromagnetic Current: +, - and Pair Terms Contribution: = J + and J Bosons Particles P seudoscalar V ector Pairs Terms Contribution = Full Covariance Restorate J + is not free of the Pair Terms Contribution!!! 30