Optmal Stoppng under Nonlnear Expectaton Ibrahm Ekren Nzar Touz Janfeng Zhang arxv:1209.6601v2 math.pr 8 Feb 2013 February 12, 2013 Abstract Let X be a bounded càdlàg process wth postve jumps defned on the canoncal space of contnuous paths. We consder the problem of optmal stoppng the process X under a nonlnear expectaton operator E defned as the supremum of expectatons over a weakly compact famly of nondomnated measures. We ntroduce the correspondng nonlnear Snell envelope. Our man objectve s to extend the Snell envelope characterzaton to the present context. Namely, we prove that the nonlnear Snell envelope s an E supermartngale, and an E martngale up to ts frst httng tme of the obstacle X. Ths result s obtaned under an addtonal unform contnuty property of X. We also extend the result n the context of a random horzon optmal stoppng problem. Ths result s crucal for the newly developed theory of vscosty solutons of pathdependent PDEs as ntroduced n 5, n the semlnear case, and extended to the fully nonlnear case n the accompanyng papers 6, 7. Key words: Nonlnear expectaton, optmal stoppng. AMS 2000 subject classfcatons: 35D40, 35K10, 60H10, 60H30. Unversty of Southern Calforna, Department of Mathematcs, ekren@usc.edu. CMAP, Ecole Polytechnque Pars, nzar.touz@polytechnque.edu. Research supported by the Char Fnancal Rsks of the Rsk Foundaton sponsored by Socété Générale, and the Char Fnance and Sustanable Development sponsored by EDF and Calyon. Unversty of Southern Calforna, Department of Mathematcs, janfenz@usc.edu. Research supported n part by NSF grant DMS 10-08873. 1
1 Introducton On the canoncal space of contnuous paths, we consder a bounded càdlàg process X, wth postve jumps, and satsfyng some unform contnuty condton. Let h 0 be the frst ext tme of the canoncal process from some convex doman, and h := h 0 t 0 for some t 0 > 0. Ths paper focuses on the problem sup τ T EX τ h, where E. := supe P., P P T s the collecton of all stoppng tmes, relatve to the natural fltraton of the canoncal process, and P s a weakly compact non-domnated famly of sngular measures. Our man result s the followng. Smlar to the standard theory of optmal stoppng, we ntroduce the correspondng nonlnear Snell envelope Y, and we show that the classcal Snell envelope characterzaton holds true n the present context. More precsely, we prove that the Snell envelope Y s an E supermartngale, and an E martngale up to ts frst httng tme τ of the obstacte. Consequently, τ s an optmal stoppng tme for our problem of optmal stoppng under nonlnear expectaton. Ths result s proved by adaptng the classcal arguments avalable n the context of the standard optmal stoppng problem under lnear expectaton. However, such an extenson turns out to be hghly techncal. The frst step s to derve the dynamc programmng prncple n the present context, mplyng the E supermartngale property of the Snell envelope Y. To establsh the E martngale property on 0,τ, we need to usesome lmtng argument for a sequence Y τn, where τ n s are stoppng tmes ncreasng to τ. However, we face one major dffculty related to the fact that n a nonlnear expectaton framework the domnated convergence theorem fals n general. It was observed n Dens, Hu and Peng 3 that the monotone convergence theorem holds n ths framework f the decreasng sequence of random varables are quas-contnuous. Therefore, one man contrbuton of ths paper s to construct convenent quas-contnuous approxmatons of the sequence Y τn. Ths allows us to apply the arguments n 3 on Y τn, whch s decreasng under expectaton but not pontwse!) due to the supermartngale property. The weak compactness of the class P s crucal for the lmtng arguments. We note that n an one dmensonal Markov model wth unformly non-degenerate dffuson, Krylov 10 studed a smlar optmal stoppng problem n the language of stochastc control nstead of nonlnear expectaton). However, hs approach reles heavly on the smoothness of the determnstc) value functon, whch we do not have here. Indeed, one of the man techncal dffcultes n our stuaton s to obtan the locally unform regularty 2
of the value process. Our nterest n ths problem s motvated from the recent noton of vscosty solutons of path-dependent partal dfferental equatons, as developed n 5 and the accompanyng papers 6, 7. Our defnton s n the sprt of Crandal, Ish and Lons 2, see also Flemng and Soner 9, but avods the dffcultes related to the fact that our canoncal space fals to be locally compact. The key pont s that the pontwse maxmalty condton, n the standard theory of vscosty soluton, s replaced by a problem of optmal stoppng under nonlnear expectaton. Our prevous paper5 was restrcted to the context of semlnear path-dependent partal dfferental equatons. In ths specal case, our defnton of vscosty solutons can be restrcted to the context where P conssts of absolutely contnuous measures on the canoncal space. Consequently, the Snell envelope characterzaton of the optmal stoppng problem under nonlnear expectaton s avalable n the exstng lterature on reflected backward stochastc dfferental equatons, see e.g. El Karou et al 8, Bayraktar, Karatzas and Yao 1. However, the extenson of our defnton to the fully nonlnear case requres to consder a nondomnated famly of sngular measures. The paper s organzed as follows. Secton 2 ntroduces the probablstc framework. Secton 3 formulates the problem of optmal stoppng under nonlnear expectaton, and contans the statement of our man results. The proof of the Snell envelope characterzaton n the determnstc maturty case s reported n Secton 4. The more nvolved case of a random maturty s addressed n Secton 5. 2 Nondomnated famly of measures on the canoncal space 2.1 The canoncal spaces Let Ω := { ω C0,T,R d ) : ω 0 = 0 }, the set of contnuous paths startng from the orgn, B the canoncal process, F the natural fltraton generated by B, P 0 the Wener measure, T the set of F-stoppng tmes, and Λ := 0,T Ω. Here and n the sequel, for notatonal smplcty, we use 0 to denote vectors or matrces wth approprate dmensons whose components are all equal to 0. We defne a semnorm on Ω and a pseudometrc on Λ as follows: for any t,ω),t,ω ) Λ, ω t := sup ω s, d t,ω),t,ω ) ) := t t + ω. t ω T. t. 2.1) 0 s t Then Ω, T ) s a Banach space and Λ,d ) s a complete pseudometrc space. In fact, the subspace {t,ω t ) : t,ω) Λ} s a complete metrc space under d. 3
We next ntroduce the shfted spaces. Let 0 s t T. - Let Ω t := { ω Ct,T,R d ) : ω t = 0 } be the shfted canoncal space; B t the shfted canoncal process on Ω t ; F t the shfted fltraton generated by B t, P t 0 the Wener measure on Ω t, T t the set of F t -stoppng tmes, and Λ t := t,t Ω t. - For ω Ω s and ω Ω t, defne the concatenaton path ω t ω Ω s by: ω t ω )r) := ω r 1 s,t) r)+ω t +ω r )1 t,tr), for all r s,t. - Let s 0,T) and ω Ω s. For an FT s-measurable random varable ξ, an Fs - progressvely measurable process X on Ω s, and t s,t, defne the shfted FT t-measurable random varable ξ t,ω and F t -progressvely measurable process X t,ω on Ω t by: ξ t,ω ω ) := ξω t ω ), X t,ω ω ) := Xω t ω ), for all ω Ω t. 2.2 Capacty and nonlnear expectaton A probablty measure P on Ω t s called a semmartngale measure f the canoncal process B t s a semmartngale underp. For every constant L > 0, we denote by P L t the collecton of all semmartngale measures P on Ω t such that there exst F t -progressvely measurable R d - valuedprocessα P, aprocessβ P 0wthd d-symmetrcmatrxvalues, andad-dmensonal P-Brownan moton W P satsfyng: db t = β P t dw P t +α P tdt, P-a.s. and α P L, trβ P ) 2 ) 2L. 2.2) Throughout ths paper, we shall consder a famly {P t,t 0,T} of semmartngale measures on Ω t satsfyng: P1) there exsts some L 0 such that, for all t, P t s a weakly compact subset of P L 0 t. P2) For any 0 t T, τ T t, and P P t, the r.c.p.d. P τ,ω P τω) for P-a.e. ω Ω t. P3) For any 0 s t T, P P s, {E, 1} F s t dsjont, and P P t, the followng ˆP s also n P s : ˆP := P t P 1 E +P1 =1 E c =1. 2.3) Here 2.3) means, for any event E F s T and denotng Et,ω := {ω Ω t : ω t ω E}: ˆPE := E P =1 P E t,ω 1 E ω) +P E =1E) c. 4
We refer to the semnal work of Stroock and Varadhan 18 for the ntroducton of r.c.p.d., whch s a convenent tool for provng the dynamc programmng prncples, see e.g. Peng 12 and Soner, Touz, and Zhang 15. We observe that for all L > 0, the famly {P L t,t 0,T} satsfes condtons P1-P2- P3). In partcular, the weak compactness follows standard arguments, see e.g. Zheng 19 Theorem 3. The followng are some other typcal examples of such a famly {P t,t 0,T}. Example 2.1 Let L,L 1,L 2 > 0 be some constants. Wener measure P 0 t := {P t 0 } = {P : αp = 0,β P = I d }. Fnte varaton P fv t L) := {P : α P L,β P = 0}. Drfted Wener measure P 0,ac t L) := {P : α P L,β P = I d }. Relaxed bounds P t L 1,L 2 ) := {P : α P L 1,0 β P L 2 I d }. Relaxed bounds, Unformly ellptc P ue t L 1,L 2,L) := {P : α P L 1,LI d β P L 2 I d }. Equvalent martngale measures P e tl 1,L 2,L) := {P P t L 1,L 2 ): γ P L,α P =β P γ P }. We denote by L 1 F t T,P t) the set of all F t T measurable r.v. ξ wth sup P P t E P ξ <. The set P t nduces the followng capacty and nonlnear expectaton: C t A := sup P P t PA for A F t T, and E t ξ = sup P P t E P ξ for ξ L 1 F t T,P t ). 2.4) When t = 0, we shall omt t and abbrevate them as P,C,E. Clearly E s a G-expectaton, n the sense of Peng 13. We remark that, when ξ satsfes certan regularty condton, then E t ξ t,ω can be vewed as the condtonal G-expectaton of ξ, and as a process t s the soluton of a Second Order BSDEs, as ntroduced by Soner, Touz and Zhang 16. Abusng the termnology of Dens and Martn 4, we say that a property holds P-q.s. quas-surely) f t holds P a.s. for all P P. A random varable ξ : Ω R s - P-quascontnuous f for any ε > 0, there exsts a closed set Ω ε Ω such that CΩ c ε ) < ε and ξ s contnuous n Ω ε, - P-unformly ntegrable f E ξ 1 { ξ n} 0, as n. Snce P s weakly compact, by Dens, Hu and Peng 3 Lemma 4 and Theorems 22,28, we have: Proposton 2.2 ) Let Ω n ) n 1 be a sequence of open sets wth Ω n Ω. Then CΩ c n) 0. ) Let ξ n ) n 1 be a sequence of P-quascontnuous and P-unformly ntegrable maps from Ω to R. If ξ n ξ, P-q.s. then Eξ n Eξ. We fnally recall the noton of martngales under nonlnear expectaton. 5
Defnton 2.3 Let X be an F-progressvely measurable process wth X τ L 1 F τ,p) for all τ T. We say that X s a E supermartngale resp. submartngale, martngale) f, for any t,ω) Λ and any τ T t, E t X t,ω τ resp.,=) X t ω) for P-q.s. ω Ω. We remark that we requre the E-supermartngale property holds for stoppng tmes. Under lnear expectaton P, ths s equvalent to the P-supermartngale property for determnstc tmes, due to the Doob s optonal samplng theorem. However, under nonlnear expectaton, they are n general not equvalent. 3 Optmal stoppng under nonlnear expectatons We now fx an F-progressvely measurable process X. Assumpton 3.1 X s a bounded càdlàg process wth postve jumps, and there exsts a modulus of contnuty functon ρ 0 such that for any t,ω),t,ω ) Λ: Xt,ω) Xt,ω ) ρ 0 d t,ω),t,ω ) )) whenever t t. 3.1) Remark 3.2 There s some redundancy n the above assumpton. Indeed, t s shown at the end of ths secton that 3.1) mples that X has left-lmts and X t X t for all t 0,T. Moreover, the fact that X has only postve jumps s mportant to ensure that the random tmes τ n 3.2), ˆτ n 3.5), and τ n n 4.7) and 5.15) are F-stoppng tmes. We defne the nonlnear Snell envelope and the correspondng obstacle frst httng tme: Y t ω) := sup τ T t E t X t,ω τ, and τ := nf{t 0 : Y t = X t }. 3.2) Our frst result s the followng nonlnear Snell envelope characterzaton of the determnstc maturty optmal stoppng problem Y 0. Theorem 3.3 Determnstc maturty) Let X be satsfyng Assumpton 3.1. Then Y s an E-supermartngale on 0,T, Y τ = X τ, and Y. τ s an E-martngale. Consequently, τ s an optmal stoppng tme for the problem Y 0. To prove the partal comparson prncple for vscosty solutons of path-dependent partal dfferental equatons n our accompanyng paper 7, we need to consder optmal stoppng problems wth random maturty tme h T of the form h := nf{t 0 : B t O c } t 0, 3.3) 6
for some t 0 0,T and some open convex set O R d contanng the orgn. We shall extend the prevous result to the followng stopped process: Ŷt h ω) := sup E t τ T t X h s := X s 1 {s<h} +X h 1 {s h} for s 0,T. 3.4) The correspondng Snell envelope and obstacle frst httng tme are denoted: X h) t,ω τ, and τ := nf{t 0 : Ŷt h = X t h }. 3.5) Our second man result requres the followng addtonal assumpton. Assumpton 3.4 ) For some L > 0, P fv t L) P t for all t 0,T, where P fv t L) s defned n Example 2.1. ) For any 0 t < t+δ T, P t P t+δ n the followng sense: for any P P t we have P P t+δ, where P s the probablty measure on Ω t+δ such that the P-dstrbuton of B t+δ s equal to the P-dstrbuton of {B t s,t s T δ}. Theorem 3.5 Random maturty) Let X be a process satsfyng Assumpton 3.1, and suppose that the nondomnated famly of sngular measures satsfes Assumpton 3.4. Then Ŷ h s an E-supermartngale on 0,h, Ŷ h τ = X h τ, and Ŷ h. τ s an E-martngale. In partcular, τ s an optmal stoppng tme for the problem Ŷ h 0. Remark 3.6 ) The man dea for provng Theorem 3.5 s to show that EŶ h τ n converges to EŶ h τ, where τ n s defned by 5.15) below and ncreases to τ. However, we face a major dffculty that the domnated convergence theorem fals n our nonlnear expectaton framework. Notce that Y s an E-supermartngale and thus Y τn are decreasng under expectaton but not pontwse!). We shall extend the arguments of 3 for the monotone convergence theorem, Proposton 2.2, to our case. For ths purpose, we need to construct certan contnuous approxmatons of the stoppng tmes τ n, and the requrement that the random maturty h s of the form 3.3) s crucal. We remark that, n hs Markov model, Krylov 10 also consders ths type of httng tmes. We also remark that, n a specal case, Song 17 proved that h s quascontnuous. ) Assumpton 3.4 s a techncal condton used to prove the dynamc programmng prncple n Subsecton 5.1 below. By a lttle more nvolved arguments, we may prove the results by replacng Assumpton 3.4 ) wth for some constant L,L 1,L 2, P ue t L 1,L 2,L) P t for all t 0,T, where P ue t s defned n Example 2.1 v). 7
We conclude ths secton wth the Proof of Remark 3.2 Fx ω Ω, and let {t n } and {s n } be two sequences such that t n t,s n t, and X tn lm s t X s, X sn lm s t X s. Here and n the sequel, n lm s t we take the notatonal conventon that s < t. Wthout loss of generalty, we may assume t n < s n < t n+1 for n = 1,2,... Then for the ρ 0 defned n 3.1) we have 0 lmx s lmx s = lm X t s t n n lm X s n n lm ρ 0 d tn,ω),s n,ω) )) = 0. n s t Ths mples the exstence of X t ω). Moreover, ) ) X t X t = lmx s X t lmρ d s,ω),t,ω) = 0, s t completng the proof. s t 4 Determnstc maturty optmal stoppng We now prove Theorem 3.3. Throughout ths secton, Assumpton 3.1 s always n force, and we consder the nonlnear Snell envelope Y together wth the frst obstacle httng tme τ, as defned n 3.2). Assume X C 0, and wthout loss of generalty that ρ 0 2C 0. It s obvous that Y C 0, Y X, and Y T = X T. 4.1) Throughout ths secton, we shall use the followng modulus of contnuty functon: ρ 0 δ) := ρ 0 δ) ρ 0 δ 1 3)+δ 1 3, 4.2) and we shall use a generc constant C whch depends only on C 0, T, d, and the L 0 n Property P1), and t may vary from lne to lne. 4.1 Dynamc Programmng Prncple Smlar to the standard Snell envelope characterzaton under lnear expectaton, our frst step s to establsh the dynamc programmng prncple. We start by the case of determnstc tmes. Lemma 4.1 The process Y s unformly contnuous n ω, wth the modulus of contnuty functon ρ 0, and satsfes Y t1 ω) = sup E t1 X t 1,ω τ 1 {τ<t2 } +Y t 1,ω t 2 1 {τ t2 } τ T t 1 for all 0 t 1 t 2 T,ω Ω.4.3) 8
Proof ) Frst, for any t, any ω,ω Ω, and any τ T t, by 3.1) we have Xτ t,ω Xτ t,ω = XτB t ),ω t B t ) XτB t ),ω t B t ) ρ 0 d τb t ),ω t B t ),τb t ),ω t B t ) )) = ρ 0 ω ω t ). Snce τ s arbtrary, ths proves unform contnuty of Y n ω. ) When t 2 = T, snce Y T = X T 4.3) concdes wth the defnton of Y. Wthout loss of generalty we assume t 1,ω) = 0,0) and t := t 2 < T. Step 1. We frst prove. For any τ T and P P: E P X τ = E P X τ 1 {τ<t} +E P tx τ 1 {τ t} By the defnton of the r.c.p.d., we have E P tx τ ω) = E Pt,ω X t,ω τ t,ω Y t ω) for P a.e. ω {τ t}, where the nequalty follows from Property P2) of the famly {P t } that P t,ω P t. Then: E P X τ E P X τ 1 {τ<t} +Y t 1 {τ t}. By takng the sup over τ and P, t follows that: Y 0 = sup τ T EX τ supe X τ 1 {τ<t} +Y t 1 {τ t}. τ T Step 2. We next prove. Fx arbtrary τ T and P P, we shall prove E P X τ 1 {τ<t} +Y t 1 {τ t} Y 0. 4.4) Let ε > 0, and {E } 1 be an F t -measurable partton of the event {τ t} F t such that ω ω t ε for all ω, ω E. For each, fx an ω E, and by the defnton of Y we have Y t ω ) E P X t,ω τ +ε for some τ,p ) T t P t. By 3.1) and the unform contnuty of Y, proved n ), we have Thus, for ω E, Y t ω) Y t ω ) ρ 0 ε), X t,ω τ X t,ω τ ρ 0 ε), for all ω E. Y t ω) Y t ω )+ρ 0 ε) E P X t,ω τ +ε+ρ0 ε) E P X t,ω τ +ε+2ρ0 ε). 4.5) ThankstoProperty P3) of thefamly {P t }, wemay defnethefollowng par τ, P) T P: τ := 1 {τ<t} τ +1 {τ t} 1 E τ B t ); P := P t 1 E P +1 {τ<t} P. 1 9 1
It s obvous that {τ < t} = { τ < t}. Then, by 4.5), E P X τ 1 {τ<t} +Y t 1 {τ t} = E P X τ 1 {τ<t} + 1 E P X τ 1 {τ<t} + 1 = E P X τ 1 { τ<t} + 1 Y t 1 E E P X t, τ 1 E +ε+2ρ 0 ε) X τ 1 E +ε+2ρ 0 ε) whch provdes 4.4) by sendng ε 0. = E P X τ +ε+2ρ0 ε) Y 0 +ε+2ρ 0 ε), We now derve the regularty of Y n t. Lemma 4.2 For each ω Ω and 0 t 1 < t 2 T, Y t1 ω) Y t2 ω) C ρ 0 d t1,ω),t 2,ω) )). Proof Denote δ := d t1,ω),t 2,ω) ). If δ 1 8, then clearly Y t 1 ω) Y t2 ω) 2C 0 C ρ 0 δ). So we contnue the proof assumng δ 1 8. Frst, by settng τ = t 2 n Lemma 4.1, δy := Y t2 ω) Y t1 ω) Y t2 ω) E t1 Y t 1,ω t 2 E t1 Yt2 ω) Y t2 ω t1 B t 1 ) E t1 ρ0 d t2,ω),t 2,ω t1 B t 1 ) )) E t1 ρ0 δ + B t 1 t1 +δ). On the other hand, by the nequalty X Y, Lemma 4.1, and 3.1), we have Hence X t δy sup E 1,ω t1 t 2 +ρ 0 d τ,ω t1 B t 1 ),t 2,ω t1 B t 1 )) ) 1 {τ<t2 } τ T t 1 +Y t 1,ω t 2 1 {τ t2 } Y t2 ω) E t1 Y t 1,ω t 2 Y t2 ω)+ρ 0 d t 1,ω),t 2,ω t1 B t 1 )) ) E t1 ρ 0 d t 2,ω),t 2,ω t1 B t 1 )) ) +ρ 0 d t 1,ω),t 2,ω t1 B t 1 )) ) 2E t1 ρ0 δ + B t 1 t1 +δ). δy 2E t1 ρ0 δ + B t 1 ) 3 t1 +δ Et1 ρ 0 δ + 4 δ ) 1 3 +2C0 1 { B t1 t1+δ 3 4 δ 3} 1. 10
Snce δ + 3 4 δ 1 3 δ 1 3 for δ 1 8, ths provdes: δy ρ 0 δ 1 3)+Cδ 2 3E t1 B t 1 2 t 1 +δ ρ 0 δ 1 3)+Cδ 2 3δ C ρ 0 δ). 4.6) We are now ready to prove the dynamc programmng prncple for stoppng tmes. Theorem 4.3 For any t,ω) Λ and τ T t, we have Y t ω) = sup E t X t,ω τ 1 { τ<τ} +Yτ t,ω 1 { τ τ}. τ T t Consequently, Y s an E-supermartngale on 0, T. Proof Frst, follow the arguments n Lemma 4.1 ) Step 1 and note that Property P2) of the famly {P t } holds for stoppng tmes, one can prove straghtforwardly that Y t ω) sup E t X t,ω τ 1 { τ<τ} +Yτ t,ω 1 { τ τ}. τ T t On the other hand, let τ k τ such that τ k takes only fntely many values. By Lemma 4.1 one can easly show that Theorem 4.3 holds for τ k. Then for any P P t and τ T t, by denotng τ m := τ + 1 m T we have E P X t,ω τ m 1 { τm<τ k } +Y t,ω τ k 1 { τm τ k } Y t ω). Sendng k, by Lemma 4.2 and the domnated convergence theorem under P): E P X t,ω τ m 1 { τm τ} +Yτ t,ω 1 { τm>τ} Y t ω). Snce the process X s rght contnuous n t, we obtan by sendng m : Y t ω) E P X t,ω τ 1 { τ<τ} +Y t,ω τ 1 { τ τ}, whch provdes the requred result by the arbtrarness of P and τ. 4.2 Preparaton for the E martngale property If Y 0 = X 0, then τ = 0 and obvously all the statements of Theorem 3.3 hold true. Therefore, we focus on the non-trval case Y 0 > X 0. We contnue followng the proof of the Snell envelope characterzaton n the standard lnear expectaton context. Let τ n := nf{t 0 : Y t X t 1 n } T, for n > Y 0 X 0 ) 1. 4.7) 11
Lemma 4.4 The process Y s an E-martngale on 0,τ n. Proof By the dynamc programmng prncple of Theorem 4.3, Y 0 = supe X τ 1 {τ<τn} +Y τn 1 {τ τn}. τ T For any ε > 0, there exst τ ε T and P ε P such that Y 0 E X Pε τε 1 {τε<τ n} +Y τn 1 {τε τ n} +ε E Pε Y τε τ n 1 n 1 {τ ε<τ n} +ε, 4.8) where we used the fact that Y t X t > 1 n for t < τ n, by the defnton of τ n. On the other hand, t follows from the E supermartngale property of Y n Theorem 4.3 that E Pε Y τε τ n EY τε τ n Y 0, whch mples by 4.8) that P ε τ ε < τ n nε. We then get from 4.8) that: Y 0 E Pε X τε Y τn )1 {τε<τ n}+y τn +ε CP ε τ ε < τ n +E Pε Y τn +ε EY τn +Cn+1)ε. Snce ε s arbtrary, we obtan Y 0 EY τn. Smlarly one can prove Y s an E-submartngale on 0,τ n. By the E supermartngale property of Y establshed n Theorem 4.3, ths mples that Y s an E martngale on 0,τ n. By Lemma 4.2 we have Y 0 EY τ = EY τn EY τ CE ρ 0 d τn,ω),τ,ω) )). 4.9) Clearly, τ n ր τ, and ρ 0 d τn,ω),τ,ω) )) ց 0. However, n general the stoppng tmes τ n,τ are not P-quascontnuous, so we cannot apply Proposton 2.2 ) to conclude Y 0 EY τ. To overcome ths dffculty, we need to approxmate τ n by contnuous r.v. 4.3 Contnuous approxmaton The followng lemma can be vewed as a Lusn theorem under nonlnear expectaton and s crucal for us. Lemma 4.5 Let θ θ θ be r.v. on Ω, wth values n a compact nterval I R, such that for some Ω 0 Ω and δ > 0: θω) θω ) θω) for all ω Ω 0 and ω ω δ. Then for any ε > 0, there exsts a unformly contnuous functon ˆθ : Ω I and an open subset Ω ε Ω such that C Ω c ε ε and θ ε ˆθ θ +ε n Ωε Ω 0. 12
Proof If I s a sngle pont set, then θ s a constant and the result s obvously true. Thus at below we assume the length I > 0. Let {ω j } j 1 be a dense sequence n Ω. Denote O j := {ω Ω : ω ω j < δ 2 } and Ω n := n j=1 O j. It s clear that Ω n s open and Ω n Ω as n. Let f n : 0, ) 0,1 be defned as follows: f n x) = 1 for x 0, δ 2, f nx) = 1 n 2 I for x δ, and f n s lnear n δ 2,δ. Defne θ n ω) := φ n ω) n n ) 1. θω j )ϕ n,j ω) where ϕ n,j ω) := f n ω ω j ) and φ n := ϕ n,j j=1 Then clearly θ n s unformly contnuous and takes values n I. For each ω Ω n Ω 0, the set J n ω) := {1 j n : ω ω j δ} and φ n ω) 1. Then, by our assumpton, θ n ω) θω) = φ n ω) φ n ω) j J nω) j/ J nω) θω j ) θω)ϕ n,j ω)+ I ϕ n,j ω) φ n ω) j/ J nω) j/ J nω) j=1 ) θω j ) θω)ϕ n,j ω) 1 n 2 1 n. Smlarly one can show that θ 1 n θ n n Ω n Ω 0. Fnally, snce Ω n Ω as n, t follows from Proposton 2.2 ) that lm n CΩ c n = 0. 4.4 Proof of Theorem 3.3 We proceed n two steps. Step 1. For each n, let δ n > 0 be such that 3C ρ 0 δ n ) 1 nn+1) for the constant C n Lemma 4.2. Now for any ω and ω such that ω ω T δ n, by 3.1), the unform contnuty of Y n Lemma 4.1, and the fact that ρ 0 ρ 0, we have Y X) τn+1 ω)ω ) Y X) τn+1 ω)ω)+3c ρ 0 δ n ) 1 n+1 + 1 nn+1) = 1 n. Then τ n ω ) τ n+1 ω). Snce 3C ρ 0 δ n ) 1 nn+1) 1 nn 1), smlarly we have τ n 1ω) τ n ω ). We may then apply Lemma 4.5 wth θ = τ n 1, θ = τ n, θ = τ n+1, and Ω 0 = Ω. Thus, there exst an open set Ω n Ω and a contnuous r.v. τ n valued n 0,T such that C Ω c n 2 n and τ n 1 2 n τ n τ n+1 +2 n n Ω n. Step 2. By Lemma 4.4, for each n large, there exsts P n P such that Y 0 = EY τn E Pn Y τn +2 n. 13
By Property P1), P s weakly compact. Then, there exsts a subsequence {n j } and P P such that P nj converges weakly to P. Now for any n large and any n j n, note that τ nj τ n. Snce Y s an E-supermartngale and thus a P nj -supermartngale, we have Y 0 2 n j E Pn j Yτnj E P nj Yτn E P nj Y τn +E P nj Y τn Y τn. 4.10) By the boundedness of Y n 4.1) and the unform contnuty of Y n Lemma 4.2, we have Y τn Y τn C ρ 0 d τn,ω),τ n,ω) )) C ρ 0 d τn,ω),τ n,ω) )) 1 Ωn 1 Ω n+1 +C1 Ω c n 1 Ω c n+1. Notce that τ n 1 2 1 n τ n τ n+1 +2 1 n on Ω n 1 Ω n+1. Then Y τn Y τn C ρ 0 d τn,ω), τ n 1 2 1 n,ω) )) 1 Ωn 1 Ω n+1 +C ρ 0 d τn,ω), τ n+1 +2 1 n,ω) )) 1 Ωn 1 Ω n+1 +C1 Ω c n 1 Ω c n+1 C ρ 0 d τn,ω), τ n 1 2 1 n,ω) )) +C ρ 0 d τn,ω), τ n+1 +2 1 n,ω) )) +C1 Ω c n 1 Ω c n+1. Then 4.10) together wth the estmate CΩ c n 2 n lead to Y 0 2 n j E Pn j Y τn +CE P nj ρ 0 d τn,ω), τ n 1 2 1 n,ω) )) ρ 0 d τn,ω), τ n+1 +2 1 n,ω) )) +C2 n. +CE Pn j Notce that Y and τ n 1, τ n, τ n+1 are contnuous. Send j, we obtan Y 0 E P Y τn +CE P ρ 0 d τn,ω), τ n 1 2 1 n,ω) )) +CE P ρ 0 d τn,ω), τ n+1 2 1 n,ω) )) +C2 n. 4.11) Snce n P τ n τ n 2 n n C τ n τ n 2 n n 2 n < and τ n τ, by the Borel-Cantell lemma under P we see that τ n τ, P -a.s. Send n n 4.11) and apply the domnated convergence theorem under P, we obtan Y 0 E P Yτ EYτ. Smlarly Y t ω) E t Y t,ω τ for t < τ ω). By the E-supermartngale property of Y establshed n Theorem 4.3, ths mples that Y s an E-martngale on 0,τ. 14
5 Random maturty optmal stoppng Inths secton, weprove Theorem 3.5. Theman dea follows that of Theorem 3.3. However, snce X h s not contnuous n ω, the estmates become much more nvolved. Throughout ths secton, let X, h, O, t 0, X := Xh, Ŷ := Ŷ h, and τ be as n Theorem 3.5. Assumptons 3.1 and 3.4 wll always be n force. We shall emphasze when the addtonal Assumpton 3.4 s needed, and we fx the constant L as n Assumpton 3.4 ). Assume X C 0, and wthout loss of generalty that ρ 0 2C 0 and L 1. It s clear that Ŷ C 0, X Ŷ, and Ŷh = X h = X h. 5.1) By 3.1) and the fact that X has postve jumps, one can check straghtforwardly that, Xt,ω) Xt,ω ) ρ 0 d t,ω),t,ω )) ) for t t, t hω), t hω ) 5.2) except the case t = t = hω ) < hω) t 0. In partcular, Xt,ω) Xt,ω) ρ 0 d t,ω),t,ω)) ) whenever t t hω). 5.3) Moreover, we defne ρ 1 δ) := ρ 0 δ) ρ 0 L 1 ) δ) 1 1 3 +δ 3, ρ 2 δ) := ρ 1 δ)+δ ρ 1 δ 1 1 3 )+δ 3, 5.4) and n ths secton, the generc constant C may depend on L as well. 5.1 Dynamc programmng prncple We start wth the regularty n ω. Lemma 5.1 For any t < hω) hω ) we have: Ŷtω) Ŷtω ) Cρ 1 ω ω t ). To motvate our proof, we frst follow the arguments n Lemma 4.1 ) and see why t does not work here. Indeed, note that Ŷ t ω) Ŷtω ) sup sup E P Xt,ω τ T t τ h P P t,ω t X t,ω τ h t,ω. Snce we do not have h t,ω h t,ω, we cannot apply 5.2) to obtan the requred estmate. 15
Proof Let τ T t and P P t. Denote δ := 1 L ω ω t, t δ := t + δ t 0 and B t δ s := B t s+δ Bt t δ for s t. Set τ B t ) := τ B t δ)+δ t 0, then τ T t. Moreover, by Assumpton 3.4 and Property P3), we may choose P P t defned as follows: α P := 1 δ ω t ω t ), βp := 0 on t,t δ, and the P -dstrbuton of B t δ s equal to the P-dstrbuton of B t. We clam that I := E P t,ω X τ h E P t,ω X Cρ t,ω τ h t,ω 1 Lδ), 5.5) Then E P t,ω X τ h Ŷtω ) E P t,ω X t,ω τ h E t,ω P t,ω X Cρ τ h t,ω 1 Lδ), and t follows from the arbtrarness of P P t and τ T t that Ŷtω) Ŷtω ) Cρ 1 Lδ). By exchangng the roles of ω and ω, we obtan the requred estmate. It remans to prove 5.5). Denote ω s := ω s1 0,t) s)+ω t +α P s t)1 t,t s). Snce t < hω) hω ), we have ω t,ω t O. By the convexty of O, ths mples that ω s O for s t,t δ, and thus h t,ω B t ) = h t,ω B t δ)+δ) t 0, P a.s. Therefore, E P t,ω X = E P X τ B t ) h t,ω B t ),ω τ h t,ω t B t) 5.6) = E P ) X τ B t δ )+δ h t,ω B t δ )+δ t 0, ω tδ Bt δ δ = E P ) X τb t )+δ h t,ω B t )+δ t 0, ω tδ B t δ, whle E P t,ω X τ h = E P X τb t ) h t,ω B t ),ω t,ω t B t). Notce that, whenever τb t ) h t,ω B t ) = τb t )+δ h t,ω B t )+δ t 0, we have τb t ) h t,ω B t ) = t 0. Ths excludes the exceptonal case n 5.2). Then t follows from 5.6) and 5.2) that I E P ρ 0 δ + ω t B t ) τb t ) h t,ω B t ) ω tδ B t δ ) τb t )+δ h t,ω B t )+δ t 0 t0 ). Note that, denotng θ := τb t ) h t,ω B t ), ω t B t ) τb t ) h t,ω B t ) ω tδ B t δ ) τb t )+δ h t,ω B t )+δ t 0 t0 ω t B t ω tδ B t δ t 0 + sup ω ω t 0 r δ sup ω t +Bs t ω s t s t δ + sup ω t B t ) θ+r ω t B t ) θ 0 r δ ω t B t ) θ+r ω t B t ) θ 2Lδ + B t tδ + sup Bs t Bs δ t + sup Bθ+r t Bt θ. t δ s t 0 0 r δ 16 sup ω t +Bs t ω t δ Bs δ t t δ s t 0
Snce L 1, we have I E P ρ 0 3δ + B t tδ + sup Bs t Bt s δ + sup Bθ+r t Bt θ ). t δ s t 0 0 r δ If δ 1 8, then I 2C 0 Cρ 1 Lδ). We then contnue assumng δ 1 8, and thus 3δ+ 1 4 δ 1 3 δ 1 3. Therefore, I ρ 0 δ 1 3 )+CP B t tδ + sup Bs t Bs δ t + sup Bθ+r t Bt θ 1 ) t δ s t 0 0 r δ 4 δ 1 3 ρ 0 δ 1 3 )+Cδ 8 3 E P B t 8 t δ + sup Bs t Bs δ t 8 + sup Bθ+r t Bt θ 8 t δ s t 0 0 r δ ρ 0 δ 1 3 )+Cδ 4 3 +Cδ 8 3 E P sup t δ s t 0 B t s B t s δ 8. Set t δ = s 0 < < s n = t 0 such that δ s +1 s 2δ, = 0,,n 1. Then E P sup t δ s t 0 B t s Bt s δ 8 = E P max n 1 =0 n 1 0 n 1 E P sup s s s +1 B t s Bt s δ + Bt s δ Bt s δ 8 C s +1 s +δ) 4 Cδ 1 δ 4 = Cδ 3. =0 sup Bs t Bt s δ 8 s s s +1 Thus I ρ 0 δ 1 3)+Cδ 4 3 +Cδ 8 3δ 3 ρ 0 δ 1 3)+Cδ 1 3 Cρ 1 Lδ), provng 5.5) and hence the lemma. We next show that the dynamc programmng prncple holds along determnstc tmes. Lemma 5.2 Let t 1 < hω) and t 2 t 1,t 0. We have: Ŷ t1 ω) = sup E 1,ω t1 Xt 1 τ T t τ h t 1,ω {τ h t 1,ω <t 2 } +Ŷt 1,ω t 2 1 {τ h t 1,ω t 2 }. 1 Proof When t 2 = t 0, the lemma concdes wth the defnton of Ŷ. Wthout loss of generalty we assume t 1,ω) = 0,0) and t := t 2 < t 0. Frst, follow the arguments n Lemma 4.1 ) Step 1, one can easly prove Ŷ 0 supe Xτ h 1 {τ h<t} +Ŷt1 {τ h t}. 5.7) τ T To show that equalty holds n theabove nequalty, fxarbtrary P P andτ T satsfyng τ h otherwse reset τ as τ h), we shall prove E P Xτ 1 {τ<t} +Ŷt1 {τ t} Ŷ0. 17
Snce Ŷh = X h, ths amounts to show that: E P Xτ 1 {τ<t} {h t} +Ŷt1 {τ t,h>t} Ŷ0. 5.8) WeadapttheargumentsnLemma4.1) Step2tothepresentstuaton. Fx 0 < δ t 0 t. Let {E } 1 be an F t measurable partton of the event {τ t,h > t} F t such that ω ω Lδ for all ω, ω E. Fx an ω E for each. By the defnton of Ŷ we have Ŷ t ω ) E P Xt,ω +δ for some τ,p ) T t P t. 5.9) τ h t,ω As n Lemma 5.1, we set t δ := t + δ < t 0, Bt δ s := B t s+δ Bt t δ for s t, and τ B t ) := τ B t δ)+δ t 0. Then τ T t. Moreover by Assumpton 3.4 and Property P3), for each ω E, we may defne P,ω P t as follows: α P,ω := 1 δ ω t ω t), β P,ω := 0 on t,t δ, and the P,ω -dstrbuton of B t δ s equal to the P -dstrbuton of B t. By 5.5), we have E P Then by Lemma 5.1 and 5.9), 5.10) we have Ŷ t ω) Ŷtω )+Cρ 1 Lδ) E P,ω We next defne: t,ω X E P,ω t,ω X Cρ τ h t,ω τ h t,ω 1 Lδ). 5.10) X t,ω τ h t,ω +δ +Cρ 1 Lδ), for all ω E. 5.11) τ := 1 {τ<t} {h t} τ + 1 1 E τ B t ), and then {τ < t} {h t} = { τ < t} {h t}. Snce τ h, we see that {τ < t} {h t} = {τ < t} {τ = h = t}, and thus t s clear that τ T. Moreover, we clam that there exsts P P such that P = P on F t and the r.c.p.d. 5.12) P) t,ω = P,ω for P-a.e. ω E, 1, P) t,ω = P t,ω for P-a.e. ω {τ < t} {h t}. Then, by 5.11) we have Ŷ t ω) E P) t,ω Xt,ω τ h) t,ω +δ +Cρ1 Lδ), P-a.e. ω {τ t,h > t}, 5.13) and therefore: E P Xτ 1 {τ<t} {h t} +Ŷt1 {τ t,h>t} E P X τ h 1 {τ<t} {h t} + X τ h 1 {τ t,h>t} +δ +Cρ 1 Lδ) = E P X τ h +δ +Cρ 1 Lδ) Ŷ0 +δ +Cρ 1 Lδ), 18
whch mples 5.8) by sendng δ 0. Then the reverse nequalty of 5.7) follows from the arbtrarness of P and τ. It remans to prove 5.12). For any ε > 0 and each 1, there exsts a partton {Ej,j 1} of E such that ω ω t ε for any ω,ω Ej. Fx an ωj Ej for each,j). By Property P3) we may defne P ε P by: P ε := P t P,ωj 1 E +P1 j {τ<t} {h t}. 1 j 1 By Property P1), P s weakly compact. Then P ε has a weak lmt P P as ε 0. We now show that P satsfes all the requrements n 5.12). Indeed, for any partton 0 = s 0 < < s m = t < s m+1 < < s M = t δ < s M+1 < < s N = T and any bounded and unformly contnuous functon ϕ : R N d R, let ξ := ϕ B s1 B s0,,b sn B sn 1 ). Then, denotng s k := s k+1 s k, ω k := ω sk ω sk 1, we see that where: E P,ω ξ t,ω = η t ω), EP,ωj ξ t,ω = η,j t ω), ηt ω) := EP ϕ ω k ) 1 k m, ω t ω t s k ) m+1 k M,B sk δ B sk 1 δ) M+1 k N ); δ η,j t ω) := E P ϕ ω k ) 1 k m, ω t ωj t s k ) m+1 k M,B sk δ B sk 1 δ) M+1 k N ). δ Let ρ denote the modulus of contnuty functon of ϕ. Then E P,ωj ξ t,ω E P,ω ξ t,ω ρε) for all ω Ej, and thus = E P ε ξ E P ξ1 {τ<t} {h t} + ηt 1 E 1 E P,j 1 E P,j 1 E P,ωj ξ t, 1 E j E P,j 1 η t1 E j E P,ωj ξ t, E P, ξ t, 1E E P j,j 1 ρε)1 E j ρε). By sendng ε 0, we obtan E Pξ = E P ξ1 {τ<t} {h t} + 1 η t1 E, whch proves 5.12) by the arbtrarness of ξ. We now prove the regularty n the t-varable. Recall the ρ 2 defned n 5.4). 19
Lemma 5.3 Let 0 t 1 < hω 1 ), 0 t 2 < hω 2 ), and t 1 t 2. Then we have: Ŷt 1 ω 1 ) Ŷt 2 ω 2 1 ) C 1+ ρ dωt 1 1,O c 2 d t1,ω 1 ),t 2,ω 2 ) )). ) Proof Wthout loss of generalty we assume t 1 < t 2. Also, n vew of the unform contnuty n ω of Lemma 5.1, t suffces to prove the lemma n the case ω 1 = ω 2 = ω. Denote δ := d t1,ω),t 2,ω) ) and ε := dω t1,o c ). For δ 1 8, we have Ŷt 1 ω) Ŷ t2 ω) 2C 0 Cε 1 ρ 2 δ). So we assume n the rest of ths proof that δ < 1 8. Frst, by Assumpton 3.4, we may consder the measure P P t1 such that α P t := 0,βP t := 0, t t 1,t 2. Then, by settng τ := t 0 n Lemma 5.2, we see that Ŷt 1 ω) E t1 Ŷ t 1,ω t 2 E P Ŷ t 1,ω t 2 = Ŷt 2 ω t1 ). Note that hω t1 ) = t 0 > t 2. Thus, by Lemma 5.1, Ŷ t2 ω) Ŷt 1 ω) Cρ 1 d t2,ω t1 ),t 2,ω) )) Cρ 1 δ) Cρ 2 δ). 5.14) Next, for arbtrary τ T t 1, notng that X Ŷ we have Iτ) := E 1,ω t1 Xt 1 τ h t 1,ω {τ h t 1,ω <t 2 } +Ŷt 1,ω t 2 1 {τ h t 1,ω t 2 } Ŷt 2 ω) = E t1 Xt 1,ω τ 1 {τ<h t 1,ω t 2 } + X t 1,ω h t 1,ω 1 {h t 1,ω <t 2,h t 1,ω τ} +Ŷt 1,ω t 2 1 {τ h t 1,ω t 2 } E t1 Xt 1,ω τ X t ) 1,ω h t 1,ω 1{τ<h t t 1,ω 2 t 2 } +Ŷt 1,ω E t1 Xt 1,ω τ X t 1,ω h t 1,ω t 2 ) 1{τ<h t 1,ω t 2 } +C C t1 h t 1,ω t 2. h t 1,ω t 2 Ŷt 2 ω) +E t1 Ŷ t 1,ω t 2 Ŷt 2 ω) 1 {h t 1,ω >t 2 } By 5.3) and Lemma 5.1 we have Iτ) E t1 ρ 0 d t 1,ω),t 2,ω t1 B t 1 )) )+CE t1 ρ 1 ω ω t1 B t ) 1 t2 +CC t1 B t 1 t2 ε E t1 ρ 0 δ + B t 1 t2 ) +CE t1 ρ 1 δ + B t 1 t2 ) +Cε 1 E t1 B t 1 t2 C1+ε 1 E t1 ρ 1 δ + B t 1 t2 ). Snce δ 1 8, followng the proof of 4.6) we have Iτ) C1+ε 1 ρ 1 δ 1 3)+δ 1 3 C1+ε 1 ρ 2 δ). Ŷt 2 ω) By the arbtrarness of τ and the dynamc programmng prncple of Theorem 5.4, we obtan Ŷ t1 ω) Ŷt 2 ω) Cε 1 ρ 2 δ), and the proof s complete by 5.14). Applyng Lemmas 5.1, 5.2, and 5.3, and followng the same arguments as those of Theorem 4.3, we establsh the dynamc programmng prncple n the present context. 20
Theorem 5.4 Let t < hω) and τ T t. Then Ŷ t ω) = sup E Xt,ω t τ T t τ h 1 t,ω { τ h t,ω <τ} +Ŷt,ω τ 1 { τ h t,ω τ}. Consequently, Ŷ s a E supermartngale on 0,h. ByLemma5.3, Ŷ scontnuous fort 0,h). Moreover, snceŷ sane-supermartngale, we see that Ŷ h exsts. However, the followng example shows that n general Ŷ may be dscontnuous at h. Example 5.5 Set X t ω) := t and let h correspond to O and t 0. Clearly X = X, Ŷh = h and Ŷtω) t 0. However, for any t < hω), set τ := t 0 and P P t such that α P = 0,β P = 0, we see that Ŷtω) E Xhω P t B t ),ω t B t ) = Xhω t ),ω t ) = hω t ) = t 0. That s, Ŷtω) = t 0. Thus Ŷ s dscontnuous at h whenever hω) < t 0. Ths ssue s crucal for our purpose, and we wll dscuss more n Subsecton 5.4 below. 5.2 Contnuous approxmaton of the httng tmes Smlar to the proof of Theorem 3.3, we need to apply some lmtng arguments. We therefore assume wthout loss of generalty that Ŷ0 > X 0 and ntroduce the stoppng tmes: for any m 1 and n > Ŷ0 X 0 ) 1, h m := nf { t 0 : dω t,o c ) m} 1 t0 1 m ), τ n := nf{t 0 : Ŷt X t 1 }. 5.15) n Here we abuse the notaton slghtly by usng the same notaton τ n as n 4.7). Our man task n ths subsecton s to buld an approxmaton of h m and τ n by contnuous random varables. Ths wll be obtaned by a repeated use of Lemma 4.5. We start by a contnuous approxmaton of the sequence h m ) m 1 defned n 5.15). Lemma 5.6 For all m 2: ) h m 1 ω) h m ω ) h m+1 ω), whenever ω ω t0 1 mm+1), ) there exsts an open subset Ω m 0 Ω, and a unformly contnuous ĥ m such that C Ω m 0 )c < 2 m and h m 1 2 m ĥ m h m+1 +2 m on Ω m 0, ) there exst δ m > 0 such that ĥ m ω) ĥ m ω ) 2 m whenever ω ω t0 δ m, and: C ˆΩ m 0 ) c 2 m where ˆΩm 0 := {ω Ω m 0 : dω,ω m 0 c ) > δ m }. 21
Proof Notce that ) s a drect consequence of ) obtaned by applyng Lemma 4.5 wth ε = 2 m. To prove ), we observe that for ω ω t0 1 mm+1) and t < h mω ), we have dω t,o c ) dω t,oc ) 1 mm+1) > 1 m 1 mm+1) = 1 m+1. Ths shows that h m ω ) h m+1 ω) whenever ω ω 1 t0 mm+1). Smlarly, h m 1ω) h m ω ) whenever ω ω 1 t0 mm 1), and the nequalty ) follows. It remans to prove ). The frst clam follows from the unform contnuty of ĥ m. For each δ > 0, defne h δ : 0, ) 0,1 as follows: h δ x) := 1 for x δ, h δ x) = 0 for x 2δ, and h δ s lnear on δ,2δ. 5.16) Then the map ω ψ δ ω) := h δ dω,ω m 0 c )) s contnuous, and ψ δ 1 Ω m 0 c as δ 0. Applyng Proposton 2.2 ) we have lm δ 0 Eψ δ = E 1 Ω m 0 ) c = C Ω m 0 ) c < 2 m. By defnton of ˆΩ m 0, notce that 1 ˆΩ m 0 )c ψ δm. Then C ˆΩ m 0 )c Eψ δm, and ) holds true for suffcently small δ m. We next derve a contnuous approxmaton of the sequences τ m n := τ n ĥ m, 5.17) where τ n and ĥ m are defned n 5.15) and Lemma 5.6 ), respectvely. Lemma 5.7 For all m 2, n > Ŷ0 X 0 ) 1, there exsts an open subset Ω m n Ω and a unformly contnuous map ˆτ m n such that τ m n 1 21 m 2 n ˆτ m n τm n+1 +21 m +2 n on ˆΩ m 0 Ωm n, and C Ω m n )c 2 n. Proof Fx m, and recall the modulus of contnuty ρ 1 ntroduced n 5.4). For each n, let 0 < δn m < δm such that ρ 0 +Cρ 1 )δn m) 1 nn+1), where C s the constant n Lemma 5.1. We shall prove τ n 1 ĥ m )ω) 2 1 m τ n ĥ m )ω ) τ n+1 ĥ m )ω)+2 1 m 5.18) whenever ω ˆΩ m 0, ω ω t0 δ m n. Then the requred statement follows from Lemma 4.5 wth ε = 2 n. 22
We shall prove only the rght nequalty of 5.18). The left one can be proved smlarly. Let ω,ω be as n 5.18). Frst, by Lemma 5.6 ) we have ω Ω m 0 and ĥ m ω ) ĥ m ω)+2 m 5.19) We now prove the rght nequalty of 5.18) n three cases. Case 1. f τ n+1 ω) ĥ m ω ) 2 m, then ĥ m ω ) τ n+1 ĥ m )ω) + 2 m and thus the result s true. Case 2. If τ n+1 ω) = hω), then by Lemma 5.6 ) we have ĥ m ω) h m+1 ω) + 2 m τ n+1 ω) + 2 m, and thus ĥ m ω ) ĥ m ω) + 2 m τ n+1 ω) +2 1 m. Ths, together wth 5.19), proves the desred nequalty. Case 3. We now assume τ n+1 ω) < ĥ m ω ) 2 m and τ n+1 ω) < hω). By Lemma 5.6 ) we have τ n+1 ω) < h m+1 ω ), and thus τ n+1 ω) < hω ). Then t follows from Lemma 5.1 that Y X) τn+1 ω)ω ) Y X) τn+1 ω)ω)+ρ 0 +Cρ 1 )δ m n ) 1 n+1 + 1 nn+1) = 1 n. That s, τ n ω ) τ n+1 ω). Ths, together wth 5.19), proves the desred nequalty. For our fnal approxmaton result, we ntroduce the notatons: and τ n := τ n h n, θ n := ˆτ n 1 n 1 23 n, θ n := ˆτ n+1 n+1 +21 n, 5.20) Ω n := n 1 ˆΩ 0 Ωn 1 n 1 n+1 ˆΩ 0 Ω n+1 n+1. 5.21) Lemma 5.8 For all n Ŷ0 X 0 ) 1 2, θ n,θ n are unformly contnuous, and θ n τ n θ n on Ω n. Proof Ths s a drect combnaton of Lemmas 5.6 and 5.7. 5.3 Proof of Theorem 3.5 We frst prove the E-martngale property under an addtonal condton. Lemma 5.9 Let τ T such that τ τ and EY τ = EY τ n partcular f τ < h). Then Ŷ s an E-martngale on 0,τ. 23
Proof If Ŷ0 = X 0, then τ = 0 and obvously the statement s true. We then assume Ŷ 0 > X 0, and prove the lemma n several steps. Step 1 Let n be suffcently large so that 1 n < Ŷ0 X 0. Follow the same arguments as that of Lemma 4.4, one can easly prove: Ŷ s an E martngale on 0,τ n. 5.22) Step 2 Recall the sequence of stoppng tmes τ n ) n 1 ntroduced n 5.20). By Step 1 we have Ŷ0 = EŶ τ n. Thenfor any ε > 0, thereexsts P n P such that Ŷ0 ε < E Pn Ŷ τ n. Snce P s weakly compact, there exsts subsequence {n j } and P P such that P nj converges weakly to P. Now for any n and n j n, snce Y s a supermartngale under each P nj and τ n ) n 1 s ncreasng, we have Ŷ 0 ε < E Pn j Ŷ τnj E P nj Ŷ τn. 5.23) Our next objectve s to send j ր, for fxed n, and use the weak convergence of P n j towards P. To do ths, we need to approxmate Ŷ τ n wth contnuous random varables. Denote ψ n ω) := h n nf 0 t θ nω) Then ψ n s contnuous n ω, and ) dω t,o c ) wth h n x) := 1 n+3)n+4)x n+3) +. 5.24) {ψ n > 0} { nf 0 t θ ω)dω t,o c ) > 1 } n n+4 {θ n < h n+4 }. 5.25) In partcular, ths mples that Ŷθ n ψ n and Ŷθ n ψ n are contnuous n ω. We now decompose the rght hand-sde term of 5.23) nto: Ŷ 0 ε E j Ŷθ Pn +Ŷ τ n n Ŷθ )1 n Ω n ψn +1 ψ n ) ) +Ŷ τ n Ŷθ )1 n Ω n. )c Note that θ n τ n θ n on Ω n. Then Ŷ 0 ε E Pn jŷθ + sup Ŷ n t Ŷ θ n ) )ψ n θ n t θ n Send j, we obtan +CCψ n < 1+CC Ω n )c. Ŷ 0 ε E P ψ n Ŷ θ n +E P ψ n sup Ŷt Ŷθ +CCψ ) θ n n < 1+CCΩ n )c. 5.26) n t θ n Step 3. In ths step we show that lm EP ψ n sup Ŷt Ŷθ n ) = lm Cψ θ n n < 1 = lm n n CΩ n )c = 0. 5.27) n t θ n 24
) Frst, by the defnton of Ω n n 5.21) together wth Lemmas 5.6 ) and 5.7, t follows that C Ω n )c C2 n 0 as n. ) Next, notce that {ψ n < 1} = { nf 0 t θ nω) dω t,o c ) < 1 } n+3 {θ n > h n+3}. Moreover, by 5.20) and Lemma 5.8, Then θ n = ˆτn+1 n+1 +21 n = θ n+2 +22 n τ n+2 +2 2 n h n+2 +2 2 n, on Ω n+2. {ψ n < 1} Ω n+2 )c {h n+3 < h n+2 +2 2 n } { } Ω n+2 )c sup hn+2 t h n+2 +2 2 n B 1 t B hn+2 n+2)n+3). Then one can easly see that Cψ n < 1 0, as n. ) Fnally, t s clear that θ n τ, θ n τ. Recall that Ŷ τ exsts. By 5.25), we see that ψ n sup θ n t θ n Ŷt Ŷθ n ) 0, P -a.s. as n. Then by applyng the domnated convergence theorem under P we obtan the frst convergence n 5.27). Step 4. By the domnated convergence theorem under P we obtan lm n E P ψ n Ŷ θ n = E P Ŷ τ. Ths, together wth 5.26) and 5.27), mples that Ŷ 0 E P Ŷ τ +ε. Note that Ŷ s an P -supermartngale and τ τ, then Ŷ 0 E P Ŷτ +ε. Snce ε s arbtrary, we obtan Ŷ0 EŶτ, and thus by the assumpton EŶτ = EŶτ we have Ŷ0 EŶτ. Ths, together wth the fact that Ŷ s a E-supermartngale, mples that Ŷ 0 = EŶτ. 5.28) Smlarly, one can prove Ŷtω) = E t Ŷ t,ω τ t,ω for t < τω), and thus Ŷ. τ s a E-martngale. In lght of Lemma 5.9, the followng result s obvously mportant for us. Proposton 5.10 It holds that EŶ τ = EŶ τ. We recall agan that Ŷ τ = Ŷ τ whenever τ < h. So the only possble dscontnuty s at h. The proof of Proposton 5.10 s reported n Subsecton 5.4 below. Let us frst show how t allows to complete the 25
Proof of Theorem 3.5 By Lemma 5.9 and Proposton 5.10, Ŷ s an E-martngale on 0, τ. Moreover, snce X τ = Ŷ τ, then Ŷ0 = E X τ and thus τ s an optmal stoppng tme. 5.4 E Contnuty of Ŷ at the random maturty Ths subsecton s dedcated to the proof of Proposton 5.10. We frst reformulate some pathwse propertes establshed n prevous subsectons. For that purpose, we ntroduce the followng addtonal notaton: for any P P, τ T, and E F τ { PP,τ,E) := P P : P = P τ P 1 E +P1 E c }, PP,τ) := PP,τ,Ω). 5.29) That s, P PP,τ,E) means P = P on F τ and P ) τ,ω = P τ,ω for P-a.e. ω E c. The frst result corresponds to Theorem 5.4. Lemma 5.11 Let P P, τ 1,τ 2 T, and E F τ1. Assume τ 1 τ 2 h, and τ 1 < h on E. Then for any ε > 0, there exst P ε PP,τ 1,E) and τ ε T wth values n τ 1,τ 2, s.t. E P Ŷ τ1 1 E E Pε Xτε 1 {τε<τ 2 } +Ŷτ 2 1 {τε=τ 2 } 1E +ε. Proof Let τ1 n be a sequence of stoppng tmes such that τn 1 τ and each τn 1 takes only fntely many values. Applyng Lemma 5.3 together wth the domnated convergence Theorem under P, we see that lm n E Ŷτ P 1 n τ 2 Ŷτ 1 = 0. Fx n such that E P Ŷτ1 n τ 2 Ŷτ 1 ε 2. 5.30) Assume τ n 1 takes values {t, = 1,,m}, and for each, denote E := E {τ n 1 = t < τ 2 } F t. By 5.13), there exsts τ T and P PP,t ) such that τ t on E and Ŷ t E P t X τ h + ε 2, P-a.s. on E. 5.31) Here E P t := E P F t denotes the condtonal expectaton. Defne τ := τ 2 1 E c {τ 2 τ n 1 } + m τ 1 E, P := P1E c {τ 2 τ1 n} + =1 Then one can check straghtforwardly that m P 1 E. 5.32) τ T and τ τ 2 τ n 1 ; 5.33) =1 26
and P PP,τ 2 τ n 1,E) PP,τ 1,E). Moreover, by 5.31) and 5.32), E P Ŷ τ2 τ1 n1 E = E P Ŷτ2 1 {τ2 τ n 1 } + m Ŷ t 1 E 1E =1 E P Ŷτ2 1 {τ2 τ n 1 } + X τ h + ε 2 )1 {τ n 1 <τ 2} 1E. Ths, together wth 5.30) and 5.33), leads to ) E P Ŷτ1 X τ 1 { τ<τ2 } Ŷτ 2 1 { τ τ2 } 1E ) ε+e P Ŷτ2 1 {τ2 τ1 n} + X τ h 1 {τ n 1 <τ 2 } X τ 1 { τ<τ2 } Ŷτ 2 1 { τ τ2 } 1E ) = ε+e P X τ h Ŷτ 2 1{τ n 1 <τ 2 τ}1 E = ε+e P E Pτ2 X τ h Ŷτ 2 ) 1{τ n 1 <τ 2 τ}1 E ε, where the last nequalty follows from the defnton of Ŷ. Then, by settng τ ε := τ τ 2 we prove the result. Next result corresponds to Lemma 5.9. Lemma 5.12 Let P P, τ T, and E F τ such that τ τ on E. Then for all ε > 0: E P 1 E Ŷ τ E P ε 1E Ŷ τ +ε for some Pε PP,τ,E). Proof We proceed n three steps. Step 1. We frst assume τ = t < τ on E. We shall prove the result followng the arguments n Lemma 5.9. Recall the notatons n Subsecton 5.2 and the ψ n defned n 5.24), and let ρ n denote the modulus of contnuty functons of θ n, θ n, and ψ n. Denote τ n := 0 for n Ŷ0 X 0 ) 1. For any n and δ > 0, let {E n,δ, 1} F t be a partton of E { τ n 1 t < τ n } such that ω ω t δ for any ω,ω E n,δ. For each n,), fx ω n, := ω n,δ, E n,δ. By Lemma 5.9, Ŷ1 E n,δ Ŷ t ω n, ) = E t Ŷ t,ωn,, and thus there exsts P n,δ τ t,ωn, n Note that n m=1 1 E m,δ P t such that s an E-martngale on t, τ n. Then Ŷ t ω n, ) E Pn,δ t,ω Ŷ n, +ε. 5.34) τ n t,ωn, = E {t < τ n }. Set n P n,δ := P t m=1 1 P m,δ 1 E m,δ +P1 E c {t τ n} PP,t,E). 5.35) 27
Recall the h δ defned by 5.16). We clam that, for any N n, E P Ŷt1 E E PN,δ Ŷt θ ψ n n1 E ) CnE ρ 2 δ +ρ n δ)+2η n δ) +Cρ n δ)+ε+c2 n +CCψ n < 1) +2E PN,δ sup Ŷs Ŷθ ψ θ n n1 E +CE h δ d ω,ω n ) c)), 5.36) n s θ n where η n δ) := sup Bs t 1 Bs t 2. t s 1 <s 2 t 0,s 2 s 1 ρ nδ) Moreover, one can easly fnd F t -measurable contnuous random varables ϕ k such that ϕ k 1 and lm k E P 1 E ϕ k = 0. Then E P Ŷt1 E E PN,δ Ŷt θ ψ n nϕ k ) CnE ρ 2 δ +ρ n δ)+2η n δ) +Cρ n δ)+ε+c2 n +CCψ n < 1) +CE PN,δ sup Ŷs Ŷθ ψ θ n nϕ k +CE n s θ n h δ d ω,ω n ) c)) +CE P 1 E ϕ k. Send δ 0. Frst note that δ +ρ n δ)+2η n δ) 0 and h δ 1 {0}, then by Proposton 2.2 ) we have lm E δ 0 ) ρ 2 δ +ρ n δ)+2η n δ) lm E h δ d ω,ω n ) c)) = C δ 0 = 0; d ω,ω n )c) = 0 = CΩ n )c C2 n. Moreover, for each N, by the weak compactness assumpton P1) we see that P N,δ has a weak lmt P N P. It s straghtforward to check that P N PP,t,E). Note that the random varables Ŷt θ n ψ nϕ k and sup θ n s θ n Ŷs Ŷθ n ψ nϕ k are contnuous. Then E P Ŷt1 E E PN Ŷt θ n ψ nϕ k ε+c2 n +CCψ n < 1)+CE PN sup Ŷs Ŷθ ψ θ n nϕ k +CE P 1 E ϕ k. n s θ n Agan by the weak compactness assumpton P1), P N has a weak lmt P PP,t,E) as N. Now send N, by the contnuty of the random varables we obtan E P Ŷt1 E E P Ŷt θ n ψ nϕ k ε+c2 n +CCψ n < 1)+CE P sup Ŷs Ŷθ ψ θ n nϕ k +CE P 1 E ϕ k. n s θ n Send k and recall that P = P on F t, we have E P Ŷt1 E E P Ŷt θ n ψ n1 E ε+c2 n +CCψ n < 1)+2E P sup Ŷs Ŷθ ψ θ n n1 E. n s θ n 28
Fnally send n, by 5.27) and applyng the domnated convergence theorem under P and P we have E P Ŷt1 E E P Ŷ τ 1 E ε. That s, P ε := P satsfes the requrement n the case τ = t < τ on E. Step 2. We now prove Clam 5.36). Indeed, for any m n and any ω E m,δ, by Lemma 5.1 we have Note that Ŷ t ω) E Pm,δ t,ω Ŷ τ n t,ω = Ŷtω) Ŷtω m, )+Ŷtω m, ) E Pm,δ Ŷ t,ω m, Cρ 1 δ)+ε+e Pm,δ +CP m,δ E Pm,δ 1 ψn t,ωm, P m,δ τ n t,ωm, Ŷt,ω τ n Ŷ t,ω m, τ t,ωm, n Ω n) t,ωm, c Ω n) t,ω c +CE Pm,δ +1 ψn t,ω 2E Pm,δ Ω n) t,ωm, c Ω n) t,ω c 2P m,δ 2P m,δ 2P m,δ +E Pm,δ t,ω Ŷ m, τ n t,ωm, 1Ω ψ t,ωm, n ) t,ωm, Ω n )t,ω n 1 ψ t,ωm, n Ŷt,ω τ n ψ t,ω n +1 ψ t,ω n. 5.37) 1 ψn t,ω +ρ n δ); Ω n) t,ω c +P m,δ Ω n) t,ωm, c Ω n) t,ω 5.38) Ω n) t,ω c +P m,δ 0 < d ω t B t,ω n) c) < δ Ω n) t,ω c +E Pm,δ h δ d ω t B t,ω n) c)). Moreover, on Ω n )t,ωm, Ω n )t,ω {ψ t,ωm, n have > 0} {ψ t,ω n > 0}, by Lemma 5.8 and 5.25) we θ n )t,ωm, τ t,ωm, n θ n )t,ωm, < h t,ωm, n+4 ; θ n )t,ω τ t,ω n θ n )t,ω < h t,ω n+4. Then Ŷ t,ωm, τ t,ωm, n Ŷt,ω τ n Ŷ t,ωm, θ Ŷt,ω n )t,ωm, θ n )t,ω + sup Ŷ s t,ωm, Ŷt,ωm, + sup Ŷ θ n )t,ωm, s θ θ n )t,ωm, n )t,ωm, s t,ω Ŷt,ω θ n )t,ω s θ θ n )t,ω n )t,ω = Ŷ t,ωm, θ Ŷt,ω n )t,ωm, θ +2 sup Ŷ n )t,ω θ n )t,ω s θ s t,ω Ŷt,ω θ n )t,ω n )t,ω + sup Ŷ s t,ωm, Ŷt,ωm, sup Ŷ θ n )t,ωm, s θ n) t,ωm, θ n )t,ωm, s t,ω Ŷt,ω θ n )t,ω s θ θ. n) t,ω n )t,ω 29
Applyng Lemma 5.3 we get Ŷ t,ωm, θ Ŷt,ω n )t,ωm, θ Cnρ 2 d θ n )t,ω n ) t,ωm,,ω m, t B t ),θ n) t,ω,ω t B t ) )) ) Cnρ 2 δ +ρ n δ)+2 sup Bs t Bθ t )t,ω n and, smlarly, Then ) Cnρ 2 δ +ρ n δ)+2η n δ), θ n )t,ω ρ nδ) s θ n )t,ω +ρ nδ) sup Ŷ s t,ωm, Ŷt,ωm, sup Ŷ θ n )t,ωm, s θ n) t,ωm, θ n )t,ωm, s t,ω Ŷt,ω θ n )t,ω s θ θ n )t,ω n )t,ω sup Ŷ s t,ωm, Ŷt,ωm, θ n )t,ωm, s θ n )t,ωm, θ θ n )t,ω n )t,ωm, + sup Ŷ s t,ωm, Ŷt,ω s + Ŷ t,ωm, θ n )t,ωm, θ n )t,ω s θ n )t,ωm, θ θ n )t,ω n Ŷt,ω )t,ωm, θ n )t,ω + sup Ŷs t,ωm, Ŷ t,ωm, + Ŷ t,ωm, Ŷ t,ω θ n )t,ωm, θ n )t,ω s θ θ n) t,ωm, θ n) t,ωm, θ )t,ω n )t,ωm, n ) Cnρ 2 δ +ρ n δ)+2η n δ) )+Cρ 1 δ) Cnρ 2 δ +ρ n δ)+2η n δ). Ŷ t,ωm, τ t,ωm, n Ŷt,ω τ n ) Cnρ 2 δ +ρ n δ)+2η n δ) Plug ths and 5.38) nto 5.37), for ω E m,δ ρ 2 Ŷ t ω) E Pm,δ t,ω Ŷ τ n t,ω +2E Pm,δ +CP m,δ CnE Pm,δ sup Ŷ θ n )t,ω s θ s t,ω n) Ω t,ω n) t,ω c +CE Pm,δ Then by 5.35) we have, for any N n, +2 sup Ŷ θ n )t,ω s θ s t,ω Ŷt,ω θ. n) t,ω n )t,ω we obtan ) δ +ρ n δ)+2η n δ) +Cρ n δ)+ε Ŷt,ω θ ψ t,ω n )t,ω n 1 ψ t,ω n +CE Pm,δ h δ d ω t B t,ω n) c)). E P Ŷt1 E E PN,δ Ŷt τ n 1 E = E PN,δ Ŷt Ŷ τ n 1 E {t< τn} CnE PN,δ ρ 2 δ +ρ n δ)+2η n δ) )+Cρ n δ)+ε+cp N,δ Ω n c +CE PN,δ 1 ψ n +2E PN,δ sup Ŷs Ŷθ ψ n n1 E +CE PN,δ h δ d ω,ω n ) c)) CnE θ n s θ n ) ρ 2 δ +ρ n δ)+2η n δ) +2E PN,δ sup Ŷs Ŷθ ψ θ n n1 E +CE n s θ n +Cρ n δ)+ε+c2 n +CCψ n < 1) 30 h δ d ω,ω n ) c)). 5.39)
Smlarly we have E PN,δ Ŷt τ n Ŷt θ n ψ n1 E C2 n +CCψ n < 1)+E PN,δ Ŷt τ n Ŷt θ 1 n E Ω ψ n n C2 n +CCψ n < 1)+2E PN,δ sup Ŷs Ŷθ ψ θ n n1 E n s θ n Ths, together wth 5.39), mples 5.36). Step 3. Fnally we prove the lemma for general stoppng tme τ. We follow the arguments n Lemma 5.11. Let τ n be a sequence of stoppng tmes such that τ n τ and each τ n takes only fntely many values. By applyng the domnated convergence Theorem under P, we may fx n such that E P Ŷτ n τ Ŷτ 1 E ε 2. Assume τ n takes values {t, = 1,,m}, and for each, denote E := E {τ n = t < τ } F t. Then {E,1 m} form a partton of Ẽ := E {τn < τ }. For each, by Step 1 there exsts P PP,t,E ) such that E P Ŷt 1 E E P Ŷ τ 1 E + ε 2m. Now defne P ε := m =1 P 1 E +P1Ẽc PP,τ n,ẽ) PP,τ,E). Recall that Ẽ F τ n and note that Ŷ τ Ŷ τ, thanks to the supermartngale property of Ŷ. Then E P Ŷ τ 1 E E Pε Ŷ τ 1 E The proof s complete now. We need one more lemma. ε 2 +EP Ŷ τ n τ 1 E E Ŷ τ Pε 1 E ε 2 +EP Ŷ τ n1ẽ E Ŷ τ Pε 1Ẽ = ε m 2 + E P ) Ŷ t 1 E E Ŷ τ Pε 1 E =1 ε 2 + m =1 ε 2m = ε. Lemma 5.13 Let P P, τ T, and E F τ such that τ h on E. For any ε > 0, there exsts P ε PP,τ,E) such that h τ + 1 L dω τ,o c )+3ε+ sup ω t ω τ, P ε -a.s. on E τ t τ+ε 31
Proof Frst, there exsts τ T such that τ τ τ +ε and τ takes only fntely many values 0 t 1 < < t n = t 0. Denote E := E { τ = t < h} F t. Then {E,1 n} s a partton of E { τ < h} and h τ τ +ε on E { τ h}. 5.40) For any, there exsts a partton E j ) j 1 of E such that ω t ω t Lε for any ω,ω E j. For each,j), fx an ωj E j and a unt vector αj pontng to the drecton from ω j t to O c. Now for any ω E j, defne P,j,ω P t as follows: β = 0, α t = 1 ε ωj t ω t 1 t,t +ε)t)+lα j 1 t +ε,tt). We see that h t,ω = t +ε+ 1 L dωj t,o c ) t 0, P,j,ω -a.s. on Ej. Smlar to the proofof 5.12), thereexsts P ε PP, τ,e) PP,τ,E) such that the r.c.p.d. P t,ω ε = P,j,ω for P-a.e. ω E j. Then h τ +2ε+ 1 L dω t,o c )+Lε τ +3ε+ 1 dω τ,o c )+ ω τ ω t L τ +3ε+ 1 dω τ,o c )+ sup ω t ω τ, P ε -a.s. on E L j. τ t τ+ε Ths, together wth 5.40), proves the lemma. We are now ready to complete the Proof of Proposton 5.10. The nequalty EŶ τ EŶ τ s a drect consequence of the E supermartngale property of Ŷ establshed n Theorem 5.4. As for the reverse nequalty, snce Ŷ s contnuous on 0,h) and h n h wth h n < h, t suffces to show that, for any P P and any ε > 0 I n := E P Ŷ τ h n EŶ τ 5ε for suffcently large n. 5.41) Let δ > 0, n > 1 Lδ. Set t n := t 0 1 n, τ0 := τ h n, and P 0 := P. We proceed n two steps. Step 1. Apply Lemma 5.11 wth P 0,τ 0, τ, and Ω, there exst P 1,1 PP 0,τ 0,Ω) and a stoppng tme τ 1 takng values n τ 0, τ, such that E P0 Ŷτ 0 EP1,1 X τ 11 { τ 1 < τ } +Ŷ τ 1 { τ 1 = τ } +ε. 32